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Abstract
An efficient classification method to categorize histopathological images is a challenging research problem. In this paper, an
improved bag-of-features approach is presented as an efficient image classification method. In bag-of-features, a large number
of keypoints are extracted from histopathological images that increases the computational cost of the codebook construction
step. Therefore, to select the a relevant subset of keypoints, a new keypoints selection method is introduced in the bag-of-
features method. To validate the performance of the proposed method, an extensive experimental analysis is conducted on two
standard histopathological image datasets, namely ADL and Blue histology datasets. The proposed keypoint selection method
reduces the extracted high dimensional features by 95% and 68% from the ADL and Blue histology datasets respectively
with less computational time. Moreover, the enhanced bag-of-features method increases classification accuracy by from other
considered classification methods.

Keywords Keypoint selection · Grey relational analysis · Bag-of-features · Histopathological image analysis

Introduction

Histopathology involves a microscopic investigation of dis-
eased tissues for examining the pathogoloigcal and biological
structures. For histopathological analysis, tissue slides are
prepared by taking a tissue samples from the diseased body
and stained them with different methods for better visual-
ization of different tissue structures [17]. To convert a tissue
slide into digital image, whole slide imaging (WSI) scanners
are widely used [49]. The pathology labs are using digital tis-
sue slides for the investigationswhich helped them inmaking
the decisions accurately for disease diagnosis [50].

In recent years, there has been an huge growth of dig-
ital tissue images over the Internet and these images need
to be well organized for better analysis and retrieval pro-
cesses. Therefore, an automated system for the classification
of histopathological images can be useful [32]. However,
due to the complexity of histopathological images, it is a
complicated task to design an automated image classifica-
tion system.
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Figure 1 depicts some images of tissues to illustrate their
structural complexities. Generally, pathologists examine cer-
tain visual features from the histopathological images to
classify them into their respective categories. To automate
the classification process, such visual features are extracted
by feature extraction methods but it is hard to extract features
due to diverse and complex disease-specific tissue structures
[31].

In the literature, several automated histopathological
image categorization methods exist which are based on the
approaches like graph algorithms [5], hashing [56], bag-of-
features [9], and deep neural networks [24]. Song et al. [47]
resolved the issue of variances within class and between
classes for the given categories of histopathological images
by proposing a sub-categorization-based model known as
LMLE (large margin local estimate). The model is further
extended for interstitial lung disease that is based on the
locality constrained sub-cluster representation of an image
[48]. Besides, Nayak et al. [32] developed an automated
dictionary-based feature learning method to classify various
morphometric regions in the whole slide image. Vu et al.
[52] determined the discriminative features from images and
used dictionary learning for classifying the histopathological
images. Orlov et al. [33] presented amultipurpose automated
image classifier, known as WND-CHARM, by extracting
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Fig. 1 Structures of various H&E stained histopathological tissue images [19,29]

a large number of various types of features such as tex-
ture, a polynomial decomposition, and high contrast features.
WND-CHARM is analyzed and tested on two applications,
namely face recognition and biomedical image classification.
Tang et al. [51] presented the I-Browse system to automat-
ically classify the histopathological images by using visual
features and semantic properties along with the contextual
knowledge. A broad review of various computer-assisted
diagnosis algorithms in medical imaging has been presented
by Gurcan et al. [17]. Diáz et al. [12] presented a method
to select and describe the local patches from histopathologi-
cal images based on their staining components. These local
patches are further used in the probabilistic latent semantic
analysis framework (pLSA) for the classification. Moreover,
Srinivas et al. [49] represented histological images using a
multi-channel sparsity model, having specified channel-wise
constraints, with a linear arrangement of training samples.
Saraswat and Arya [44] presented and discussed differ-
ent techniques for classification, segmentation, and feature
detection of nuclei in histopathological images. Fondon et
al. [15] provided an automated tissue classification method
to diagnose the breast cancer carcinoma having four malig-
nancy levels, namely invasive, in-situ, benign, and normal.
The method considered three different types of features, i.e.,
texture, nuclei, and color regions to train the support vector
machine classifier. Lichtblau and Stoean [26] proposed an
automated classification method for cancer diagnosis which
is based on the weighted outcome of six classifiers. The
optimal weights are found using the differential evolution
approach with error minimization as the objective function.

The above-discussed classification methods are based on
local features that consider the features such as color, shape,
texture, and distribution of the nuclei for the representation of
the histopathological images. However, these features are not
adequate for images, having complex and unbalanced visual
structures [18].Moreover, for better medical image represen-
tation, learning-based methods are used which automatically
extract the features from the images and represent the com-
plex morphological structures in a more meaningful way
[36,46]. However, these methods are not computationally
efficient. Therefore, to achieve better image representation,

mid-level features are used in medical image representation
[40]. The bag-of-features (BOF) method [9] is one of the
popular mid-level image representation methods. This con-
cept is inherited from the bag-of-words (BoW) which is used
for textual document analysis in natural language processing
[25,41,42].

Recently, theBOF-based classificationmethods have been
proved effective over the existing ones in terms of com-
putational resources and efficiency for histopathological
image analysis [24] [16]. Caicedo et al. [9] categorizes the
histopathological images using the BOF method. Cruz et al.
[11] represent the histopathological images in form of his-
togram of visual words and found the correlation between
these visual patterns. To mitigate the rotation and scale in-
variance problem of image classification, Raza et al. [42]
studied and analyzed the effect of both in renal cell carcinoma
images and found that rotation in-variance is more effec-
tive but by combining both better classification accuracy can
be achieved. Moreover, the dictionary representation of the
visual words enhances the performance of the BOF method.
The efficiency of the BOF method is dependent on the code-
book constructed using the K-means algorithm. However,
the K-means clustering method sometimes sticks into local
optima when applied on a large feature set [34]. To over-
come this, Mittal and Saraswat [28] modified the codebook
construction phase of the BOF method by generating opti-
mal visual words using gravitational search algorithm for
the categorization of tissue images. Furthermore, Pal and
Saraswat [38] used biogeography-based optimization [35]
for the codebook construction phase and tested the proposed
method on ICIAR breast cancer dataset. However, the meta-
heuristic-based codebook construction is a computationally
expensive method [40].

The standard BOF method generally consists of four
phases, namely feature extraction, codebook construction,
feature encoding, and classification.The features are extracted
in form of keypoints from the local regions of the images
using any local feature descriptor like histograms of oriented
gradients (HOG) [3], speeded up robust features (SURF)
[6], and fast retina keypoints (FREAK) [2]. Furthermore,
K-means clustering is used to form the vocabulary of visual
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Fig. 2 Bag-of-feature approach
for histopathological image
classification

words from the extracted keypoints and each image is then
converted into a histogram of these visual words. The his-
tograms along with the labels are used to train the classifier.

However, due to the complexity of histopathological
images, the feature extraction phase may generate a large
number of keypoint descriptors which makes the codebook
construction phase computationally inefficient [57].

Various methods have been proposed in the literature to
select the relevant keypoints [8,13]. Dorko and Schmid [13]
divide the descriptor vector into groups using the Gaussian
mixture model (GMM) and apply SVM to the most relevant
group to improve the classification accuracy. Lin et al. [27]
introduced two methods for keypoints selection using two
different approaches (IKS1 and IKS2) to eliminate similar
key points. The Euclidean distance is used as the similarity
measure. The IKS1 and IKS2 methods show good perfor-
mance on Caltech datasets.

On the other hand, due to the complex structural morphol-
ogy of histopathological images, a large number of keypoints
are extracted and there is no method exists in the literature to
select the relevant keypoints. Therefore, in this paper, a new
keypoints selection technique is introduced which uses the
Grey relational analysis (GRA) to find the similarity between
the keypoints.

The main contribution of this paper has three folds, (i) a
new computationally efficient keypoints selection technique
is proposed based on the GRA, (ii) the proposed method
is introduced in the BOF method for finding the relevant
keypoints, and (iii) the modified BOF method is used to
automatically classify the histopathological images. To con-
duct the experimental analysis, two histopathological image
datasets are considered, namely the Blue histology dataset

of tissue images and the animal diagnostic laboratory (ADL)
histopathological image dataset. These dataset contains less
number of images and the proposed method is specifically
designed for the medical datasets having less number of
images available.

The rest of the paper contains a description of the stan-
dard BOF method in “Bag-of-features method” section
followed by the description of the modified Grey relational
analysis-based BOF method in “Proposed grey relational
analysis-based bag-of-feature method” section. The result
analysis and discussion on the considered real-world datasets
are presented in “Experimental results” section. Finally,
“Conclusion” section concludes the paper with some future
work.

Bag-of-features method

The BOF method is one of the convenient mechanisms for
histopathological image classification. It generally consists
of four phases as shown in Fig. 2: (i) Extract the texture
features or keypoints using feature extraction method, (ii)
Cluster the keypoints to generate the visual words, (iii)
Encode each image as the histogram of visual words, and
(iv) Train the classifier using these histograms and corre-
sponding image labels. Finally, the images from the test set
are fed to the trained classifier without a label to predict their
labels. Mathematically, the BOF method can be described as
follows:

Consider a set C = {c1, c2, . . . , ci , . . . cn} of n classes.
Each class ci is associated with a set of images. The image
dataset is divided into twoparts.One is a training set onwhich
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Fig. 3 The keypoints detected
by SURF in a connective tissue
image and b inflamed lung
tissue images

the classifier is trained and the other is a test set, which is used
to validate the trained classifier. The training set of N images
is prepared by randomly selectingMi images from each class
ci which is also given by Eq. (1). The remaining images of
the classes are considered as a part of the test set.

N =
n∑

i=1

Mi (1)

1. Feature extraction: Extract the keypoints from all N
images of training set using a feature extraction method
like, SURF [6], FREAK [2], SIFT [30], and HOG [3].
Let X is a set of keypoints, defined as Eq. (2).

X = [F1, F2, . . . , FN ]T (2)

where Fi is a matrix of P keypoints for the i th image,
defined over d-dimensional space and is given by Eq (3).

Fi =

⎧
⎪⎪⎨

⎪⎪⎩

f11 f12 f13 . . . f1d
f21 f22 f23 . . . f2d
. . . . . . . . . . . . . . .

fP1 fP2 fP3 . . . fPd

⎫
⎪⎪⎬

⎪⎪⎭
(3)

Figure 3 shows representative keypoints detected by
one of the feature extraction method i.e., SURF from
two images, randomly taken from the two considered
histopathological image datasets. Each image is first con-
verted to grayscale then SURF detector is used to find
the predefined number of keypoints from these images.
In the figure, only 40 strong keypoints are depicted for
simplicity and visualization.

2. Code-bookconstruction:Create visualwords by repeat-
edly grouping the extracted descriptor vector X into
n-mutually exclusive clusters. Each cluster can have any
number of keypoints based on the similitude of the inten-
sity values of pixels in an image with the extracted
keypoints. For the same, K -means clustering algorithm
is used and the cluster centers returned by K-means are
represented as visual words.

3. Encoding: Encode each image into a histogram (Hj =
{Hj1, Hj2, . . . , Hjn} f or j = 1, 2, . . . , N ), represent-
ing the visual word occurrences in each image which is
given by Eq. (4).

Hjk =
P∑

i=1

μik( j) where k = 1, 2, . . . , n (4)

μik =
{
1 i f ‖ vk − fi ‖≤‖ vs − fi ‖ f or s = 1, 2, . . . , n,

0 otherwise

(5)

where P represents the number of keypoints and μik( j)
is 1 when any visual word (vk) is close to any keypoint
fi in the image. This method is also known as vector
quantization.

4. Classification: Each histogram (Hj ) along with its
annotation is used to train the classifier for the image clas-
sification task. Once the classifier is trained, it is tested
to predict the label of images provided in the test set.
Each test image is represented as the histogram as dis-
cussed above and fed to the classifier without a label.
Based on the returned label by the classifier, its accuracy
is measured.

Proposed grey relational analysis-based
bag-of-feature method

In the feature extraction phase of the BOF method, a feature
detection and representation method is used to find the key-
points in the images. These keypoints are then represented
as the descriptor vectors which are further used for code-
book construction. Out of many feature extraction methods,
SURF is the fastest method because it uses box filters for the
convolution of images and converts each image as the inte-
gral image. It extracts the texture features from the images
[6]. Moreover, SURF is a resolution invariant feature detec-
tor, hence images of different resolutions do not have any
impact on the classification performance. This property of
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Fig. 4 Flowchart of the
enhanced BOF method

SURF helps to analyze the histopathological images, having
different resolutions (e.g., 10x, 20x, 40x) [55]. The interest
points in the images are detected using the Hessian matrix
approximation. SURF also shows good performance over
other alternatives like SIFT [21]. Therefore, in the proposed
method, the SURF feature detector is used to extract a set of
keypoints (X ) from N training images.

Generally, SURF extracts a large number of keypoints
due to the complex texture of histopathological images. This
reduces the efficiency of visual vocabulary generation [27].
Furthermore, all of the detected keypoints are not neces-
sary for image classification and annotation [27]. Hence, an
efficient keypoints selectionmethod is required for the acqui-
sition of relevant keypoints that can improve the speed and
efficiency of the BOFmethod. Some of the popular keypoints
selection techniques are IB3 (instance-based learning) [1]
and iterative keypoints selection (IKS1, IKS2) [27]. IB3 is an
efficient instance selectionmethod with high space complex-
ity, while IKS1 and IKS2 are the keypoints selectionmethods
that are used tofind representative keypoints from the images.
IKS1 and IKS2 are differed by their initial representative key-
points selection methods. In IKS1, representative keypoints
are selected randomly while in IKS2, cluster centers are con-
sidered as representative keypoints. The remaining keypoints
are eliminated based on their Euclidean distances from the
selected representative keypoints. However, Euclidean dis-
tance similarity measure is computationally expensive for
high-dimensional data. Chang et al. [10] has shown that
computational cost of Grey relational analysis (GRA)
[22] -based similarity measure is better than the Euclidean
distance-based similarity. Therefore, in this work, a new
GRA-based keypoints selection (GKS) method is introduced
to reduce the number of keypoints before feeding them into
the next phase of the BOF method i.e., codebook construc-
tion. Themodified flowof theBOFmethod is depicted in Fig.
4. Moreover, the next subsection provides a detailed descrip-
tion of the Grey relation analysis-based keypoints selection
method.

Grey relational analysis-based keypoints selection

The GKS method uses the concept of Grey relational anal-
ysis for finding the similarity between the keypoints. GRA
[22] is a part of Grey system theory which is used to exam-
ine the similarity between data tuples based on geometrical
mathematics [43]. It conforms to four basic principles in
the dataset, i.e., proximity, normality, symmetry, and entirety
[53]. In GRA, the similarity between a reference tuple and

the remaining tuples for a given data is computed by Grey
relational grades (GRGs) whose value lies between 0 and 1.
For any data tuple, if GRG is close to 1, then it is highly
similar to the reference tuple while the dissimilarity will be
signified if GRG value is close to 0 [10].

Therefore, the new keypoints selection method uses GRA
to eliminate similar keypoints from the feature descriptor,
generated by SURF. The newGKSmethod has the following
steps:

1. Cluster the keypoints into K clusters using approximate
K-means (AKM) algorithm [54]. AKM is used due to its
less computational complexity.

2. Make the cluster centers as the member of selected key-
points set and also consider them as reference points for
the computation of GRGs for the remaining keypoints.

3. Compute the GRG values between the reference point
and the keypoints lying within the corresponding cluster.
The mathematical formulation of GRG computation is
described below.
Let Xo = Xr1, Xr2, . . . , Xri , . . . , Xrn be a set of n ref-
erence points. The elements in Xo are of the form Xri =
〈Xri (1), Xri (2), . . . , Xri (u)〉, where u corresponds to
the dimension of the extracted keypoint. Similarly, let
Xc = Xc1, Xc2, . . . , Xcm be a set of m = P − n
remaining keypoints considered as comparative key-
points where, each element in Xc can be denoted as
Xcj = 〈Xcj (1), Xcj (2), . . . , Xcj (u)〉. Here, P repre-
sents total number of keypoints. The GRG value of
each keypoint in Xc is given by Eq. (6) [10].

GRG(Xoi , Xcj ) =
u∑

t=1

[αi (t) · GRC(Xoi (t), Xcj (t))]

(6)

whereGRC is theGrey relational coefficients andαi (t) =
1
u is the weighting factor of GRC. The GRC value,
between i th keypoint of Xo and j th keypoint of Xc at
uth datum, belonging to the i th cluster only is given by
Eq. (7) [10].

GRC(Xoi (u), Xcj (u)) = mini j �i j (u) + ξ maxi j �i j (u)

�i j (u) + ξ maxi j �i j (u)
,

(7)

where ξ ∈ (0, 1] is a random number to control the con-
stancy between maxi j �i j (u) and mini j �i j (u). �i j (u)
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is computed by | Xoi (u) − Xcj (u) | for i = 1, 2, . . . , n,
j = 1, 2, . . . , c.

4. In every cluster, the above computation is performed to
find the highly similar pointswith cluster center and elim-
inate s% of the keypoints from each cluster whose GRG
values are higher, in their corresponding cluster. Here, s
is termed as shrinking threshold.

5. Repeat the steps 1–4 till the remaining keypoints are
greater than K and add the last set (having K points
only) of cluster centers to the selected keypoints set.

6. Use the selected keypoints set as input to the next phase
of BOF i.e., codebook construction.

After finding the optimum keypoints from the new
GKS method, the codebook construction phase of BOF (as
described in “Bag-of-features method” section) is performed
which uses K-means clustering to generate various visual
words. Furthermore, the frequencies of each visual word in
the images are represented by histograms. These histograms
along with the corresponding image labels are given to SVM
for training which is further used for image classification.

Experimental results

The experimental analysis has been conducted on MATLAB
2017a. The computer system includes Intel Core i5-2120
having 8 GB of RAM. The performance of the proposed
method is analyzed in three phases on two histopathologi-
cal image datasets. First, the proposed keypoints selection
method (GKS) is compared with the state-of-the-art key-
points selection methods in “Performance analysis of pro-
posedkeypoint selectionmethod” section. Second, the results
of the GKS-based BOF method for classifying histopatho-
logical images are depicted in “Classification results of the
GKS-based BOF Method” section. In the third phase, the
performance of the proposed classification method has been
analyzed against the state-of-the-art classification methods
as well as some deep learning-based classification methods
in Sects. 4.4 and 4.5, respectively.

Datasets

Two standard histopathological image datasets are consid-
ered for the classification task, namely ADL histopatholog-
ical image dataset and Blue histology image dataset which
are described below.

– ADL histopathological image dataset [50]: This dataset
is generated by Animal Diagnostics Lab at Pennsylvania
StateUniversitywhich contains histopathological images
of three different organs of animals namelyKidney,Lung,
and Spleen. Each organ has healthy and inflamed tis-

sue images. Some of the images from these categories
for each organ are depicted in Fig. 5. The hematoxylin
and eosin (H&E) dye have been used for staining. The
inflamed images can be identified by counting some
specific white blood cells such as neutrophils and lym-
phocytes cells. These cells represent different types of
infections in tissue images such as allergic infections,
bacteria, parasites, and many others. The inflamed organ
images depicted in Fig. 5 have uncleared alveoli which
are permeated with bluish infected cells. These cells
generally indicate the transferable disease. The dataset
contains a total of 963 images of three organs. There are
335, 308, and 320 images of kidney, lung, and spleen,
respectively.

– Blue histology image dataset [19]: Every animal contains
four types of tissues, namely connective tissue, nervous
tissue, epithelial tissue, and muscle tissue. The connec-
tive tissues are comprised of various protein fibers like
collagen or elastin. These protein fibers along with some
ground substances create an extracellular matrix that pro-
vides shape to the organs and made them connected.
These tissues can be found in palmar skin, adipose tis-
sue, hyaline cartilage, and bone tissue slides. Nervous
tissues are specific tissues that are constituted by the
mind, nerves, and spinal cord [14]. These tissues gen-
erally contain two types of cells, namely neurons and
glial. Neurons are used for communication between cells
and glial cells provide support to nervous tissues. Mus-
cle tissues containmuscle fiberswhich are elongated cells
and used for contraction. Actin and myosin are the two
proteins that are used to shorten the cells. The muscle tis-
sues are responsible formovementwithin internal organs.
Epithelium tissues provide the layer between the internal
and external environment of the organ which is used to
protect the organ fromfluid loss, microbe, and laceration.
The tissue cells are tightly connected with each other via
cellular junction to provide the fence. Figure 6 shows
sample images taken from each type of tissue images.
Each image category contains 101 tissue images.

Performance analysis of proposed keypoint
selectionmethod

The performance of the GKS method is evaluated against
three other methods, namely IB3 [1], IKS1 [27], and IKS2
[27]. IB3 is very old method but due to its simplicity, it
has been treated as a baseline algorithm for the analysis of
the new GKS. The other two methods, IKS1 and IKS2, find
the representative keypoints from the images using iterative
keypoints selection method. These methods have different
initialization procedure. IKS1 selects the initial keypoints
randomly while IKS2 uses cluster centroids returned by K-
means algorithm as initial keypoints. After the initialization
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Fig. 5 Ground truth labels for
healthy and inflammatory
tissues of Kidney, Lung, and
Spleen [50]

Fig. 6 Representative animal tissues from blue histology dataset at 40× magnification level [19]. Here, CT connective tissue, ET epithelial tissue,
MT muscle tissue, and NT nervous tissue

of keypoints, the other keypoints are not selected if their
euclidean distances from representative keypoints are less
than a predefined threshold. The parameter settings for all

the considered algorithms are taken from their respective lit-
erature [1,27].

Moreover, the GKS method uses a shrinking threshold to
eliminate similar points from the clusters. In this paper, its
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Fig. 7 Classification accuracy on validation set using the GKS method
with different shrinking threshold values

value is empirically set to 0.3 using its effect on classifica-
tion accuracy on test images. To visualize the same, Fig. 7
shows the classification accuracy on the test images of two
considered datasets for different shrinking threshold values.
It can be observed from the figure that the classification accu-
racy on ADL and Blue histology datasets are higher at the
shrinking threshold (s) of 0.3. It means that 30% highly sim-
ilar keypoints, based on their GRG values, are eliminated in
each iteration of the proposed GKS method. However, when
this elimination rate increases to 40% or 50%, the classifi-
cation accuracy is reduced. It may happened due to the fact
that high elimination ratemay delete some relevant keypoints
required for better classification process. The other parame-
ter in the proposed GKSmethod is the number of clusters for
approximate k-means which is also set empirically to 1000.

The performance of the GKS method has been evaluated
in terms of the number of selected keypoints and average
computation time taken by the considered methods. Table 1
depicts the total number of extracted keypoints from SURF
and selected keypoints by the GKS and the considered meth-
ods over two datasets. The percentage of the eliminated
keypoints is also mentioned for each algorithm on the differ-
ent datasets in parenthesis. Table 1 also depicts the average
computational time taken by the different algorithms. From
the table, it can be observed that the IB3 algorithm elimi-
nates 85% and 64% keypoints from ADL and Blue histology

datasets, respectively. However, it consumes more computa-
tional cost as its complexity is O(n2log2n) [1]. From Table
1, it can be observed that IKS1 and IKS2 methods eliminate
almost similar amount of keypoints (41% and 44%) for Blue
histology dataset. However, for ADL dataset, the reduction
rate of IKS1 (74%) is higher than IKS2. As far as time com-
plexities are a concern, both themethods take lesser time than
IB3. However, the time complexity of IKS2 is O(nlogkn)

which is better than IKS1 whose complexity is O(n2), where
k is the number of clusters. As compared to the algorithms
mentioned above, the newGKSmethod shows the best reduc-
tion rate alongwith an efficient computational cost. TheGKS
method eliminates 95% and 68% keypoints from ADL and
Blue histology datasets respectively. The time complexity of
the GKS method is similar to IKS2 i.e., O(nlogkn). How-
ever, the GKS method uses approximate K-means and GRA
which take lesser time than K-means and Euclidean distance
similarity measure, used by IKS2, respectively. This differ-
ence can be visualized from the average time consumed, as
mentioned in Table 1.

Classification Results of the GKS-based BOFMethod

In this section, the efficiency of GKS for keypoints selec-
tion is validated through the BOF method for classifying
the histopathological images. For the classification task, 30
images per category are randomly selected for the training
set and the remaining images in that category are used for
the validation set.

In BOF method, after keypoint selection, codebook con-
struction phase is applied to find the visual words. The size of
the codebook is very important for the classification perfor-
mance. If large-sized codebooks generates flatten histograms
which results in less classification accuracy. Similarly, small
sized codebook is responsible for biased histograms for
which the classifier may not generate good results. Figure
8 shows the classification accuracy for different codebook
sizes starting from 100 to 800. It can be visualized that for
codebook (or vocabulary) size 500 both of the considered
datasets return higher accuracy. Therefore, the codebook size
is set to 500 for visual word generation.

Table 1 Number of selected
keypoints along with their
average computational cost

Methods Number of keypoints Average computational time (in hours)

ADL Blue histology ADL Blue histology

NKS* 4177920 158720

IB3 626688 (85%) 57139 (64%) 85.71 15

IKS1 1100000 (74%) 65948 (59%) 40 7

IKS2 2003000 (52%) 70312 (56%) 8 3.5

GKS 203000 (95%) 51000 (68%) 4 1

*Non Keypoint selection

123



Complex & Intelligent Systems (2021) 7:1429–1443 1437

Fig. 8 Classification accuracy of the GKS-based BOF method with
different codebook sizes

Fig. 9 Classification accuracy on validation set using the GKS method
with different classifier on ADL and Blue histology datasets

Moreover, the performance of the GKS-based BOF
method is analyzed using four different classifiers, namely
support vector machine (SVM), logistic regression (LR),
random forest (RF), and Gaussian naive Bayes (GNN) clas-
sifiers. Figure 9 shows the classification accuracy returned
by the proposed method with different classifiers on ADL
and Blue histology datasets. From the figure, it can be visu-
alized that the proposed method performs better when the
SVM classifier is used. Hence, for further analysis, SVM is
used as the classifier in the proposed BOF method.

For the classification of images using histograms, the
SVM classifier using error correcting codes (ECOC) [4] is
used. ECOC is an efficient method to handlemulti-class clas-
sification problems and is based on aggregating the binary
classifiers. Each considered binary classifier is independent.
Efficient selection of kernel function is also desirable for bet-
ter classification results. In this paper, the χ2-kernel function
is used instead of linear-kernel function due to its higher per-

formance [20]. Moreover, 10 fold cross-validation is used to
prevent the over-fitting problem. The random search is also
used for hyperparameter tuning which uses uniformly dis-
tributed random values and finds the optimal combination in
the parameter space.

Figures 10 and 11 show the confusion matrices, generated
by each considered method over ADL and Blue histol-
ogy datasets, respectively. The confusion matrices for ADL
dataset show that IB3-based BOF method does not perform
well on any of the classes, although it eliminates a signifi-
cant amount of keypoints as shown in Table 1. That means,
it does not select the prominent keypoints. The performance
of both the IKS1 and IKS2 methods is far better than IB3 for
the ADL dataset. However, IKS2 is somewhat more reliable
than IKS1 for recognizing kidney inflamed (KI) class and
spleen normal (SN) class images. The performance of the
new GKS-based BOF method is enormous in identifying the
inflamed images of all the classes more accurately. Likewise,
Fig. 11 shows the confusion matrices for the Blue histology
dataset, returned by IB3, IKS1, IKS2, and GKS based BOF
methods. It can be seen from the figure that a classification
accuracy of 75% is returned by the GKS-based BOF method
for connective andmuscle tissueswhich is better as compared
to other methods. For epithelial tissue, IKS1 shows slightly
better classification accuracy than the new method. For ner-
vous tissue, IKS1 and IKS2-based methods outperformGKS
and classify the images with equal accuracy. Similar to ADL
dataset, IB3 does not perform well for the Blue histology
dataset too.

To analyze the results of confusionmatrices quantitatively,
recall, precision, F1-measure, specificity, and average accu-
racies are measured and depicted in Tables 2 and 3 for ADL
and Blue histology datasets respectively.

From Table 2, it can be stated that GKS outperforms the
other methods for almost all the parameters. Furthermore,
the average classification accuracy of GKS on ADL dataset
is 78% which is higher than other considered state-of-the-art
methods, i.e., IB3, IKS1, and IKS2 which give 27%, 68%,
and 69% accuracy, respectively. Likewise, the new method
also shows the best performance for all the tissue classes
of Blue histology dataset with F1-measures equals to 65%,
50%, and 42% for muscle, epithelial, and connective, respec-
tively, except nervous tissuewhere IKS2 shows better results.
Moreover, the overall accuracy of the new method for the
Blue histology dataset is 48% while IB3, IKS1, and IKS2
return 17%, 36%, and 43% accuracy respectively. However,
the accuracy on the Blue histology dataset is not up to the
mark due to the lots of staining variations available in the
images of the Blue histology dataset as depicted in Table 3.
Especially, in the nervous tissue, LFC staining images are
very much different from nervous tissue images. Therefore,
its performance is degraded in all the methods.
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Fig. 10 The confusion matrices
for the ADL dataset, generated
by a IB3, b IKS1, c IKS2, and d
GKS-based classification
methods. Here, KI
Kidney-Inflamed, KN
Kidney-Normal, LI
Lung-Inflamed, LN
Lung-Normal, SI
Spleen-Inflamed, and SN
Spleen-Normal

Fig. 11 The confusion matrices
for the Blue histology dataset,
generated by a IB3, b IKS1, c
IKS2, and d GKS-based
classification methods
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Table 2 Comparative analysis of the new GKS-based BOF method
with other considered methods for ADL dataset

Category Parameters IB3 IKS1 IKS2 GKS

Kidney Recall 33 60 80 85

inflammation Precision 28 75 64 77

F-measure 30 67 71 81

Specificity 82 96 91 95

Kidney Recall 9 60 65 80

normal Precision 9 52 57 70

F-measure 9 56 60 74

Specificity 79 89 90 93

Lung Recall 44 40 50 50

inflammation Precision 73 89 91 100

F-measure 55 55 65 67

Specificity 97 99 99 100

Lung Recall 37 99 99 100

normal Precision 43 69 87 91

F-measure 40 82 93 95

Specificity 86 91 97 98

Spleen Recall 7 60 25 70

inflammation Precision 29 75 83 67

F-measure 12 67 38 68

Specificity 95 96 99 93

Spleen Recall 80 85 95 85

normal Precision 13 63 59 77

F-measure 22 72 73 81

Specificity 76 90 87 95

Average Accuracy (%) 27 68 69 78

Table 3 Comparative analysis of the new GKS-based BOF method
with other considered methods on blue histology tissue image dataset

Category Parameters IB3 IKS1 IKS2 GKS

Recall 13 30 70 75

Muscle Precision 9 26 48 58

Tissue F-measure 10 28 57 65

Specificity 66 72 75 82

Recall 25 45 50 75

Connective Precision 20 36 33 38

Tissue F-measure 22 40 40 50

Specificity 66 73 67 58

Recall 20 34 30 35

Epithelial Precision 22 50 46 54

Tissue F-measure 21 40 36 42

Specificity 75 83 88 90

Recall 9 18 20 5

Nervous Precision 17 33 50 100

Tissue F-measure 12 25 29 10

Specificity 82 87 93 100

Average Accuracy (%) 17 36 43 48

From the results, it can be stated that the classification
accuracy of the GKS-based BOF method is better than the
other considered methods. The baseline algorithm (IB3)
gives poor performance in all scenarios as it filters out a
large number of keypoints including the relevant ones. This
reduces the size but also degrades the classification perfor-
mance. IKS2 performs better than IKS1 as it starts with
multiple reference points together and applies the reduction
phase cluster-wise to reduce the overall training set. There-
fore, IKS2 is fast and efficient than IKS1. In the new GKS
method, the use of Grey relational analysis-based similarity
measure and approximate K-means make it faster and effi-
cient. As the number of keypoints is reduced, the number of
visual words is also reduced in the GKS-based BOFmethod.

However, accuracy may not only be the suitable crite-
ria to measure the performance if images with normal class
label are lesser than images with inflamed class label. Let us
consider there are 100 images in which there are 95 normal
images and 5 inflamed images. If any classification method
correctly identified all inflamed images, then it returns 95%
of accuracy. However, the method does not recognize normal
cases at all. Therefore, a metric is required which considers
both true positives (TP) and true negative (TN) cases. G-
mean is a metric (

√
T P ∗ T N ) which considers the both

TN and TP. Furthermore, the performance of IB3, IKS1,
IKS2, and GKSmethods are also analyzed using radar charts
which are shown in Fig. 12 that depict four evaluation cri-
teria, namely F1 score, sensitivity, specificity, and G-mean
which resulting in four-sided shape. The method with a max-
imum area and symmetrical shape perform better than others.
From the figure, it can be observed that the GKS-based BOF
method achieves better results among all the other methods
in four considered measures. Therefore, it can be stated that
the new keypoints selection in the BOF method outperforms
the other keypoints selection methods and may be applied
for histopathological image classification.

Comparative analysis of GKS-based BOF with
state-of-the-art methods

The performance of the GKS-based BOF method is also
compared with the three state-of-the-art methods for ADL
histopathological image dataset, namelyWND-CHRM [45],
SRC [50], and SHIRC [49] in terms of recall, specificity,
precision, false negative rate (FNR), average accuracy, and
F1-score. Shamir et al. [45] introduced amethod for the anal-
ysis of biological images in which image content features
are detected from the raw images and selected informative
feature descriptors are used to train the classifier. In the
sparse representation-based classification (SRC) method
[50], RGB images are represented by a single luminance
channel and this representation is used to train the classi-
fier. Moreover, this work is further extended to three color
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Fig. 12 Radar charts for
average results obtained for
SVM classifier on a ADL
dataset and b Blue histology
image dataset by considering
F-1 score, sensitivity, specificity,
and G-mean

Table 4 Classification performance of GKS-based BOF method with other state-of-the-art methods

Organ Algorithms Recall Specificity Precision FNR F1-score Avg. accuracy (%)

WND-CHARM 0.690 0.720 0.710 0.280 0.700 71.0

SRC 0.875 0.750 0.778 0.250 0.825 81.3

Kidney SHIRC 0.825 0.833 0.832 0.167 0.828 82.9

BOF 0.870 0.650 0.731 0.350 0.826 80.0

GKS 0.950 0.890 0.888 0.110 0.879 88.0

WND-CHARM 0.725 0.626 0.705 0.374 0.791 75.7

SRC 0.880 0.765 0.750 0.235 0.737 74.5

Lung SHIRC 0.750 0.850 0.833 0.150 0.791 80.0

BOF 0.730 0.750 0.745 0.250 0.737 74.0

GKS 0.888 0.860 0.863 0.140 0.871 87.0

WND-CHARM 0.512 0.873 0.800 0.128 0.640 69.2

SRC 0.708 0.792 0.773 0.208 0.740 75.0

Spleen SHIRC 0.650 0.883 0.848 0.117 0.742 76.7

BOF 0.880 0.530 0.652 0.470 0.749 70.5

GKS 0.750 0.880 0.862 0.120 0.804 81.5

channels and known as amulti-channel simultaneous spar-
sity model (SHIRC) [49]. This method is also analyzed and
validated on ADL histopathological images. Table 4 shows
the results of each considered method on the various perfor-
mance parameters, namely recall, specificity, precision, false
negative rate (FNR), and F1 score to identify the inflamed
images of each organ in ADL dataset.

Recall and specificity are the two key statistics to vali-
date the performance of classification in medical diagnosis.
Recall is the probability to identify diseased images correctly,
while specificity returns the probability of identifying the
healthy images correctly. In histopathological image analy-
sis, it is always important to identify inflamed images with
higher accuracy. From Table 4, it can be noticed that the
new GKS method has high recall values of 95%, 88.8%, and
75%forKidney,Lung, andSpleenorgans respectively.More-
over, the true negative rates returned by the GKS method are
89%, 86%, and 88% for Kidney, Lung, and Spleen organs,
respectively.Hence, it can be stated that theGKSmethod also

identifies healthy images more accurately as compared to the
other consideredmethods. Furthermore, theGKS-basedBOF
method also attains high average accuracy, precision, and F-1
score. The results have also been analyzed on the FNRwhich
can be defined as the rate of identifying inflamed images as
healthy images. It is very dangerous in medical diagnosis
and it should be minimized. The GKS method has the low-
est FNR of 11% and 14% on Kidney and Lung organ images
respectively. However, for Spleen organ images, SHIRC out-
performs the GKS method in terms of FNR.

Comparative analysis of GKS-based BOF with deep
learning-basedmethods

In recent years, it has been observed that deep learning
models are performing very well in case of image classifica-
tion. These methods are commonly known as convolutional
neural networks (CNNs). However, various articles have
depicted that these CNN models do not perform well for
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histopathological images due to limited training set. To ver-
ify the same, the proposed method is also being compared
with two CNN-based methods, proposed by Bayramoglu
et al. [7], CNN-IBBO-BOF [37] and AlexNet [23]. Bayra-
moglu et al. [7] proposed a CNN model whose architecture
consists of three convolutional layers and two fully con-
nected layers. After each convolution layer, a rectified
linear unit (ReLU) and a max-pooling layer with filter size
3 × 3 and stride size two, are encountered. The first con-
volutional layer uses 96 filters of size 3 × 7 × 7. The
second and third convolutional layers contain 256 filters of
size 5 × 5 and 384 filters of size 3 × 3, respectively. At
the output end, two fully-connected layers are used with
512 neurons along with a dropout layer. Furthermore, in
the CNN-IBBO-BOF method, a pre-trained CNN model,
known as AlexNet [23], is used to extract the features from
histopathological images. These features are used by the
IBBO-basedBOFmethod for the classification of histopatho-
logical images.

The above-discussed deep learning-based methods are
applied to the considered histopathological image datasets,
namely ADL and Blue histology. As the number of images
are very less in these datasets, the transfer learning approach
is used. For classification 10-fold cross validation approach
is applied. Table 5 shows the comparison of all the pro-
posed methods and mentioned deep learning-based methods
over considered histopathological datasets. From the table,
it can be observed that the method of Bayramoglu et al.
[7] returns 52.72% and 28.12% accuracy for the ADL
and Blue histology datasets respectively. Similarly, AlexNet
returns 51.30% and 29.68% accuracy for the ADL and
Blue histology datasets respectively. On the other hand,
CNN-IBBO-BOF method gives the accuracy of 79.66%
and 52% for the ADL and Blue histology datasets respec-
tively. The major difference between the accuracy of these
two deep learning based methods are due to the use of
pre-trained CNN in CNN-IBBO-BOF method while Bayra-
moglu et al. [7] is trained with the available datasets.
This signifies the requirement of large dataset for deep
learning-based models. Furthermore, the GRA-based key-
point selection method enhances the performance of the
BOF methods and works well for small datasets also.
This validates that the proposed system outperforms the
existing methods for histopathological image classifica-
tion.

Conclusion

In this paper, a new method of keypoints selection has
been proposed which improves the efficiency of the bag-of-
features method. The method uses Grey relational analysis
and approximate k-means for the elimination of irrelevant

Table 5 The performance comparison of the GKS-BOF method with
deep-learning-based image classification methods

S. No. BOF approach ADL dataset Blue
Histology
dataset

1. GKS-BOF 78 48

2. Bayramoglu et al. [7] 52.72 28.12

3. CNN-IBBO-BOF [39] 75.66 43

4. AlexNet [23] 51.30 29.68

and similar keypoints. Furthermore, the proposed keypoint
selection method has been incorporated in the BOF method
to reduce the computational complexity of its codebook con-
struction phase. Moreover, the support vector machine with
error correcting output code is used to train and classify the
images. The proposed method is tested on two histopatho-
logical image datasets, namely ADL and Blue histology. The
GKS method reduces the extracted high-dimensional key-
point descriptors by 95% and 68% from the ADL and Blue
histology datasets, respectively. Moreover, the GKS-based
BOF method increases the respected classification accuracy
by 13% and 11% from IKS2-based BOF method. More-
over, the GKS-based BOF method also outperforms transfer
learning-based considered deep learning models.

However, the following issues can be considered for future
research. First, the optimal value of the shrinking thresh-
old can be computed by the use of meta-heuristic methods
to enhance the selection rate. Second, data augmentation
methods can be used to increase the training sample for bet-
ter training of deep learning methods. Finally, the proposed
method can be analyzed and tested on non-medical image
datasets.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Aha DW, Kibler D, Albert MK (1991) Instance-based learning
algorithms. Mach Learn 6(1):37–66

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1442 Complex & Intelligent Systems (2021) 7:1429–1443

2. Alahi A, Ortiz R, Vandergheynst P (2012) Freak: Fast retina key-
point. Computer vision and pattern recognition (CVPR). IEEE
conference on, Ieee, pp 510–517

3. Albiol A, Monzo D, Martin A, Sastre J, Albiol A (2008) Face
recognition using hog-ebgm. Pattern Recogn Lett 29(10):1537–
1543

4. Ali Bagheri M, Montazer GA, Escalera S (2012) Error correcting
output codes for multiclass classification: application to two image
vision problems. In: Artificial Intelligence and Signal Processing
(AISP), 201216thCSI International Symposiumon, IEEE, pp508–
513

5. Basavanhally AN, Ganesan S, Agner S, Monaco JP, Feldman MD,
Tomaszewski JE, Bhanot G, Madabhushi A (2009) Computer-
ized image-based detection and grading of lymphocytic infiltration
in her2+ breast cancer histopathology. IEEE Trans Biomed Eng
57(3):642–653

6. Bay H, Tuytelaars T, Van Gool L (2006) Surf: Speeded up robust
features. In: European conference on computer vision, Springer,
pp 404–417

7. Bayramoglu N, Kannala J, Heikkilä J (2016) Deep learning for
magnification independent breast cancer histopathology image
classification. In: Proceedings of international conference on pat-
tern recognition, Cancun, Mexico, pp 2440–2445

8. Brighton H, Mellish C (2002) Advances in instance selection
for instance-based learning algorithms. Data Min Knowl Disc
6(2):153–172

9. Caicedo JC, Cruz A, Gonzalez FA (2009) Histopathology image
classification using bag of features and kernel functions. In: Con-
ference on artificial intelligence in medicine in Europe, Springer,
pp 126–135

10. Chang K, Lee R, Wen C, Yeh M (2005) Comparison of similarity
measures for clustering electrocardiogram complexes. In: Comput-
ers in cardiology, 2005, IEEE, pp 759–762

11. Cruz-Roa A, Caicedo JC, González FA (2011) Visual pattern min-
ing in histology image collections using bag of features. Artif Intell
Med 52(2):91–106

12. Díaz G, Romero E (2010) Histopathological image classification
using stain component features on a plsa model. In: Iberoamerican
congress on pattern recognition, Springer, pp 55–62

13. Dorkó G, Schmid C (2003) Selection of scale-invariant parts for
object class recognition. In: Proceedings of international confer-
ence on computer vision, Beijing, China, pp 634–640

14. Eurell JA, Frappier BL (2013) Dellmann’s textbook of veterinary
histology. Wiley, Amsterdam

15. Fondón I, Sarmiento A, García AI, Silvestre M, Eloy C, Polónia
A, Aguiar P (2018) Automatic classification of tissue malignancy
for breast carcinoma diagnosis. Comput Biol Med 96:41–51

16. Gangeh MJ, Sørensen L, Shaker SB, Kamel MS, De Bruijne M,
Loog M (2010) A texton-based approach for the classification
of lung parenchyma in ct images. In: International conference
on medical image computing and computer-assisted intervention,
Springer, pp 595–602

17. Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM,
Yener B (2009) Histopathological image analysis: a review. IEEE
Rev Biomed Eng 2:147–171

18. Gutiérrez R, Rueda A, Romero E (2013) Learning semantic
histopathological representation for basal cell carcinoma classifi-
cation. In: Medical imaging 2013: digital pathology, international
society for optics and photonics, vol 8676, p 86760U

19. Histology B (2017) http://www.lab.anhb.uwa.edu.au/mb140/
20. Jiang YG, Yang J, Ngo CW, Hauptmann AG (2010) Representa-

tions of keypoint-based semantic concept detection: a comprehen-
sive study. IEEE Trans Multimed 12(1):42–53

21. Juan L, Gwun O (2009) A comparison of sift, pca-sift and surf. Int
J Image Process (IJIP) 3(4):143–152

22. Julong D (1989) Introduction to grey system theory. J Grey Syst
1(1):1–24

23. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classifi-
cation with deep convolutional neural networks. In: Advances in
neural information processing systems, pp 1097–1105

24. Kumar MD, Babaie M, Zhu S, Kalra S, Tizhoosh HR (2017)
(2017) A comparative study of cnn, bovw and lbp for classification
of histopathological images. Computational Intelligence (SSCI).
IEEE Symposium Series on, IEEE, pp 1–7

25. Li T, Mei T, Kweon IS, Hua XS (2011) Contextual bag-of-words
for visual categorization. IEEE Trans Circ Syst Video Technol
21(4):381–392

26. Lichtblau D, Stoean C (2019) Cancer diagnosis through a tan-
dem of classifiers for digitized histopathological slides. PLoS One
14(1):e0209274

27. Lin WC, Tsai CF, Chen ZY, Ke SW (2016) Keypoint selection
for efficient bag-of-words feature generation and effective image
classification. Inf Sci 329:33–51

28. Mittal H, Saraswat M (2019) Classification of histopathologi-
cal images through bag-of-visual-words and gravitational search
algorithm. In: Soft computing for problem solving, Springer, pp
231–241

29. Monga V (2018) Adl data set. http://signal.ee.psu.edu/histimg2.
html

30. Morel JM, Yu G (2011) Is sift scale invariant? Inverse Probl Image
5(1):115–136

31. MousaviHS,MongaV,RaoG,RaoAU (2015)Automated discrim-
ination of lower and higher grade gliomas based on histopatholog-
ical image analysis. J Pathol Inf 6

32. Nayak N, Chang H, Borowsky A, Spellman P, Parvin B (2013)
Classification of tumor histopathology via sparse feature learn-
ing. In: Biomedical Imaging (ISBI), 2013 IEEE 10th International
Symposium on, IEEE, pp 410–413

33. Orlov N, Shamir L, Macura T, Johnston J, Eckley DM, Goldberg
IG (2008) Wnd-charm: multi-purpose image classification using
compound image transforms. Pattern Recognit Lett 29(11):1684–
1693

34. Pal R, Saraswat M (2017a) Data clustering using enhanced
biogeography-based optimization. In: 2017 Tenth international
conference on contemporary computing (IC3), IEEE. https://doi.
org/10.1109/ic3.2017.8284305

35. Pal R, Saraswat M (2017b) Improved biogeography-based
optimization. International Journal of Advanced Intelligence
Paradigms

36. Pal R, Saraswat M (2018a) Enhanced bag of features using alexnet
and improved biogeography-based optimization for histopatholog-
ical image analysis. In: 2018 Eleventh International Conference on
Contemporary Computing (IC3), IEEE, pp 1–6

37. Pal R, Saraswat M (2018b) Enhanced bag of features using alexnet
and improved biogeography-based optimization for histopatho-
logical image analysis. In: Proceedings of Eleventh international
conference on contemporary computing, Noida, India, IEEE, pp
1–6

38. Pal R, Saraswat M (2018c) A new bag-of-features method using
biogeography-based optimization for categorization of histology
images. Int J Inf Syst Manag Sci 1(2)

39. Pal R, Saraswat M (2019a) Grey relational analysis based keypoint
selection in bag-of-features for histopathological image classifica-
tion. Recent Patents Comput Sci 12:1–9

40. Pal R, Saraswat M (2019b) Histopathological image classifica-
tion using enhanced bag-of-featurewith spiral biogeography-based
optimization. Appl Intell pp 1–19

41. Raza SH, Parry RM, Sharma Y, Chaudry Q, Moffitt RA, Young A,
WangMD (2010) Automated classification of renal cell carcinoma
subtypes using bag-of-features. In: Engineering in medicine and

123

http://www.lab.anhb.uwa.edu.au/mb140/
http://signal.ee.psu.edu/histimg2.html
http://signal.ee.psu.edu/histimg2.html
https://doi.org/10.1109/ic3.2017.8284305
https://doi.org/10.1109/ic3.2017.8284305


Complex & Intelligent Systems (2021) 7:1429–1443 1443

biology society (EMBC), 2010 annual international conference of
the IEEE, IEEE, pp 6749–6752

42. Raza SH, Parry RM, Moffitt RA, Young AN, Wang MD (2011)
An analysis of scale and rotation invariance in the bag-of-features
method for histopathological image classification. In: International
conference on medical image computing and computer-assisted
intervention, Springer, pp 66–74

43. Sallehuddin R, Shamsuddin SMH, Hashim SZM (2008) Appli-
cation of grey relational analysis for multivariate time series. In:
Intelligent systems design and applications, 2008. ISDA’08. Eighth
international conference on, IEEE, vol 2, pp 432–437

44. SaraswatM,AryaK (2014)Automatedmicroscopic image analysis
for leukocytes identification: a survey. Micron 65:20–33

45. Shamir L, Orlov N, Eckley DM, Macura T, Johnston J, Goldberg
IG (2008) Wndchrm-an open source utility for biological image
analysis. Source Code Biol Med 3(1):13

46. Sirinukunwattana K, Raza SEA, Tsang YW, Snead DR, Cree IA,
Rajpoot NM (2016) Locality sensitive deep learning for detec-
tion and classification of nuclei in routine colon cancer histology
images. IEEE Trans Med Image 35:1196–1206

47. Song Y, Cai W, Huang H, Zhou Y, Feng DD, Wang Y, FulhamMJ,
Chen M (2015a) Large margin local estimate with applications to
medical image classification. IEEE Trans Med Image 34(6):1362–
1377

48. Song Y, Cai W, Huang H, Zhou Y, Wang Y, Feng DD (2015b)
Locality-constrained subcluster representation ensemble for lung
image classification. Med Image Anal 22(1):102–113

49. Srinivas U, Mousavi H, Jeon C, Monga V, Hattel A, Jayarao B
(2013) Shirc: A simultaneous sparsity model for histopathological
image representation and classification. In: Biomedical Imaging
(ISBI), 2013 IEEE 10th International Symposium on, IEEE, pp
1118–1121

50. Srinivas U, Mousavi HS, Monga V, Hattel A, Jayarao B (2014)
Simultaneous sparsitymodel for histopathological image represen-
tation and classification. IEEE Trans Med Image 33(5):1163–1179

51. Tang HL, Hanka R, Ip HHS (2003) Histological image retrieval
based on semantic content analysis. IEEE Trans Inf Technol
Biomed 7(1):26–36

52. Vu TH,Mousavi HS,MongaV, RaoG, RaoUA (2016) Histopatho-
logical image classification using discriminative feature-oriented
dictionary learning. IEEE Trans Med Image 35(3):738–751

53. Wang C, Chen SF, Yuen MMF (2001) Fuzzy part family forma-
tion based on grey relational analysis. Int J Adv Manuf Technol
18(2):128–132

54. Wang J, Wang J, Ke Q, Zeng G, Li S (2015) Fast approximate
k k-means via cluster closures. In: Multimedia data mining and
analytics, Springer, pp 373–395

55. Xu ZG, Chen C, Liu XH (2013) An efficient view-point invariant
detector and descriptor. Adv Mater Res Trans Tech Publ 659:143–
148

56. Zhang X, Liu W, Dundar M, Badve S, Zhang S (2014) Towards
large-scale histopathological image analysis: hashing-based image
retrieval. IEEE Trans Med Image 34(2):496–506

57. Zheng Y, Jiang Z, Xie F, Zhang H, Ma Y, Shi H, Zhao Y
(2017) Feature extraction from histopathological images based on
nucleus-guided convolutional neural network for breast lesion clas-
sification. Pattern Recogn 71:14–25

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Improved bag-of-features using grey relational analysis for classification of histology images
	Abstract
	Introduction
	Bag-of-features method
	Proposed grey relational analysis-based bag-of-feature method
	Grey relational analysis-based keypoints selection

	Experimental results
	Datasets
	Performance analysis of proposed keypoint selection method
	Classification Results of the GKS-based BOF Method
	Comparative analysis of GKS-based BOF with state-of-the-art methods
	Comparative analysis of GKS-based BOF with deep learning-based methods

	Conclusion
	References




