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Abstract
Supply and distribution management of blood products is a challenging task due to their short lifespan. The problem is even 
more sophisticated considering uncertain demand for these products. This paper addresses integrated inventory-routing of 
blood in a supply chain network consisting of a single supplier and a group of blood centers. Transshipment among blood 
centers is allowed to decrease the cost of excess inventory and shortage of goods. A mathematical model is developed that 
decides on the optimal quantity of supplied blood, delivery plan, inventory level, and quantity of products transshipped 
between blood centers with the objective of minimizing total costs. In addition, a robust optimization approach is adopted 
to deal with uncertainty in demand. Since the proposed model is NP-hard, a heuristic solution algorithm is developed that 
improves solution quality by determining the most efficient change in vehicle routes in each search stage. The efficiency of 
the proposed algorithm is examined in a set of numerical experiments and using data from a real case of supply and distribu-
tion management of blood platelets. The results indicated that allowing transshipment reduces the need for supply capacity 
at the supplier, product shortage, inventory level, and the total cost.

Keywords  Integrated inventory-routing · Robust optimization · Heuristic algorithm · Transshipment · Blood products

Introduction

Blood is an essential element of human life and required 
for different treatments including anemia treatments, cancer, 
organ transplants, and major surgeries [1, 2]. Nearly 30 mil-
lion units of blood products are employed in blood transfu-
sion each year, while this amount is expected to increase 
because of an increase in life expectancy and advances 
in medical procedures requiring blood transfusion [3, 4]. 
Hence, improving productivity of blood management sys-
tems is a key concern. In this regard, supply, inventory, 
and routing for blood products are important problems for 
healthcare managers, since such decisions have significant 
consequences for society and patients’ health [5, 6]. This 
highlights the need for further collaboration across the 
whole supply chain network and integrated decision-making 
at both strategic and operational levels to reduce delivery 
time and increase customer service level [7] while reduc-
ing product waste and environmental, social, and economic 
consequences of perishability.

The integrated supply and distribution management of 
blood is more sophisticated than the other products. This 
includes making joint decisions on the number of products 
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to be supplied and distributed to blood centers, the level of 
inventory to be held, and the vehicle routing [8]. However, 
the efficient coordination of these decisions is a challeng-
ing task due to product shortage and waste, especially when 
it comes to uncertain situations [9–11]. Therefore, supply 
and inventory decisions need to be taken in such a way that 
demand is fully satisfied with the minimum waste [12, 13]. 
In spite of the significance of this problem, it has not been 
adequately addressed in the literature and there is a lack 
of studies on integrated inventory-routing of blood prod-
ucts to hospitals under demand uncertainty. The available 
literature has not taken into account transshipment among 
blood centers to investigate how it may improve inventory 
management of blood products [14]. To fill these gaps, in 
this paper, a mathematical modeling approach is adopted. A 
two-echelon supply chain consisting of a single supplier and 
a set of blood centers is considered, where the supplier has 
the job of supplying blood to the blood centers. The objec-
tive is to determine the optimal amounts of supplying and 
inventory, delivery plan and time, and vehicle routing over 
a multi-period planning horizon. While the supplier seeks to 
optimize quantity of supply, there may be shortage or excess 
inventory at the blood centers due to uncertainty of customer 
demand. Thus, transshipment of blood from the blood cent-
ers having excess inventory to those with the shortage is 
allowed to decrease total costs including shortage, waste, 
and transportation costs. The problem is addressed using a 
mathematical modeling approach and robust optimization 
is adopted to deal with uncertainty in demand. Since the 
proposed model is NP-hard, a heuristic solution algorithm is 
developed. Numerical experiments and data from a real case 
of blood products are presented to illustrate the efficiency of 
the proposed model and solution algorithm.

This paper is organized as follows: Sect.  “Literature 
review” presents a review of the relevant literature. Sec-
tion “Proposed mathematical model” develops the mathe-
matical model for deterministic and uncertain situations. The 
proposed solution algorithm is presented in Sect.“ Proposed 
solution algorithm”. Section “Computational experiments” 
discusses numerical results based on available data in the 
literature and the data from a real case of blood products. 
Finally, research conclusions and some recommendations for 
future research are provided in Sect. Conclusions.

Literature review

Most previous studies on production and distribution 
management were conducted with non-perishable items 
[2, 15]. However, recently, researchers have become more 
interested in studying the production and distribution man-
agement of perishable goods due to the complexity inher-
ent in the problem [16]. Li et al. [17] investigated a novel 

integrated planning model for intelligent food logistics 
systems with the objectives of minimizing total produc-
tion, inventory, and transportation costs and maximizing 
average food quality. The results indicated that their pro-
posed approach could reduce the total costs by 10.77% 
compared to an existing three-phase heuristic method. In 
another research, Marandi and Zegordi [18] considered 
costs and assessed how the quality of blood products could 
be improved by shortening the time interval between pro-
duction and distribution. The researchers dealt with a vari-
ation of Integrated Production Distribution System (IPDS) 
that contains a product with short shelf-life.

In addition to the mentioned studies, Li et al. [19] formu-
lated the production-inventory-routing planning with an inte-
grated Mixed Integer Linear Programming (MILP) model, 
where the food quality level is explicitly traced throughout 
the supply chain. The results showed that the problem is so 
complex that it is hard to solve even in a small case with 15 
retailers, three periods, and two vehicles.

Some other authors conducted research on Integrated Pro-
duction-Inventory-Routing Problem (IPIRP) by focusing on 
different aspects. Agra et al. [20] considered a stochastic sin-
gle item IPIRP with a single producer and multiple clients. 
Clients were allowed to ask for a penalty cost as a backlog 
when demands were considered uncertain. Preliminary tests 
based on random instances were conducted illustrating that 
the hybrid heuristic had a better performance than the clas-
sical sample approximation algorithm for hard instances.

Qiu et  al. [21] presented a generalized IPIRP model 
with perishable inventory. The authors analyzed the opti-
mal integrated decisions of when and how much to deliver 
and sell products with varying manufacturing periods. The 
researchers discussed main inventory management policies 
to demonstrate the applicability of the model in real-world 
applications for Production-Routing Problems (PRPs) with 
perishable inventory. Widyadana and Irohara. [22] extended 
the IPIRP by considering recovery and remanufacturing of 
End-Of-Life (EOL) products as stable factors. They aimed 
at using a mathematical programming approach to determine 
the optimal amounts of goods (i.e., lot-sizes) required to be 
produced, reproduced, and stored while meeting customers’ 
requests (i.e., deliveries and pick-ups) with the least total 
costs as a result of the integrated operations. The results of 
the study demonstrated a need for development of approxi-
mate resolution methods in large instances.

Neves-Moreira et  al. [23] utilized a new three-phase 
methodology to solve a large Production-Routing Prob-
lem (PRP) by combining realistic features. The large-size 
instances caused intractable problems, which needed to 
be resolved via efficient solution methods. In 2018, Agra 
et al. [20] carried out a study on a single item IPIRP with 
a single producer/supplier and multiple retailers. Inventory 
management constraints were taken into account both at the 
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producer and at the retailers following a vendor-managed 
inventory approach and decision on the replenishment policy 
for each retailer.

Overall, to identify our contributions, the literature review 
reveals that the integrated decision-making on supply, inven-
tory, and routing of blood products has not been widely stud-
ied. In addition, most of the previous studies on supply and 
distribution management of blood products have presented a 
replenishment policy for blood centers, i.e., the place, where 
blood products are produced. Nevertheless, routing to hos-
pitals has not been taken into account in previous works, 
whereas hospitals can be viewed as the retailers having the 
job of satisfying patients’ demand, i.e., customers. Addi-
tionally, in previous studies, only the supplier was assumed 
to be responsible for meeting blood centers’ demand and 
transshipment flows among retailers were not allowed. How-
ever, in practical situations in the real world, transshipment 
can be applied as an effective strategy to reduce the over-
all shortage and excess inventory under uncertainty. While 
some researchers have investigated replenishment policy for 
blood products in hospitals, only a few researchers such as 
Hemmelmayr et al. [24] have addressed the routing problem 
in the distribution of blood products to hospitals, which is 
indicative of a wide gap in the available literature. The litera-
ture review also reveals that integrated inventory-routing of 
blood products has not been investigated in uncertain condi-
tions. The lack of information and research in this regard has 
been stressed by Adulyasak et al. [25] who argued that no 
studies have been conducted on robust optimization of the 
integrated production-inventory problem. Moreover, Coelho 
et al. [26] provide a comprehensive review of this literature, 
based on a new classification of the problem. The authors 
categorize IRPs with respect to their structural variants and 
the availability of information on customer demand.

Reviewing past research works as well as realizing the 
mentioned gaps in the literature motivated the researchers to 
investigate the problem under more realistic conditions. The 
current paper contributes to the available literature by devel-
oping a model for integrating supply, inventory, and routing 
of blood with uncertain demand. The model proposed in this 
study allows for transshipping products among blood cent-
ers to help improve the management of shortage and excess 
inventories. The robust optimization approach is adopted to 
deal with uncertainty and a heuristic algorithm is developed 
to obtain high-quality solutions. The data from blood distribu-
tion services are used to further validate the proposed model.

Proposed mathematical model

We suppose a two-echelon supply chain consisting of one 
supplier of a blood product, i.e., blood, and a set of blood 
centers over a finite time horizon. The supplier has a limited 

capacity in each period and decides on supplying quantity at 
the beginning of each period. There is a single-vehicle with 
limited capacity that traverses a route to deliver products 
from the supplier to a subset of blood centers at the begin-
ning of each period. Transshipment among blood centers and 
direct delivery from supplier to the blood centers is allowed 
during each period. Figure 1 shows a graphical illustration 
of the network with four blood centers over three periods. In 
the first period, blood products are shipped from the supplier 
to blood centers 1 and 2, respectively, and there is a trans-
shipment from blood center 2 to blood center 3. In the sec-
ond period, blood is directly delivered to blood center 4 and 
then to blood center 3, while we have blood transshipment 
from blood center 3 to blood center 2. Finally, in period 3, 
there is direct shipment from the supplier to blood center 4, 
while both blood centers 2 and 1 receive blood products via 
transshipment.

Other assumptions are made as follows:

•	 The inventory level of products in each age group at both 
the supplier and the blood center is known at the begin-
ning of the planning horizon [27, 28].

•	 The blood centers have limited capacities [29, 30].
•	 The supplying capacity in each period is known [31, 32].
•	 The blood centers follow the Fresher First (FF) policy to 

satisfy customers’ demand. Adopting this policy, rather 
than the relaxed model, can decrease total costs including 
shortage, waste, and transportation costs of the whole 
supply chain. Fresh First (FF) policy by which the retailer 
always sells the fresher items first. This policy ensures 
a longer shelf life and increases utility for the customers 
but, at the same time, yields a higher spoilage rate [13]. 
In addition, it ensures a longer shelf life and increases 
goods utility for the customers but, at the same time, it 
yields a higher spoilage rate [13].

The model proposed by Coelho et al. [33] was considered 
as the base model and extended by incorporating product 
age, FF policy, and supplying planning decisions. To do 
so, we first investigated the most relevant models presented 
in previous works, including Qiu et al. [34], Elalouf et al. 
[35], and Hosseinifard and Abbasi [36]. Choosing these 
models was because td with optimizing integrated produc-
tion and distribution decisions making similar or neighbor-
ing assumptions and objectives. The mathematical model is 
then formulated using the initial set of parameters and deci-
sion variables extracted from these models and further lop-
ment othe objective function and constraints by taking into 
account the unique characteristics of the addressed problem 
and observations from the real-case of the blood distribution 
system. The sets and indices, parameters, and decision vari-
ables used in this study are defined as follows:
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Sets and indices:

I Set of the supplier and blood cent-
ers i ∈ I

J Set of blood centers j ∈ J

G Set of the ages of blood products 
g ∈ G

S Set of scenarios s ∈ S

T Set of time periods t ∈ T

Parameters:

bij Transshipment cost between node i and j
bt Supply capacity of the supplier at period t
cij Transportation cost of vehicle between nodes i and j
Ci Capacity of holding inventory at the ith blood center
at
i

Demand of ith blood center at period t
a
t,s

i
Realization of at,s

i
 under scenario s

Ft Total supply at period t
hi Cost of holding inventory at the supplier and blood center

a
0,g

i
Initial inventory of age g at the supplier and ith blood center at 

the beginning of the first period
M Maximum allowable loss of product
ps Probability of scenario s
P Supplying cost of each unit of blood product
Q Capacity of vehicle
� A weight factor for the variance of the objective function
� A weight factor for balancing between solution robustness and 

model robustness

Decision variables:

d
t,g

i
Portion of demand in ith blood center which is satisfied by the 

products of age g at period t
d
t,g,s

i
Realization of dt,g

i
 under scenario s

l
t,g

i
An auxiliary binary variable for adopting the FF policy; 1 if a 

product of age g is sold by blood center i at period t  , and 0 
otherwise

d
t,g,s

i
Realization of lt,g

i
 under scenario s

I
t,g

i
Inventory level of age g at the supplier and blood centers at the 

end of period t
I
t,g,s

i
Realization of It,g

i
 under scenario s

vt
i

An auxiliary variable for sub-tour elimination
xt
i,j

A binary variable; 1 if node i is visited after node j in period t  
and 0 otherwise

q
t,g

i
Quantity of blood product of age g delivered to blood center i 

at period t
w
t,g

ij
Quantity of blood product with age g transshipped from node i 

to j at period t
w
t,g,s

ij
Realization of wt,g

ij
 under scenario s

�
t,s

i
Realization of blood product demand (shortage) in ith blood 

center under scenario s

Based on the notations provided above, the determinis-
tic mathematical model is formulated as follows:

(1)

Min
∑

i∈V

∑

t∈T

∑

g∈G

hiI
g

i,t
+
∑

i∈V

∑

j∈V

∑

t∈T

cijx
t
ij

+
∑

i∈V

∑

j∈V �

∑

t∈T

∑

g∈G

bijw
t,g

i,j
+ P

∑

t∈T

Ft.

1

2

4

Supplier

Blood CenterTransshipment Between Blood Centers

Third Period Second Period First Period

1

2

4

1

2

4

Direct Shipment From Supplier to Blood Center

Fig. 1   Graphical illustration of the problem with four blood centers over three time-periods
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Subject to:

(2)I
t,g

0
= I

t−1,g−1

0
−
∑

i∈V �

q
t,g

i
−
∑

i∈V �

w
t,g

0,i
t ∈ T , g = 2, 3,…H,

(3)I
t,g

0
= Ft −

∑

i∈V �

q
t,g

i
−
∑

i∈V �

w
t,g

0,i
t ∈ T , g = 1

(4)
I
t,g

0
= I

t−1,g−1

i
+ q

t,g

i
+
∑

j∈V

w
t,g

i,j
−
∑

j∈V �

w
t,g

i,j

− d
t,g

i
t ∈ T , g = 2, 3,…H, i ∈ I

(5)I
t,g

i
= q

t,g

i
+
∑

j∈V

w
t,g

j,i
−
∑

j∈V �

w
t,g

i,j
− d

t,g

i
t ∈ T , g = 1, i ∈ I

(6)
∑

t∈T

∑

i∈V

(

l
t,g

i

)

≤ M g = H

(7)Ft ≤ Bt t ∈ T

(8)at
i
=
∑

g∈G

d
t,g

i
t ∈ T , i ∈ I,

(9)
(

a
t,g

i

)

≤ Cil
t,g

i
t ∈ T , g ∈ G, i ∈ I

(10)
(

l
t,g−1

i

)

≤ l
t,g

i
t ∈ T , g = 2, 3,… ,H, i ∈ I

(11)

Ci

(

1 − l
t,g−1

i

)

≥
∑

g�=g

(

I
t−1,g�−1

i
+ q

t,g�

i
+
∑

j∈V

w
t,g�

j,i
−
∑

j∈V

w
t,g�

i,j

)

− at
i
+ 1 t ∈ T , g = 2, 3,… ,H, i ∈ I

(12)
∑

g∈G

I
t,g

i
≤ Ci t ∈ T , i ∈ I

(13)q
t,g

i
≤ Ci

∑

j∈V

xt
i,j

t ∈ T , i ∈ I, g ∈ G

(14)
∑

g∈G

q
t,g

i
≤ Ci −

H−1
∑

g=1

I
t−1,g

i
t ∈ T , i ∈ I

(15)
∑

g∈G

∑

i∈V �

q
t,g

i
≤ Q t ∈ T

(16)
∑

j∈J

xt
i,j
=
∑

j∈J

xt
ji

t ∈ T , i ∈ I

The problem setting aims at determining the optimal 
amounts of supply and inventory, and the optimal delivery 
plan and time, as well as vehicle routing over a multi-period 
planning horizon. The objective function (1) minimizes 
total costs defined in four terms. The first term implies 
total inventory costs comprising of holding costs and initial 
inventory costs. The second term implies the expected rout-
ing cost based on the selected route. The third term presents 
the amount of blood transshipped in the network and, finally, 
the last term shows total supplying costs based on the cost of 
each unit of supply at each period. This formulation is con-
sistent with the functions defined for total cost minimization 
in previous studies regarding integrated inventory-routing 
problems. It is also well-suited to meet the requirements of 
blood distribution system in the real situation.

Taking into account the main characteristics of blood 
products, constraint (2) updates the inventory level of age 
two and above at the supplier. In addition, constraint (3) 
implies the inventory level of age one at the supplier based 
on the supply rate. Constraints (4) and (5) indicate the inven-
tory level of age two and above as well as the inventory 
level of age 1 at the blood centers, respectively. Constraint 
(6) ensures the maximum allowable loss of products and 
constraint (7) shows the supply capacity. Constraint (8) 
implies that products with different ages can be used to sat-
isfy demand.

Constraints (9)–(11) are used for adopting the FF policy 
for blood products. Constraint (9) implies that when demand 
for a product of age g is satisfied, the relevant auxiliary vari-
able ( lt,g

i
 ) will be equal to one. Constraint (10) ensures that 

the inventory of age g − 1 is used if the inventory of age g 
is not enough for satisfying demand. In addition, constraint 
(11) ensures that the inventory of age g − 1 cannot be used 
when available inventory of age g and above is adequate for 
satisfying demand.

Constraint (12) shows the limited capacity of blood cent-
ers for holding inventory. Constraint (13) guarantees that 
the product is delivered to the blood center if it is visited 

(17)vt
i
− vt

j
+ Qxt

ij
≤ Q −

∑

g∈G

q
t,g

j
t ∈ T , j ∈ J

(18)
∑

g∈G

q
t,g

j
≤ vt

i
≤ Q i ∈ I

(19)
∑

i∈v

xt
i0
≤ 1

(20)xt
ij
∈ {0, 1} t ∈ T , i ∈ I, j ∈ J, i ≠ j

(21)
I
t,g

i
≥ 0,w

t,g

i,j
≥ 0d

t,g

i,j
≥ 0, vt

i
≥ 0,Ft ≥ 0, q

t,g

i
≥ 0 t ∈ T , g ∈ G, i ∈ I.
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by the vehicle and constraint (14) shows that the amount 
of product delivered to the blood center should be within 
its available capacity. Constraint (15) denotes the limited 
capacity of the vehicle. Constraint (16) constructs the tours 
and constraints (17) and (18) are the sub-tour elimination 
constraints. Constraint (19) implies that only a single vehicle 
is available. Finally, constraints (20) and (21) show the types 
of decision variables.

Robust optimization model

To account for demand uncertainty in the aforementioned 
problem, a robust optimization approach is adopted. The 
robust optimization is a powerful and effective approach for 
handling optimization problems and decision-making under 
uncertainty [37, 38]. It has become widely popular and can 
been applied to various supply chain planning and optimi-
zation problems in uncertain conditions. In this paper, we 
adopt the same robust optimization approach and measure 
as the one used in several other relevant studies that are 
similar in nature (e.g., Pishvaee et al. [39], Rabbani et al. 
[40], Wee et al. [41]; Hendalianpour et al. [42, 43], Wu [44, 
45]). According to Pishvaee et al. [39], such an approach 
is capable of controlling the degree of feasibility and opti-
mality robustness and also establishing a reasonable trade-
off between the robustness, cost of robustness, and other 
objectives such as improving the average performance of 
the system. Thus, it provides a flexible approach to decision 
making under uncertainty and is applicable in most busi-
ness cases. Suppose the presented deterministic model as 
follows [39, 41]:

The Eq. (22) represents deterministic objective function, 
where x and y denote design and control variables. Con-
straint (23) shows design constraint in which A and b param-
eters are known. Constraint 24 implies control constraint in 
which B,C and e parameters are uncertain. Suppose the sce-
nario set {1, 2,… ,Ω} with the probability of 

∑

s∈S

ps = 1 for 

each scenario. Then, Bs,Cs, es, ds parameters denote uncer-
tain coefficients in the above model. The original model will 
be then converted to the following robust model:

(22)min � = cTx + dT

(23)Ax = b

(24)Bx + Cy = e

(25)x, y ≥ 0.

�s in constraint (28) denotes the error vector which meas-
ures deviation from control constraint in each scenario. 
The first part of the objective function (26) indicates solu-
tion robustness and tendency of decision maker to achieve 
a lower cost. The second part indicates model robustness 
and incurs a penalty to solutions that deviate from control 
constraints. The � coefficient is used for tradeoff between 
solution robustness and model robustness. According to El 
Ghaoui [46], the � function is constructed as follows:

In the above function, the first part shows weighted aver-
age of the objective function and the second part denotes 
sum of deviations from the objective function under different 
scenarios, i.e., variance of the objective function. Yu and Li 
[47] and Haijema et al. [48] used the following formulation 
to linearize the robust model.

The robust counterpart of the model (26)–(29) is then 
written in the following way:

subject to the constraints (33) and (34) and (27)–(29). To 
develop the robust model, we supposed the components of 
the objective function as follows:

(26)min �
(

x, y1, y2,… , ys
)

+ ��
(

�1, �2,… , �n

)

(27)Ax = b

(28)Bsx + Csys + �s = es s ∈ S

(29)x ≥ 0, ys ≥ 0 s ∈ S.

(30)

�
(

x, y1, y2,… , ys
)

=
∑

s∈S

ps�s + �

∑

s∈S

ps

((

�s −
∑

s�∈S

ps��s�

))2

.

(31)

�
(

x, y1, y2,… , ys
)

=
∑

s∈S

ps�s + �

∑

s∈S

ps

|

|

|

|

|

|

(

�s −
∑

s�∈S

ps��s�

)

|

|

|

|

|

|

(32)min
∑

s∈S

ps�s + �

∑

s∈S

ps

((

�s −
∑

s�∈S

ps��s�

))

+ 2�s

(33)�s −
∑

s�∈S

ps��s� + �s ≥ 0, s ∈ �s

(34)�s ≥ 0 s ∈ S.

(35)

min
∑

s∈S

ps�s + �

∑

s∈S

ps

((

�s −
∑

s�∈S

ps��s�

)

+ 2�s

)

+ �

∑

s∈S

ps�s.
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The objective function of the robust model is then con-
structed in the following way:

subject to constraints (7), (13), (15)–(21) and the follow-
ing constraints:

(36)PCO = P
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Constraint (40) updates the inventory level of products 
of age two and above at the supplier in each scenario. Con-
straint (41) shows the inventory level of age one at the sup-
plier. Constraints (42) and (43) update the inventory level 
of blood centers for products of age 2 and above as well 
as products of age 1. Constraint (44) shows the maximum 
allowable loss in each scenario. Constraint (45) defines the 
relationship between demand, the sum of inventory of dif-
ferent ages, and the shortage amount. Constraints (46)–(48) 
indicate that the FF policy is adopted. Constraint (49) 
implies the limited capacity of the blood centers, and con-
straint (50) implies that the quantity delivered by the vehicle 
cannot exceed the available capacity at the blood centers. 
Constraint (51) gives the �s value in each scenario based 
on constraint (32). Constraint (52) define types of decision 
variables.

Proposed solution algorithm

The model developed in this paper significantly extends 
the work by Coelho et al. [33] by incorporating product 
age, FF policy, and supply planning decisions. The model 
presented by Coelho and Laporte [13] is NP-hard due to 
the routing sub-problem, which consists of a vehicle with 
limited capacity. Thus, the model developed in this paper 
is also NP-hard and cannot be solved in polynomial time 
for large-scale problems. In addition, the robust optimiza-
tion approach increases complexity of the original model 
and solution time of exact algorithms. Therefore, in this 
paper, a heuristic solution algorithm is developed for the 
presented mathematical model.

The proposed solution algorithm begins with an ini-
tial solution, which is improved through an iterative cycle 
including two local search strategies, namely inserting the 
best and removing the worst solutions [49, 50]. Moreover, 
a shocking stage is incorporated to prevent falling in local 
optima. The structure of the proposed solution algorithm 
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is illustrated in Fig. 2. The steps of the proposed algorithm 
are given as follows:

•	 The parameter values, including the maximum number 
of iterations, allowable computation time, and proportion 
of deleting stops, as well as that of solution numbers in 
the solution pool, are identified.

•	 An initial solution is generated and put in the solution 
pool to weigh the initial solution as the best solution in 
the first step of the algorithm.

•	 A solution is chosen from the solution pool and then 
improved using the neighbourhood structure. If the new 
solution serves better than the previously-used solutions, 
then it is replaced.

•	 The new obtained solution is replaced with the worst 
solution in three modes: (1) the completion of the solu-
tion pool (2) lack of existence of the current solution in 
the solution pool, and (3) inefficiency of the available 
solution in the solution pool compared to the current 
solution.

•	 If the solution pool is not completed and does not have a 
similar solution, then the current solution is added to the 
solution pool. The algorithm is implemented until one of 
the two conditions is satisfied: (1) the maximum number 
of iterations is reached, or (2) the maximum allowable 
computation time is established. After stopping the pro-
cedure, the best resulting solution is reported.

Fig. 2   Structure of the proposed 
solution algorithm
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Initial solutions

The initial solutions are generated in two stages: the first 
stage constructs the routes and the second stage deter-
mines the value of other variables based on the fixed 
routes. Figure 3 illustrates the process of generating the 
initial solutions. To construct the routes, 75% of the blood 
centers are chosen randomly in each period. For example, 
in Fig. 3, blood centers 1, 3, 5, and 6 are chosen from 
the six blood centers. Then, the chosen blood centers are 
inserted in the route based on the cheapest insertion rule. 
Then, the two-opt operator is used to improve the con-
structed route as much as possible. For example, the con-
structed route in Fig. 2 is improved by displacing 1–5 and 
3–6 arches. Finally, the mathematical model for the flow 
network problem is solved to determine the value of other 
decision variables. This is the second stage in generating 
the initial solutions. The network flow model is formulated 
as follows:

subject to constraints (7), (21), (40)–(52), and

where rt
i
 is a 0–1 parameter implying presence of blood 

center i in the vehicle route in period t.
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Local search

Two local search strategies are applied for improving the 
solutions. The first strategy, namely inserting the best solu-
tion, adds those non-visited blood centers to the route which 
result in more reduction in total costs. Based on Archetti 
et al. [29], the following model is formulated to identify 
these blood centers and the optimal supply quantity, quan-
tity of products delivered by the vehicle, and the quantity of 
products transshipped among blood centers:

subject to constraints (7), (21), (40)–(52), and the 
followings:

where vt
i
 is a binary variable for presence of blood 

center i in the route at period t  . bt
i
 denotes the cost of 

inserting blood center i at period t  which is obtained from 
bt
i
= cij + cjk + cik (see Fig. 4). Constraint (56) ensures that 

the product is only delivered to those blood centers that 
are present or inserted in the route. Constraint (57) implies 
that only those blood centers that are not present in the 
route can be inserted. The second local search aims at 
removing those visited blood centers that result in more 
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Fig. 3   Generating initial solutions
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reduction in the objective function compared to other 
blood centers. A mathematical model is used for deter-
mining such blood centers as well as the value of other 
decision variables:

subject to constraints (7), (21), (40)–(52), and

ut
i
 is a 0–1 variable implying removal of blood center i 

from the route at period t  . at
i
 denotes the amount of trans-

portation cost reduction due to removing blood center i 
from the route which is obtained from at

i
= cik + cjk − cij 

(see Fig. 4). Constraint (60) ensures that the products can 
be only delivered to those blood centers that are present 
in the route and are not removed. Constraint (68) implies 
that only the blood centers that are present in the route 
can be removed.

Shocking stage

Since there is the possibility of falling into local optima, 
the proposed algorithm includes a shocking stage to change 
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current solutions and further search the solution space. To 
do so, a time period is chosen randomly and all visited blood 
centers in that period are removed. The previously-presented 
flow network model is used to determine the value of other 
decision variables [51].

Computational experiments

We carried out detailed computational analyses to further 
investigate the proposed model and evaluate performance of 
the proposed solution algorithm in terms of solution quality 
and time. First, the proposed solution algorithm was imple-
mented in a set of Inventory-Routing Problems with Trans-
shipment under the Maximum Level replenishment policy 
(IRPT-ML) [33]. Results were compared to those obtained 
from Adaptive Large Neighborhood Search (ALNS) algo-
rithm, which was first proposed by Adulyasak et al. [25] for 
solving routing problems. In addition, Coelho et al. [33] and 
Civelek et al. [51] used this algorithm for solving the IRPT-
ML problem. In the second stage, data from the real case of 
distributing blood platelets from Tehran Blood Transfusion 
Center, Iran to hospitals was used to examine the proposed 
model and solution algorithm. The algorithm is coded using 
MATLAB 2014. To obtain the exact solution of the robust 
model, the flow network model and the local search models 
were solved using GAMS v24.1 with CPLEX Solver v12.6. 
All computations were performed on a PC with Core I5, 
2.6 GHz CPU and 6 GB RAM.

Application of the proposed solution algorithm 
on the IRPT‑ML problem

The efficiency of the proposed solution algorithm was 
investigated in a set of IRPT-ML problems. Four clusters 
of numerical problems were considered with low and high 
inventory costs with 5–50 nodes over three time-periods 
and with 5–30 nodes over six time-periods. Five numeri-
cal examples were considered for each node and the first 
one was chosen to be solved using the proposed solution 
algorithm. The algorithm was implemented with a single 
product age, a single scenario, a sufficiently large shortage 
cost, relaxing constraints (40), (47), and (49), and converting 
constraint (7) to an equality.

The results obtained from the proposed solution algo-
rithm were compared to those obtained from the ALNS 
algorithm, which was first proposed for solving routing 
problems. Adulyasak et al. [25] used this algorithm for 
solving green routing problem with simultaneous pickup 
and delivery and time window. In addition, Coelho et al. 
[33] used this algorithm for solving the IRPT-ML problem. 

k
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i

f h

j

k

i

f
h

Fig. 4   Procedure of calculating cost of inserting/removing a specific 
blood center into/from the route
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Table 1 shows the required input data of all the parameters 
used in mathematical model. Due to confidentiality of the 
exact data and proper representation, the input parameter 
values are scaled down and considered in a uniformly dis-
tributed manner [52]. A comparison of the results obtained 
from the proposed solution algorithm and the ALNS algo-
rithm is provided in Table 2. As it can be seen from the 
results, most solutions obtained from the ALNS algorithm 
were improved using the proposed algorithm. In addition, 
the solution time of the proposed algorithm is considerably 
less than that of the ALNS algorithm. We assumed the max-
imum number of seven iterations for solving the examples.

Computational results and discussion

In this study, distribution of blood platelets from Tehran 
Blood Transfusion Center to 70 social security hospitals in 
Tehran, Iran was investigated using the proposed model. The 
cost parameters including transportation, holding, and sup-
ply costs were identified based on real data. In addition, the 
amount of demand, inventory level at the beginning of the 
first period, supply capacity, vehicle capacity, and inventory 
holding capacity at hospitals were identified based on the 
number of hospital beds as follows:

•	 Vehicle capacity: 35% of sum of the number of beds in 
hospitals.

•	 Capacity of each hospital: 70% of the number of hospital 
beds.

•	 Demand of each hospital: 4% to 8% of the number of 
hospital beds in the first scenario; 10–14% in the second 
scenario; 16–20% in the third scenario. The exact values 
were chosen randomly within the mentioned intervals.

•	 Supply capacity: 8–20% of sum of the total number of 
hospital beds. The exact percentage was chosen randomly 
within the mentioned interval.

•	 Inventory level of blood center at the beginning of the 
first period: 5–10% of the total number of hospital beds. 
It was chosen randomly in a way that the inventory of the 
third age group was 8% of total inventory and the inven-
tory of the second age group was 2% of total inventory.

•	 Inventory level of each hospital at the beginning of the 
first time-period: 5–10% of the number of hospital beds. 
It was chosen randomly in a way that the inventory level 
of the third age group was 6% of total inventory and the 
inventory of the second age group was 4% of total inven-
tory.

Seven clusters of numerical experiments including 10 
to 70 hospitals in four time-periods and three scenarios of 
low, average, and high demand were designed. The short-
age cost was set between 10,000 and 100,000 and the vari-
ance coefficient � was set to one for all experiments. The 
results of solving the problems with 10, 30, and 70 hospi-
tals using the proposed solution algorithm and the branch-
and-cut search algorithm are given in Tables 3, 4, and 5. 
The average results for all examples are also provided in 
Table 6. The solution time for the branch-and-cut search 
algorithm in GAMS was limited to 1800s for the prob-
lems with 10, 20, and 30 hospitals, while it was limited 
to 3600 s for the problems having 40 or more hospitals. 
The fourth column of these tables shows the percentage of 
improvement in the upper limit with respect to the lower 
limit. In addition, the last column gives the percentage of 
improvement of the solutions obtained from the proposed 
algorithm with respect to the upper limit obtained from 
the branch-and-cut search algorithm. The results given in 

Table 1   Input data values of parameters

Parameters Description Value

bij Transshipment cost between node i and j U(5, 50)

bt Supply capacity of the supplier at period t U(50, 100)

cij Transportation cost of vehicle between nodes i and j U(150, 1000)

Ci Capacity of holding inventory at the ith blood center U(50, 100)

at
i

Demand of ith blood center at period t U(25, 100)

a
t,s

i
Realization of at,s

i
 under scenario s U(50, 100)

Ft Total supply at period t U(5, 50)

hi Cost of holding inventory at the supplier and blood center U(50, 100)

a
0,g

i
Initial inventory of age g at the supplier and ith blood center at the beginning of the first period U(5, 50)

M Maximum allowable loss of product U(250, 400)

ps Probability of scenario s U(0.1, 0.9)

P Supplying cost of each unit of blood product U(250, 400)

Q Capacity of vehicle U(5, 25)

� A weight factor for the variance of the objective function U(0.1, 0.9)

� A weight factor for balancing between solution robustness and model robustness U(0.1, 0.9)
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Table 6 show that the quality of solutions obtained from 
the branch-and-cut search algorithm is reduced by increas-
ing the problem dimension. In contrast, the proposed solu-
tion algorithm provides better solutions than the branch-
and-cut search algorithm.

Balance between solution robustness and model 
robustness

Figure 5 shows the balance between solution robustness 
(total costs were given in Toman) and model robustness 

(shortage or unsatisfied demand) for the presented case 
study with 70 hospitals. As illustrated in Fig. 5, by increas-
ing � from 10,000 to 100,000, the total cost was increased 
up to 818,699,891.5 and the shortage was reduced to zero. 
In practice, a risk-averse decision-maker chooses higher � 
values to prevent shortage, but a risk-taking decision-maker 
chooses lower � values to reduce total cost. In addition, by 
increasing � , the solution will be more sensitive to changes 
in the input data. In this study � is set to one as proposed by 
Farahani et al. [53].

Table 2   Comparison between results obtained from the proposed solution algorithm and the ALNS algorithm for the IRPT-ML problem

Problem size Problem code ALNS algorithm Proposed algorithm Improvement (%)

Solution Time (S) Solution Time (S)

First cluster: Low inventory cost, three time periods
Small Acsln05 403.42 5.18 403.42 2.27 0

Acsln10 1547.29 15.37 1547.29 8.75 0
Acsln15 1831 31.82 1830.64 16.21 0.02

Medium Acsln20 1999.05 52.68 1999.05 26.88 0
Acsln25 2482.82 77.15 2481.82 29.37 0.04
Acsln30 3238.33 137.53 3206.33 35.21 0.99
Acsln35 3304.26 260.65 3252.92 14.46 1.55

Large Acsln40 3382.91 327.63 3446.01 35.9 – 1.87
Acsln45 3484.22 614.93 3224.82 21.65 7.44
Acsln50 3835.17 872.09 3666.4 30.75 4.4
Second cluster: High inventory cost, three time periods

Small Acsln05 1264.68 6.12 1264.68 1.71 0
Acsln10 4318.61 15.6 4316.61 4.77 0.05
Acsln15 5279.5 33.24 5279.5 4.79 0

Medium Acsln20 6580.57 63.63 6580.57 9.76 0
Acsln25 7842.1 79.05 7854.16 15.26 – 0.15
Acsln30 11,780.3 159.95 11,775.61 21.25 0.04
Acsln35 11,455.3 266.65 11,384.45 22.27 0.62

Large Acsln40 13,029.9 544.99 13,061.01 17.92 – 0.24
Acsln45 13,604.9 587.47 13,604.42 17.01 0
Acsln50 14,159.8 941.37 14,088.71 31.86 0.5
Third cluster: Low inventory cost, six time periods

Small Acsln05 2571.67 10.62 2571.67 6.28 0
Acsln10 4244.76 40.76 4013.96 26.07 5.44
Acsln15 4607.52 83.09 4544.49 48.46 1.37

Medium Acsln20 5218.72 146.63 5218.72 58.32 0
Acsln25 6629.91 267.8 5892.04 62.88 11.13

Large Acsln30 7579.22 886.39 7526.08 51.27 0.7
Acsln35 6801.87 633.81 6386.02 53.29 6.11
Forth cluster: High inventory cost, six time periods

Small Acsln05 5112.33 12.75 5112.33 7.07 0
Acsln10 8231.27 36.9 8582.69 28.28 – 0.62

Medium Acsln15 11,366.9 90.85 11,150.34 36 1.91
Acsln20 13,396.6 204.31 13,396.55 51.86 0

Large Acsln25 14,821.9 332.33 14,406.9 49.37 2.8
Acsln30 23,164.5 725.36 22,151.91 53.23 4.37
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Table 3   Results of the proposed solution algorithm and the branch-and-cut search algorithm for the presented case study with 10 hospitals

Shortage cost Branch-and-cut search algorithm Proposed algorithm

Upper limit (Toman) Lower limit (Toman) Time (S) Improvement (%) Objective function 
(Toman)

Time (S) Improvement (%)

10,000 10498915 10498915 6 0.00 10498915 5.95 0.00
20,000 19407783.8 19268563.2 1800 – 0.72 19495559 7.38 – .45
30,000 23176596.5 22822872.2 1800 – 1.53 23846844 13.45 – 2.89
40,000 25297174.8 24902265.6 1800 – 1.56 26321032.4 7.92 – 4.05
50,000 27256975.5 26922317.8 1800 – 1.23 28213557 9.59 – 3.51
60,000 2926719.1 28895692.6 1800 – 1.27 29899708.6 10.52 – 2.16
70,000 30741983.9 30102944.1 1800 – 2.08 31214910.5 7.97 – 1.54
80,000 31504630.4 30938759.4 1800 – 1.08 32079183.4 7.26 – 1.82
90,000 32172909.9 31686411.1 1800 – 1.51 33092781.6 9.16 – 2.86
100,000 33043059.9 32342479.4 1800 – 2.12 332684015 10.34 – 0.68

Table 4   Results of the proposed solution algorithm and the branch-and-cut search algorithm for the presented case study with 30 hospitals

Shortage cost Branch-and-cut search algorithm Proposed algorithm

Upper limit (Toman) Lower limit (Toman) Time (S) Improvement (%) Objective function 
(Toman)

Time (S) Improvement (%)

10,000 58,310,450 55,862,433 1800 – 4.38 56,785,649 355.50 2.61
20,000 356,163,891.5 101,107,520.9 1800 – 252.26 104,097,196.4 319.13 70.77
30,000 413,980,891.5 114,479,711.2 1800 – 261.62 118,556,782.6 440.16 71.36
40,000 471,797,891.5 125,076,176.1 1800 277.21 129,062,298.5 273.98 72.64
50,000 529,614,891.5 13,564,716.4 1800 – 290.43 138,961,370 489.92 73.76
60,000 587,431,891.5 144,509,195.7 1800 – 306.50 149,054,792 262.33 74.63
70,000 645,248,891.5 147,901,701.2 1800 – 336.27 1,526,877,310 543.74 76.34
80,000 703,065,891.5 147,983,004 1800 – 375.10 152,943,039.8 617.54 78.25
90,000 760,882,891.5 148,014,915.1 1800 – 414.06 152,571,057.7 557.72 79.95
100,000 818,699,891.5 148,005,079.9 1800 – 453.16 153,748,673.2 409.51 81.22

Table 5   Results of the proposed solution algorithm and the branch-and-cut search algorithm for the presented case study with 70 hospitals using

Shortage cost Branch-and-cut search algorithm Proposed algorithm

Upper limit (Toman) Lower limit (Toman) Time (S) Improvement (%) Objective function 
(Toman)

Time (S) Improvement (%)

10,000 30,245,611 30,119,610.4 3600 – 0.42 30,629,354.9 24.63 – 1.27
20,000 58,109,010.9 55,504,800.5 3600 – 4.69 57,124,977.7 32.43 1.69
30,000 75,717,901.5 64,322,108.8 3600 – 17.72 66,678,296.4 31.22 11.94
40,000 84,112,509.7 69,621,019.4 3600 – 20.81 72,396,725 33.35 13.93
50,000 100,443,380 75,016,819.4 3600 – 33.89 77,505,535 23.86 22.84
60,000 102,762,642 79,922,062.1 3600 – 28.58 82,860,913.9 36.68 19.37
70,000 96,960,051.7 82,784,377.1 3600 – 17.12 85,547,550.7 31.42 11.77
80,000 97,981,519.1 846,591,166.8 3600 – 15.74 87,601,235.3 26.04 10.59
90,000 112,373,605 86,650,124.4 3600 – 29.69 90,006,445.7 22.54 19.90
100,000 104,332,262.8 88,614,925.2 3600 – 17.74 91,512,864.6 30.63 12.29
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The results of sensitivity analysis of two cases 
of with and without transshipment

A comparative analysis of total costs, inventory levels and 
supply rates as well as shortage amounts, and the amounts 
of supply loss was done in the presented problem with 70 
hospitals in two cases: (1) transshipment among hospitals 
is allowed and (2) transshipment among hospitals is not 
allowed. The shortage costs were assumed 70,000 Tomans. 
According to the obtained results, the costs of inventory and 
supply did not undergo significant changes in cases in which 
transshipment among blood centers was allowed compared 
to its counterpart. Nevertheless, as shown in Fig. 6a, b, a 
considerable decrease in total costs and number of shortages 
was observed in these two different scenarios, i.e., trans-
shipment allowance and prohibition among blood centers. 
This is because there is no need for extra supply and holding 
extra inventory, where transshipment is allowed, so that both 
supply and inventory costs are both reduced. The results also 
show that the product loss was the same in two cases and 
did not exceed the maximum allowable loss. Moreover, the 
results of the study revealed that the transshipments did not 
reduce supply loss and that adopting the FF policy as well as 
the optimal supply policy for product consumption resulted 
in zero product loss in all periods, except for the first period, 
in both cases.

In the case, where transshipment among hospitals is not 
allowed, the results show that the supply rate was more 
than that of the other case (Fig. 6c). This is because a blood 
center having extra products can give them to a blood center 
facing shortage which, in turn, results in reduced shortage 
costs. It also avoids the need for extra supply and reduces 
supply costs. As shown in Fig. 6d, the comparative analysis 
also shows higher inventory levels, where transshipment is 
not allowed, which, in turn, incurs higher inventory holding 
cost. These results confirm that transshipment among blood 
centers avoids additional costs and product shortages, which, 
in turn, reduces total costs of the system.

Overall, the numerical results confirm satisfactory per-
formance of the proposed solution algorithm. The proposed 
algorithm is benefited from powerful operators and proce-
dures for generating initial solution and improving solution 
quality that help produce superior results while significantly 
reducing the solution time. For instance, the solution time 
of the problem with 30 hospitals is 3.44 s in comparison 
with the time limit of 1800s in the branch-and-cut algo-
rithm. This is also accompanied with 14.04% improvement 
in solution quality (Table 6). The improvement in obtained 
solutions is even more evident in large-sized problem. As 
an instance, the heuristic algorithm gives a solution with 
75.52% improvement in 3.14 s for the problem having 70 
hospitals. These results along with those obtained from com-
parative analyses help establish reliability and validity of 
the mathematical model and proposed solution algorithm.

Conclusions

In this research, a mathematical model was developed for the 
integrated inventory-routing of blood goods under demand 
uncertainty by taking into account the FF policy for con-
sumption of goods. The transshipment among blood centers 
was incorporated to better handle uncertainty in customer 
demand. A heuristic algorithm was also proposed for solv-
ing the model. The proposed algorithm was tested on a set 

Table 6   Average results obtained for the presented case study using the proposed solution algorithm and the branch-and-cut search algorithm

Problem size Branch-and-cut search algorithm Proposed algorithm

No. of hospitals Upper limit 
(Toman)

Lower limit 
(Toman)

Time (S) Improvement 
(%)

Objective func-
tion (Toman)

Time (S) Improvement (%)

Small 10 26,236,722.1 25,838,122 1620.60 – 1.54 26,793,089.3 – 2.12 – 2.12
20 50,393,762.5 48,533,183.6 1642.9 – 3.83 49,983,832.7 0.81 0.81
30 86,303,849.4 71,721,501.4 1800 – 20.33 74,186,390.2 14.04 14.04

Median 40 116,726,432.9 89,769,065.6 3600 – 30.03 91,075,766.4 21.98 21.98
Large 50 353,676,986.1 100,813,206.4 3600 – 250.82 104,131,096.4 70.56 70.56

60 441,841,206.6 113,310,995.3 3600 – 289.94 116,551,802.4 73.62 73.62
70 534,519,747.4 126,858,725.3 3600 – 321.35 130,846,816.9 75.52 75.52

Fig. 5   Balance between model robustness and solution robustness
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of numerical examples using the data from the literature 
showing that it is more efficient with respect to both time and 
quality of solutions. The proposed model and solution algo-
rithm were also investigated in a case of blood distribution 
services in Tehran, Iran. A comparison was made between 
two situations of with and without product transshipment 
between blood centers and the overall performance of the 
network with respect to supply, shortage, inventory, and total 
costs was evaluated. The comparative results indicated that 
allowing transshipment among blood centers reduces sup-
ply quantity at the supplier, the amount of product shortage, 
and the inventory level. This, in turn, results in the reduced 
total costs. This research can be extended in several ways. 
The proposed model can be further investigated by incor-
porating transshipment of non-consumed products from the 
blood centers to the supplier. In addition, determining the 
optimal transshipment routes among the blood centers in 
each time-period and taking into account time window for 

delivery of blood products to the blood centers can be the 
subject of future works. The presented problem can be also 
investigated in a more complex supply chain network con-
sisting of multiple suppliers with multiple blood products.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.
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