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Abstract
Most of the past cloud manufacturing (CMfg) studies investigated the short-term production planning or job scheduling 
of a CMfg system, while the mid-term or long-term capacity and production planning of a CMfg system has rarely been 
addressed. In addition, most existing methods are suitable for CMfg systems comprising three-dimensional (3D) printers, 
computer numerical control (CNC) machines or robots, but ignore the coordination and transportation required for moving 
jobs across factories. To fill these gaps, a fuzzy mid-term capacity and production planning model for a manufacturer with 
cloud-based capacity is proposed in this study. The proposed methodology guides a manufacturer in choosing between non-
cloud-based capacity and cloud-based capacity. It can be applied to factories utilizing machines with different degrees of 
automation including highly automatic equipment (such as 3D printers, CNC machines, and robots) and lowly automatic 
(legacy) machines, while existing methods assume that orders can be easily transferred between machines that are often 
highly automatic. In the proposed methodology, first, various types of capacity are unequally prioritized. Then, a fuzzy 
mixed-integer nonlinear programming model is formulated and optimized to make the mid-term or long-term capacity 
and production plan of a factory. The fuzzy capacity and production planning model is designed for factories with parallel 
machines. The proposed methodology has been applied to a case to illustrate its applicability. According to the experimental 
results, the proposed methodology successfully reduced total costs by up to 8%. The advantage of the proposed methodology 
over existing practices in fulfilling customers’ demand was also obvious.
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Introduction

Cloud manufacturing (CMfg) is a manufacturing model 
for enabling ubiquitous, convenient, and real-time access 
to a shared pool of configurable manufacturing resources 
through the Internet [20, 44]. CMfg is the application of 
cloud computing [1] to the manufacturing sector that aims to 
provision and release manufacturing resources rapidly with 
minimal management efforts or service provider interaction 
[25]. Studies like Wen and Zhou [40] viewed CMfg as a 

promising tool of servitization manufacturing industries. A 
CMfg manufacturing system is an intelligent manufacturing 
system [11] that makes better use of resources with the aid 
of cloud service providers.

There are various CMfg models that can be applied to 
different stages of the manufacturing life cycle (including 
product design, prototyping, production engineering, capac-
ity planning, production planning (including sequencing and 
scheduling), mass production (including quality control and 
assurance), recycling, the cease of production, etc.) [9]. 
Manufacturing resources required for these stages are not 
equally easy to encapsulate into cloud services. For exam-
ple, product design is the easiest stage since product designs 
and design knowledge are both intangible and can be easily 
shared online [14, 18]. With the advent of three-dimensional 
(3D) printing (i.e., additive manufacturing) and computer 
numerically controlled (CNC) machining (i.e., subtractive 
manufacturing) technologies, prototyping is becoming easier 
now than in the past [3, 22]. The combination of 3D printing 

 *	 Tin‑Chih Toly Chen 
	 tolychen@ms37.hinet.net

1	 Department of Industrial Engineering and Management, 
National Chiao Tung University, 1001 University Road, 
Hsinchu, Taiwan

2	 Department of Aeronautical Engineering, Chaoyang 
University of Science and Technology, Taichung City, 
Taiwan

http://orcid.org/0000-0002-5608-5176
http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-020-00177-w&domain=pdf


72	 Complex & Intelligent Systems (2021) 7:71–85

1 3

and CNC is called hybrid manufacturing [30]. These rapid 
prototyping technologies enable mass customization as an 
emerging pattern of mass production [6]. However, except 
for these, other manufacturing resources for mass produc-
tion (including equipment, operators, and raw materials) are 
very difficult to encapsulate. Nevertheless, resource sharing 
across organizations is the focus of CMfg, although it is 
very difficult and cannot be taken for granted. In addition, 
most of the past studies viewed CMfg systems from an infor-
mation technology (IT) point of view (e.g., [15, 43, 46], 
which unnecessarily added much theoretical and technical 
complexity to managing a CMfg system. A recent review of 
CMfg studies refers to Ghomi et al. [12].

This study is focused on the mid-term or long-term capac-
ity and production planning of a traditional manufacturer 
with cloud-based capacity, which has rarely been investi-
gated in the past studies. In contrast, most existing methods 
are devoted to the short-term production planning or job 
scheduling in a CMfg system (e.g., [36], which assumes the 
extensive adoption of radio frequency identification (RFID) 
sensors, cross-organizational information technology (IT) 
system architectures, and cloud computing methodologies. 
Such an assumption may be impractical to some manufactur-
ers. Nevertheless, a manufacturer can still benefit by resort-
ing to CMfg capacity or selectively deploying RFID sensors, 
which is much easier and practical.

A fuzzy capacity and production planning model for a 
manufacturer with cloud-based capacity is proposed in this 
study. Compared to existing methods, the proposed method-
ology has the following novel characteristics:

1.	 The application of the proposed methodology is not 
restricted to factories that utilize highly automatic equip-
ment (such as 3D printers, CNC machines, and robots). 
However, the fuzzy capacity and production planning 
model is designed for factories with parallel machines, 
and needs to be modified to be suitable for other types 
of manufacturing systems such as unrelated parallel 
machines.

2.	 The proposed methodology is for the mid-term or long-
term capacity and production planning, not for the daily 
or short-term production planning or job scheduling, of 
a CMfg system.

3.	 The imprecision of forecasting the future demand, the 
uncertainty in the availability of cloud-based capacity 
[5], and the prioritization of self-owned capacity are 
more critical to the effectiveness of mid-term or long-
term capacity and production planning. To address this 
concern, a fuzzy mixed-integer linear programming 
(FMILP) model and a fuzzy mixed-integer nonlinear 
programming (FMINLP) model are proposed in this 
study. In contrast, in existing methods, the scheduling 
algorithm and the deployment of RFIDs for collecting 
real-time production information are more important to 
the performance of short-term production planning and 
job scheduling [18, 47].

The differences between the proposed methodology and 
some existing methods are summarized in Table 1.

The remainder of this paper is organized as follows: 
Sect.  2 is dedicated to the literature review. Section  3 
describes the proposed fuzzy capacity and production plan-
ning model for a manufacturer with cloud-based capacity. A 
case is investigated in Sect. 4 to illustrate the applicability of 
the proposed methodology. The managerial implications for 
two CMfg technology applications, predictive maintenance 
and RFID-based real-time production information collec-
tion, are also discussed. Section 5 concludes this study and 
provides some topics for future investigation.

Literature review

Three types of capacity

Theoretically, there are three types of capacity that can be 
utilized by a manufacturer with cloud-based capacity, as 
illustrated in Fig. 1:

Table 1   The differences between the proposed methodology and some existing methods

Method Equipment type Method type Model type Optimization

Laili et al. [18] Online computer-aided design 
(CAD) system

Short-term production planning; Job schedul-
ing

Genetic algorithm Yes

Wu et al. [41] 3D printers, CNC machines System architecture establishment Simulation No
Zhong et al. [47] Machines equipped with RFIDs Short-term production planning; job schedul-

ing
LP Yes

Chen and Lin [7] 3D printers Short-term production planning; job schedul-
ing

LP, NLP Yes

The proposed methodology Not restricted Mid-term or long-term capacity and produc-
tion planning

FMILP, FMINLP Yes
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1.	 Self-owned capacity, which is the capacity owned by a 
manufacturer. Self-owned capacity may be located in a 
single factory or distributed over several factories con-
trolled by the manufacturer [32].

2.	 Foundry capacity, which is the capacity of foundries that 
can be utilized within a certain time interval according 
the formal agreement between foundries and a manufac-
turer [10]. The relationship between a foundry and the 
manufacturer is usually long term. As a result, a manu-
facturer only needs to pass order details to foundries. 
The required coordination is largely simplified.

3.	 Cloud-based capacity, which is the available capacity 
information provided by unknown factories (i.e., the 
capacity providers) and can be accessed by a manufac-
turer online through the intervention of a cloud service 
provider. The relationship between the capacity provid-
ers and the manufacturer is temporary. As a result, the 
manufacturer is still responsible for the preparation and 
logistics of other manufacturing resources [48].

The differences among the three types of capacity are 
summarized in Table 2.

Under a CMfg environment, a manufacturer has to choose 
among various types of capacity in capacity and production 
planning [2]. Since self-owned capacity is usually the most 
certain capacity, a manufacturer will first utilize self-owned 
capacity to meet the forecasted demand. Self-owned capac-
ity-based manufacturing is also the most efficient manufac-
turing mode because no cross-organizational collaboration 
and transportation is required. However,

1.	 Self-owned capacity is not necessarily the most econom-
ical capacity. A foundry may achieve a better economy 
of scale [28].

2.	 It is a challenging task to build up the appropriate level 
of self-owned capacity. Most manufacturers prepare 
extra self-owned capacity to respond to unexpected 
demand, which becomes a burden during a recession.

For these reasons, a manufacturer may establish a long-
term relationship with foundries, and sometimes utilizes 
foundry capacity instead of self-owned capacity. However, a 
foundry also faces the same problem of unexpected demand, 
and may fail to provide the manufacturer sufficient foundry 
capacity. As a result, a manufacturer has to resort to cloud-
based capacity. By utilizing foundry or cloud-based capacity 
to respond to unexpected demand, the marginal profitability 
and/or efficiency of a manufacturer may decrease [39]. Nev-
ertheless, the overall efficiency and profitability of the manu-
facturer still improve, because more demand can be met. A 
flowchart is provided in Fig. 3 to guide a manufacturer in 
choosing from the three types of capacity.

Capacity and production planning under a CMfg 
environment

Capacity planning is the process of determining the amount 
of capacity required in the future [31]. Although there have 
been a great amount of literature on CMfg [8, 29, 44], most 
of them were focused on establishing the architecture of a 
CMfg system from an IT perspective [19, 33, 37, 44, 45]. In 

Fig. 1   The three types of capac-
ity under a CMfg environment Capacity

Self-owned 
Capacity

Foundry 
Capacity

Cloud-based 
Capacity

Order details
Order detail,
Other manufacturing resources,
Logistics

Table 2   The differences among 
the three types of capacity

Capacity type Capacity 
controllabil-
ity

Capacity size Capacity cost Capacity 
expandability

Equipment 
maintenance 
cost

Self-owned capacity Strongest Large Cheapest Low High
Foundry capacity Strong Small Expensive Medium Medium
Cloud-based capacity Weakest Case by case Most expensive High Lowest
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contrast, the capacity and production planning of a CMfg 
system has rarely been discussed. Some of the relevant refer-
ences are reviewed as follows:

The capacity of a CMfg system composed of only 3D 
printers, CNC machines, and/or robots was easy to expand 
or shrink [42]. For example, Wang [35] discussed a CMfg 
system composed of only CNC machines. A Web-based 
interface was designed so that CNC machines could be 
monitored and controlled through the Internet. However, 
the direct and seamless control of CNC machines was still 
a problem owing to the closed nature of existing CNC con-
trollers. In addition, the security issue has not been taken 
into account. In the view of Mourtzis and Doukas [26], the 
capacity planning of a CMfg system was analogous to that of 
a supply chain, and should be combined with inventory plan-
ning, which is exactly the view adopted by this study. The 
capacity planning of a CMfg system was called a scalability 
planning problem by Wu et al. [41]. However, the methodol-
ogy proposed by Wu et al. [41] was not applicable to a CMfg 
system composed of machines that were difficult to digital-
ized. In addition, their method was about how to acquire and 
share extra and unused capacity, respectively, which was 
a short-term response rather than a planning action. The 
willingness of each factory to share its unused capacity is 
undoubtedly the most critical issue to the sustainability of 
a CMfg system, which is not easy to address. Most existing 
methods just assumed that all factories were willing to share 
their unused capacity-related resources [23]. 3D printing has 
great potential for establishing a CMfg service. However, the 
planning, optimization, and control of a 3D printing-based 
CMfg system have not been sufficiently discussed [38].

A number of the past studies have been devoted to process 
planning or job scheduling in a CMfg system. For example, 
Zhong et al. [47] formulated a linear programming (LP) 
model to schedule the production of jobs in a factory. The 
availability information of a machine was collected with a 
RFID sensor and became an input to the LP model. However, 
the LP model could not be applied to a cross-factory case. 
Lu and Xu [24] established a computer-aided process plan-
ning (CAPP) system for scheduling jobs under a CMfg envi-
ronment. Argoneto and Renna [2] applied the Gale–Shapley 
algorithm to match capacity suppliers to capacity consumers 
in a CMfg system. Then, a capacity consumer chose the most 
suitable capacity supplier according to several established 
fuzzy inference rules. However, such fuzzy inference rules 
were subjective and unoptimized. Ivanov et al. [16] inves-
tigated the effect of cloud capacity by varying the available 
capacity within a supply chain, and attempted to optimize 
the scheduling of jobs processed collaboratively by factories 
in the supply chain, which was a very complicated schedul-
ing problem from a theoretical point of view. In addition, 
the costs of utilizing the capacity-related resources provided 
by different factories were not equal. Furthermore, lengthy 

negotiation and transportation were required when jobs were 
moved from a factory to another, especially under a CMfg 
environment in which factories might not have long-term 
cooperation relationships with each other [27]. Solving the 
scheduling problem without considering these issues was 
not practical. In contrast, facilitating the required coordina-
tion and transportation can bring more benefits to a CMfg 
system [7]. Chen and Lin [7] planned the production of a 
CMfg system composed of distributed 3D printing facilities 
in a make-to-order manner. Chen and Lin formulated a LP 
model and a nonlinear programming (NLP) model for split-
ting an order among 3D printing facilities and determining 
the sequence of picking up the printed pieces, respectively. 
Similarly, in the CMfg system established by Wang et al. 
[38], an order was split among several 3D printing facili-
ties by solving a mixed-integer linear programming (MILP) 
problem. Subsequently, a mixed-integer quadratic program-
ming (MIQP) model was optimized to form a delivery plan 
to pick up the printed pieces. In addition, the CMfg system 
provided slack information to each 3D printing facility for 
it to consider resuming an early terminated 3D printing pro-
cess locally without modifying the original production and 
transportation plan.

In sum, the past studies in this field are subject to the 
following problems:

1.	 Most of the past studies were focused on the short-term 
process planning or job scheduling, rather than the mid-
term or long-term capacity and production planning. 
This result is not surprising, because CMfg originates 
from cloud computing that aims to aggregate distributed 
computing resources to solve a complicated problem in 
a short time. As a result, how to assign tasks to vari-
ous CMfg resources becomes the focus. The relation-
ship between factories under a CMfg environment is not 
necessarily long term. Some CMfg resources used at 
this time may not be available next time. As a result, a 
factory cannot make a large-scale production plan by 
incorporating these CMfg resources to pursue higher 
profits.

2.	 The contingent nature of CMfg was not highlighted: The 
attractiveness of CMfg comes from the possibility of 
utilizing (or renting) the manufacturing resources tem-
porarily from an unknown capacity provider [27]. How-
ever, the most economical, efficient, and risk-averse way 
to utilize such manufacturing resource is to establish a 
long-term relationship with the capacity supplier, i.e., 
the so-called outsourcing, the benefits of which cannot 
be achieved by cooperating with an unknown capacity 
provider in a contingent way.

3.	 Most of the past studies (e.g., [6, 35, 41, 42] investigated 
cases in which 3D printers and/or CNC equipment with 
standardized (or digitized) inputs, operations, and out-
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puts were used. However, the methodologies and results 
cannot be applied to factories using machines which 
inputs, operations, and outputs have not been standard-
ized (or digitalized).

4.	 Studies such as Wang [35] and Wu et al. [42] established 
the architecture of a CMfg system from an IT point of 
view, but did not provide a methodology for optimiz-
ing the performance of production planning. Wu et al. 
[41] proposed a stochastic Petri net approach that relied 
on simulation but could not optimize the performance. 
Mourtzis and Doukas [26] also applied simulation. 
Few studies like Zhong et al. [47] and Chen and Lin [7] 
solved LP or NLP problems to optimize the performance 
of job scheduling or production planning. However, their 
scopes involved only daily or very short-term operations.

The proposed methodology

Before delving into the details of the proposed methodology, 
the parameters and variables used throughout this study are 
defined as follows:

•	 (·): Fuzzy scalar multiplication;
•	 (−): Fuzzy subtraction;
•	 (×): Fuzzy multiplication;
•	 a(t) : Actual demand within period t;
•	 c1 : The unit variable cost;
•	 cf : The hourly rate of the foundry capacity; It is expected 

that cf ≥ c̃s(t).
•	 c̃s(t) : The forecasted unit cost within period t;
•	 C̃(t) : The forecasted total costs within period t;
•	 C̃s(t) : The forecasted total self-made costs within period 

t;
•	 d̃(t) : The forecasted demand within period t, including 

the demand from customers and those from other manu-
facturers (when the manufacturer serves as a foundry);

•	 m: The actual number of machines;
•	 m̃ : The required number of machines; m̃ ∈ Z+;
•	 p: The unit processing time;
•	 t: The period index; t = 1 ~ T;
•	 T: The planning horizon;
•	 𝛿(t) : The unmet forecasted demand within period t; 

𝛿(t) ∈ Z+;
•	 U: The usage cost of a machine per month;
•	 u(t) : Actual utilization within period t;
•	 ũ(t) : The expected utilization within period t; ũ(t) ∈ [0, 1]

;
•	 v(t) : Actual availability within period t;
•	 ṽ(t) : The forecasted availability within period t; 

ṽ(t) ∈ [0, 1];
•	 W(t) : Working hours within period t;

•	 xc(t) : The quantity of products made by utilizing cloud 
capacity within period t; xc(t) ∈ Z+;

•	 xf(t) : The actual quantity of foundry-made products 
within period t; xf(t) ∈ Z+;

•	 x̃f(t) : The forecasted quantity of products made by found-
ries within period t; x̃f(t) ∈ Z+;

•	 xs(t) : The actual quantity of self-made products within 
period t; xs(t) ∈ Z+;

•	 x̃s(t) : The forecasted quantity of self-made products 
within period t; x̃s(t) ∈ Z+;

•	 y(t) : The actual product yield within period t;
•	 ỹ(t) : The forecasted product yield within period t; 

ỹ(t) ∈ [0, 1];
•	 �(t) : The unused self-owned capacity that can be shared 

as cloud capacity within period t; �(t) ∈ Z+.

In the proposed methodology, a fuzzy capacity and pro-
duction planning model is established for a factory with 
cloud-based capacity. The procedure for implementing the 
proposed methodology comprises the following steps:

Step 1. Determine the planning horizon.
Step 2. Forecast the demand for each product within every 

future period.
Step 3. Estimate the unit cost and yield of each product 

within every future period.
Step 4. Calculate the number of machines required if all 

products are to be self-made.
Step 5. Collect the information about the availability and 

costs of foundry and cloud-based capacity within each future 
period.

Step 6. Formulate and optimize the fuzzy capacity and 
production planning model to switch between self-owned 
capacity and foundry capacity to minimize total costs.

Step 7. Resort to cloud-based capacity if actual demand 
cannot be fully met by utilizing self-owned and foundry 
capacity.

A flowchart is provided in Fig.  2 to illustrate the 
procedure.

Steps 1 to 3: Forecasting the demand, yield, and unit 
cost within each period

The proposed methodology starts from forecasting the 
demand within each period. To consider the uncertainty in 
demand, the forecasted demand within a period is expressed 
with a triangular fuzzy number (TFN) [13].

as shown in Fig. 3. The membership function of d̃(t) is

(1)d̃(t) = (d1(t), d2(t), d3(t)),
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Subsequently, the yield and unit cost when the forecasted 
demand is completely self-made can be estimated.

Step 4: calculate the number of machines required

Since self-owned capacity is usually the most certain capac-
ity, a manufacturer will build up and utilize self-owned 
capacity first. The required number of machines that meet 
the forecasted demand within each period can be determined 
as

according to the arithmetic for TFNs [49]. In Eq. (3), 
p(⋅)d̃(t) is the required capacity within period t, while 
ỹ(t)(×)ṽ(t)(⋅)W(t) is the capacity provided by a single 
machine. Dividing the former by the later gives the required 
number of machines. If m machines are actually acquired, 
the forecasted number of self-made products within period 
t is

In Eq. (4), ⌊m(⋅)ỹ(t)(×)ṽ(t)(⋅)W(t)∕p⌋ is the quantity of 
products that can be made on m machines within period t, 
and should not be more than d̃(t) . If m < m̃ , then the unmet 
forecasted demand within period t is

(2)𝜇d̃(t)(x) =

⎧
⎪⎨⎪⎩

x−d1(t)

d2(t)−d1(t)
if d1(t) ≤ x < d2(t)

x−d3(t)

d2(t)−d3(t)
if d2(t) ≤ x < d3(t)

0 otherwise

,

(3)

m̃ = max
t

⌈
p(⋅)d̃(t)

ỹ(t)(×)ṽ(t)(⋅)W(t)

⌉
,

= max
t

⌈(
pd1(t)

y3(t)v3(t)W(t)
,

pd2(t)

y2(t)v2(t)W(t)
,

pd3(t)

y1(t)v1(t)W(t)

)⌉
,

=

(
max

t

⌈
pd1(t)

y3(t)v3(t)W(t)

⌉
, max

t

⌈
pd2(t)

y2(t)v2(t)W(t)

⌉
, max

t

⌈
pd3(t)

y1(t)v1(t)W(t)

⌉)
,

(4)

x̃s(t) = min

(
d̃(t),

⌊
m(⋅)ỹ(t)(×)ṽ(t)(⋅)W(t)

p

⌋)
,

=

(
min

(
d1(t),

⌊
my1(t)v1(t)W(t)

p

⌋)
,

min

(
d2(t),

⌊
my2(t)v2(t)W(t)

p

⌋)
,

min

(
d3(t),

⌊
my3(t)v3(t)W(t)

p

⌋))
,

(5)

𝛿(t) = max(d̃(t)(−)x̃s(t), 0),

= (max(d1(t) − xs3(t), 0), max(d2(t)

− xs2(t), 0), max(d3(t) − xs1(t), 0)),

𝛿(t) is the deviation between the forecasted demand and the 
quantity of self-made products, which is to be met utilizing 
foundry capacity

Therefore, the required foundry capacity within period t is 
px̃f(t) . In addition, the expected utilization can be derived as

In Eq.  (7), p(⋅)d̃(t)∕ỹ(t)(×)ṽ(t)(×)W(t) is the number 
of machines required, while m is the number of machines 

acquired. Dividing the former by the latter gives the 
expected utilization. Based on the aforementioned discus-
sion, the following fuzzy capacity and production planning 
model is established.

(Fuzzy capacity and production planning model I)

(6)x̃f(t) = 𝛿(t).

(7)

ũ(t) =

p(⋅)d̃(t)

ỹ(t)(×)ṽ(t)(×)W(t)

m
,

=

(
pd1(t)

my3(t)v3(t)W(t)
,

pd2(t)

my2(t)v2(t)W(t)
,

pd3(t)

my1(t)v1(t)W(t)

)
.

(8)
m̃ =

(
max

t

⌈
pd1(t)

y3(t)v3(t)W(t)

⌉
,

max
t

⌈
pd2(t)

y2(t)v2(t)W(t)

⌉
, max

t

⌈
pd3(t)

y1(t)v1(t)W(t)

⌉)
,

(9)

x̃s(t) =

(
min

(
d1(t),

⌊
my1(t)v1(t)W(t)

p

⌋)
,

min

(
d2(t),

⌊
my2(t)v2(t)W(t)

p

⌋)
,

min

(
d3(t),

⌊
my3(t)v3(t)W(t)

p

⌋))
,

(10)
x̃f(t) = (max(d1(t) − xs3(t), 0), max(d2(t)

− xs2(t), 0), max(d3(t) − xs1(t), 0)),

(11)

ũ(t) =

(
pd1(t)

my3(t)v3(t)W(t)
,

pd2(t)

my2(t)v2(t)W(t)
,

pd3(t)

my1(t)v1(t)W(t)

)
.



77Complex & Intelligent Systems (2021) 7:71–85	

1 3

Steps 5–6: capacity and production planning 
by considering self‑owned and foundry capacity

In Fuzzy capacity and production planning model I, the pri-
ority of self-owned capacity is absolutely higher than that 
of foundry capacity. A manufacturer may seek a better bal-
ance between self-owned capacity and foundry capacity to 

optimize the cost effectiveness by minimizing the sum of 
total costs

subject to

where

In Eq. (13), the quantity of products made by utilizing 
self-owned capacity plus that made by utilizing foundry 
capacity is equal to the forecasted demand. Constraint (14) 
requests that the quantity of self-made products be fewer 
than that can be made. The forecasted unit cost within period 
t can be calculated as

where mU(∕)x̃s(t) is the unit fixed cost that is derived by 
dividing the equipment usage cost among all self-made 
products. The forecasted total self-made costs are obtained 
by multiplying the forecasted unit cost to the quantity of 
self-made products as

while the forecasted total foundry costs are obtained in a 
similar way:

Therefore, the forecasted total costs are the sum of self-
made costs and foundry costs:

(12)Min Z̃1 =

T∑
t=t

C̃(t),

(13)x̃s(t)(+)x̃f(t) = d̃(t),

(14)x̃s(t) ≤
m(⋅)ỹ(t)(×)ṽ(t)(⋅)W(t)

p
.

(15)c̃s(t) = c1(+)
mU

x̃s(t)
,

(16)
C̃s(t) = c̃s(t)(×)x̃s(t),

= c1x̃s(t)(+)mU,

(17)C̃f(t) = cf(⋅)x̃f(t).

Forecast the demand within 
each period

Estimate the unit cost and 
yield within each period

If any 
demand 
unmet?

Calculate the number of 
machines required

Collect the information about 
cloud-based capacity

Formulate and optimize the 
fuzzy capacity and production 

planning model

Resort to cloud-based capacity

End

Start

Yes

Determine the planning 
horizon

No

Fig. 2   The procedure for implementing the proposed methodology
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Fig. 3   Expressing the forecasted demand with a TFN
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As a result, the following fuzzy capacity and production 
planning model is established, which is a FMILP problem:

(Fuzzy capacity and production planning model II)

subject to

Fuzzy capacity and production planning model II is a 
FMILP problem that is converted into an equivalent mixed-
integer linear programming (MILP) model to facilitate the 
problem solving [17]. To this end, the following theorems 
are helpful.

Theorem 1  (The center-of-gravity (COG) method) A TFN 
Ã can be approximated with (or defuzzified into) a crisp 
value as [34]:

Theorem 2  (Ranking two TFNs) Ã and B̃ are two TFNs. 
Ã ≥ B̃ if A1 ≥ B1 , A2 ≥ B2, and A3 ≥ B3.

After applying Theorem 1 to Eqs. (19) and (20), and 
Theorem 2 to Constraint (22), the following MILP model 
is established.

(MILP model)

subject to

(18)
C̃(t) = C̃s(t)(+)C̃f(t),

= c1x̃s(t)(+)mU(+)cfx̃f(t).

(19)Min Z̃1 =

T∑
t=t

C̃(t),

(20)C̃(t) = c1x̃s(t)(+)mU(+)cfx̃f(t); t = 1 ∼ T ,

(21)x̃s(t)(+)x̃f(t) = d̃(t); t = 1 ∼ T ,

(22)x̃s(t) ≤
m(⋅)ỹ(t)(×)ṽ(t)(⋅)W(t)

p
; t = 1 ∼ T ,

(23)x̃s(t), x̃f(t), m ∈ Z+; t = 1 ∼ T ,

(24)C̃(t) ∈ R+; t = 1 ∼ T .

(25)Ã →
A1 + A2 + A3

3
.

(26)Min Z1 =

T∑
t=t

C1(t) + C2(t) + C3(t)

3

(27)C1(t) = c1xs1(t) + mU + cfxf1(t); t = 1 ∼ T

(28)C2(t) = c1xs2(t) + mU + cfxf2(t); t = 1 ∼ T

Equations  (27) to (29) are the one-to-one mappings 
between the TFNs on the two sides. Constraints (34) to (36) 
define the sequence of the three corners of the correspond-
ing TFN.

Step 7: resorting to cloud‑based capacity

The actual demand is seldom equal to the forecasted 
demand. As a result,

1.	 If the actual demand is less than the forecasted demand, 
i.e., a(t) < d̃(t) , the manufacturer will utilize less self-
owned capacity. Specifically speaking, the quantity 
made by utilizing foundry capacity ( xf(t) ) remains 
because of the signed contract, while that made by uti-
lizing self-owned capacity is reduced to 

	   In addition, no cloud-based capacity will be utilized, 
i.e., xc(t) = 0.

2.	 Otherwise, the manufacturer will utilize unused self-
owned capacity or seek for available cloud-based capac-
ity to fill up the shortage:

(29)C3(t) = c1xs3(t) + mU + cfxf3(t); t = 1 ∼ T

(30)

xs1(t) + xs2(t) + xs3(t)

3
+

xf1(t) + xf2(t) + xf3(t)

3

=
d1(t) + d2(t) + d3(t)

3
; t = 1 ∼ T

(31)xs1(t) ≤
my1(t)v1(t)W(t)

p
; t = 1 ∼ T

(32)xs2(t) ≤
my2(t)v2(t)W(t)

p
; t = 1 ∼ T

(33)xs3(t) ≤
my3(t)v3(t)W(t)

p
; t = 1 ∼ T

(34)xs1(t) ≤ xs2(t) ≤ xs3(t); t = 1 ∼ T

(35)xf1(t) ≤ xf2(t) ≤ xf3(t); t = 1 ∼ T

(36)x̃s(t), x̃f(t), m ∈ Z+; t = 1 ∼ T

(37)C1(t), C2(t), C3(t) ∈ R+;t = 1 ∼ T

(38)xs(t) = a(t) − xf(t).

(39)xs(t) = min(a(t) − xf(t),
my(t)v(t)W(t)

p
).
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where a(t) − xf(t) is the quantity of products that 
needs to be made by utilizing self-owned capacity; 
my(t)v(t)W(t)∕p is the quantity that can be made. The 
quantity that needs to be made by resorting to cloud-
based capacity is 

	   The unused self-owned capacity can then be shared 
online.

In this way, the manufacturer becomes a cloud capacity 
supplier.

The prerequisites for these actions include the availability 
of cloud service providers and the manufacturer’s willing to 
share capacity and utilize cloud-based capacity.

Managerial insight: the implication for predictive 
maintenance

An important application of sensors in CMfg is predictive 
maintenance in which sensors are attached to a machine to 
collect the status information so as to predict a possible fail-
ure. Then, preventive maintenance can be arranged for the 
machine to avoid the possible failure. In other words, predic-
tive maintenance aims to reduce costly unexpected machine 
failures, at the expense of a possible increase in the number 
of scheduled preventive maintenances. As a result,

1.	 The total maintenance costs spent on all types of main-
tenances can be reduced.

2.	 The total maintenance time can be shortened, which 
improves the availability of the machine, i.e., ṽ(t) ↑.

Therefore, if predictive maintenance is to be imple-
mented, the forecasted availability within each period will 
be slightly elevated, which cannot be immediately achieved 
but rather follows a learning process as explained below. 
An equipment engineer learns to predict the possibility of 
a future failure from analyzing the collected signals. More 
signals are generated with more production. Therefore, the 
effect of predictive maintenance on improving availability 
can be modelled as a learning model

An example is given in Fig. 4, in which the asymptotic 
availability ( ̃v(t) ) is 90%, the learning constant ( b ) is 0.25, 
and the period after which predictive maintenance takes 

(40)xc(t) = a(t) − xs(t) − xf(t).

(41)�(t) = max(0,

⌊
my(t)v(t)W(t)

p

⌋
− xs(t)).

(42)ṽp(t) = ṽ(t)e
−

b

t−tp .

effect ( tp ) is 3. Obviously, due to the effect of predictive 
maintenance, availability increases with time.

Theorem 3  If the improvement of availability reaches a 
maximum of s% after the predictive maintenance project has 
been launched for Δtp periods, then

Proof  The maximal improvement of availability is s% ; 
therefore,

Therefore,

Theorem 3 is proved.

Therefore,

because the maximal availability is less than (1 + s%)ṽ(t).
After taking the effect of predictive maintenance into 

account, the following fuzzy capacity and production plan-
ning model is established for the CMfg system:

(Fuzzy capacity and production planning model III)

subject to

(43)b = − ln(1 + s%)Δtp

(44)
ṽp(t)

ṽ(t)
= e

−
b

tp+Δtp−tp ,

= 1 + s%.

(45)b = − ln(1 + s%)Δtp.

(46)ṽp(t) = ṽ(t)(⋅)min

(
e

ln(1+s%)Δtp

t−tp , 1 + s%

)
,

(47)Min Z̃1 =

T∑
t=t

C̃(t),

(48)C̃(t) = c1x̃s(t)(+)mU(+)cfx̃f(t); t = 1 ∼ T

0
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Fig. 4   The effect of predictive maintenance on availability
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which is a FMINLP problem. Compared with fuzzy capac-
ity and production planning model II, the only difference 
is the consideration of the effect of predictive maintenance 
on availability by Eq. (51). To convert it into a crisp prob-
lem to be solved, Lin and Chen’s method [21] was applied 
to approximate the exponential function with the following 
equation (see Fig. 5):

when 1 ≤ ex ≤ 1.10 (implying s% = 10%).
After applying Eq. (54) to Eq. (51), the following mixed 

integer-nonlinear programming (MINLP) problem is solved 
instead.

(MINLP model)

subject to

(49)x̃s(t)(+)x̃f(t) = d̃(t); t = 1 ∼ T

(50)x̃s(t) ≤
m(⋅)ỹ(t)(×)ṽp(t)(⋅)W(t)

p
; t = 1 ∼ T

(51)ṽp(t) = ṽ(t)(⋅)min(e
ln(1+s%)Δtp

t−tp , 1 + s%); t = 1 ∼ T

(52)x̃s(t), x̃f(t),m ∈ Z+; t = 1 ∼ T

(53)C̃(t) ∈ R+; t = 1 ∼ T

(54)ex ≅ 1.0494x + 0.9992,

(55)Min Z1 =

T∑
t=t

C1(t) + C2(t) + C3(t)

3
,

(56)C1(t) = c1xs1(t) + mU + cfxf1(t); t = 1 ∼ T

(57)C2(t) = c1xs2(t) + mU + cfxf2(t); t = 1 ∼ T

Equations 56–58 are the expansion results of fuzzy 
total costs. Equation (59) requests that the quantity made 
by utilizing self-owned and foundry capacity be equal to 
demand. Constraints (60) to (62) depicts the limit on the 
quantity of self-owned products. Equations (63)–(68) are 
about the effect of predictive maintenance on availability. 

(58)C3(t) = c1xs3(t) + mU + cfxf3(t); t = 1 ∼ T

(59)

xs1(t) + xs2(t) + xs3(t)

3
+

xf1(t) + xf2(t) + xf3(t)

3

=
d1(t) + d2(t) + d3(t)

3
; t = 1 ∼ T

(60)xs1(t) ≤
my1(t)vp1(t)W(t)

p
; t = 1 ∼ T

(61)xs2(t) ≤
my2(t)vp2(t)W(t)

p
; t = 1 ∼ T

(62)xs3(t) ≤
my3(t)vp3(t)W(t)

p
; t = 1 ∼ T

(63)

vp1(t) ≤ v1(t)

(
1.0494

(
ln(1 + s%)Δtp

t − tp

)
+ 0.9992

)
; t = 1 ∼ T

(64)

vp2(t) ≤ v2(t)

(
1.0494

(
ln(1 + s%)Δtp

t − tp

)
+ 0.9992

)
; t = 1 ∼ T

(65)

vp3(t) ≤ v3(t)

(
1.0494

(
ln(1 + s%)Δtp

t − tp

)
+ 0.9992

)
; t = 1 ∼ T

(66)vp1(t) ≤ (1 + s%)v1(t); t = 1 ∼ T

(67)vp2(t) ≤ (1 + s%)v2(t); t = 1 ∼ T

(68)vp3(t) ≤ (1 + s%)v3(t); t = 1 ∼ T

(69)xs1(t) ≤ xs2(t) ≤ xs3(t); t = 1 ∼ T

(70)xf1(t) ≤ xf2(t) ≤ xf3(t); t = 1 ∼ T

(71)x̃s(t), x̃f(t), m ∈ Z+; t = 1 ∼ T

(72)C1(t), C2(t), C3(t) ∈ R+; t = 1 ∼ T

y = 1.0494x + 0.9992
R² = 0.9998
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Fig. 5   The approximation of the exponential function
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Constraints (69)–(70) define the sequence of the three 
corners of the corresponding TFN.

Managerial implication: RFID‑based real‑time 
production information collection

When a job is moved from a machine to another, or from a 
factory to another, it is subject to delays. Possible reasons 
for the delays include inefficient transportation and the 
destination not informed of the arrival of the job imme-
diately. To resolve this problem, RFID-based real-time 
production information collection is a viable means. 
For the fuzzy capacity and production planning model, 
RFID-based real-time production information collec-
tion is especially useful when the value of xf(t) or xc(t) 
is large, meaning a lot of jobs have to be moved between 
the manufacturer and a foundry or a cloud-based capac-
ity supplier.

A case for illustrating the proposed 
methodology

Application of the proposed methodology

The case of a furniture manufacturer was used to illustrate 
the proposed methodology. The unit processing time (p) on 
a metal cutting machine was 0.73 h/product. In addition, 
the monthly usage cost of the machine (U) was 2200 USD; 
the unit variable cost of the product ( c1 ) was 25 USD per 
piece.

In the first step of the proposed methodology, the plan-
ning horizon (T) was 12 months.

Subsequently, in the second and third steps, data such 
as the demand for the product, the working hours within 
each period, the yield of the product, and the availability 
of the machine within each period have been collected or 
forecasted. The results are summarized in Table 3.

In the fourth step, the number of machines required by 
the factory was determined by applying fuzzy capacity and 
production planning model I,

m̃ =

(
max

t

⌈
0.73 ⋅ 970

77% ⋅ 82% ⋅ 744
, … ,

0.73 ⋅ 2085

86% ⋅ 96% ⋅ 744

⌉
,

max
t

⌈
0.73 ⋅ 994

75% ⋅ 75% ⋅ 744
, … ,

0.73 ⋅ 2192

81% ⋅ 90% ⋅ 744

⌉
,

max
t

⌈
0.73 ⋅ 1030

71% ⋅ 73% ⋅ 744
, … ,

0.73 ⋅ 2343

79% ⋅ 88% ⋅ 744

⌉)
,

= (4, 4, 5).

Therefore, if the manufacturer acquired four to five (or 
more) units of the machine, all products could be self-
made. Otherwise, some products had to be made by uti-
lizing foundry capacity. For example, if only three units 
of the machine were acquired, the forecasted quantity of 
self-made products within the first period was calculated 
as

Table 3   The various forecasts for the capacity and production plan-
ning problem

t d̃(t) (pieces) W(t) (h) ỹ(t) ṽ(t)

1 (970, 994, 1030) 744 (71%, 75%, 77%) (73%, 75%, 82%)
2 (1380, 1499, 

1635)
672 (71%, 76%, 78%) (76%, 80%, 86%)

3 (1175, 1266, 
1362)

744 (72%, 77%, 79%) (83%, 85%, 90%)

4 (1656, 1729, 
1818)

720 (72%, 78%, 81%) (83%, 90%, 92%)

5 (2016, 2117, 
2247)

744 (73%, 78%, 82%) (82%, 90%, 98%)

6 (2350, 2498, 
2650)

720 (74%, 79%, 82%) (89%, 90%, 91%)

7 (2182, 2313, 
2452)

744 (75%, 79%, 83%) (90%, 90%, 92%)

8 (1767, 1825, 
1900)

744 (75%, 79%, 83%) (87%, 90%, 93%)

9 (1697, 1755, 
1837)

720 (76%, 80%, 82%) (84%, 90%, 91%)

10 (1457, 1527, 
1627)

744 (77%, 80%, 86%) (83%, 90%, 95%)

11 (2366, 2495, 
2678)

720 (78%, 80%, 86%) (87%, 90%, 96%)

12 (2085, 2192, 
2343)

744 (79%, 81%, 86%) (88%, 90%, 96%)

Table 4   The forecasted quantities of products made in various ways

t x̃s(t) (pieces) x̃f(t) (pieces)

1 (970, 994, 994) (0, 0, 60)
2 (1380, 1499, 1499) (0, 0, 255)
3 (1175, 1266, 1266) (0, 0, 187)
4 (1656, 1729, 1729) (0, 0, 162)
5 (1839, 2117, 2117) (0, 0, 408)
6 (1957, 2103, 2216) (134, 395, 693)
7 (2060, 2173, 2313) (0, 140, 392)
8 (1767, 1825, 1825) (0, 0, 133)
9 (1697, 1755, 1755) (0, 0, 140)
10 (1457, 1527, 1527) (0, 0, 170)
11 (2020, 2130, 2453) (0, 365, 658)
12 (2085, 2192, 2192) (0, 0, 258)
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The results within the other periods are summarized in 
Table 4. Within the first period, some products had to be 
made by utilizing foundry capacity

The results within the other periods are also shown in 
Table 4.

Subsequently, in the fifth step, data such as the availabil-
ity of foundry capacity and the unit cost of making a product 
by utilizing foundry capacity have been collected. In this 
case, foundry capacity was more than enough; the unit cost 
( cf ) was 47 USD per piece.

In the sixth step, the MINLP problem of the case was 
built and solved using Lingo on a PC with i7-7700 CPU 
3.6 GHz and 8 GB RAM. There are two major types of 
methods for solving a MINLP problem: outer approxima-
tion (or generalized Bender’s decomposition) methods, 
and branch-and-bound algorithms [4]. In the experiment, 
a branch-and-bound algorithm was applied to solve the 
MINLP problem. The execution time was 3 s. To enhance 
the optimality of the solution, two attempts have been made: 
relaxing the integer constraints in the MINLP model, and 
applying a parallel branch-and-bound algorithm instead. The 
minimal forecasted total costs was 655,295 USD. To achieve 
that, the manufacturer needed to acquire three units of the 

x̃s(t) =

(
min

(
970,

⌊
3 ⋅ 71% ⋅ 73% ⋅ 744

0.73

⌋)
,

min

(
994,

⌊
3 ⋅ 75% ⋅ 75% ⋅ 744

0.73

⌋)
,

min

(
1030,

⌊
3 ⋅ 77% ⋅ 82% ⋅ 744

0.73

⌋))
,

= (970, 994, 994).

x̃f(t) = (max(970 − 994, 0),

max(994 − 994, 0), max(1030 − 970, 0)),

= (0, 0, 60).

machine, and resorted to foundries when there was a capac-
ity shortage. The fuzzy production plan is shown in Table 5. 
It was noted that there might be multiple optimal solutions 
to the MINLP problem. In addition, the ranges of x̃s and x̃f 
gave the manufacturer a lot of flexibility.

In the seventh step, the actual demand within each period 
was known, as shown in Table 6, based on which the produc-
tion plan was adjusted. When actual demand was less than 
the forecasted demand, the manufacturer utilized less self-
owned capacity as a response. Otherwise, the manufacturer 
utilized more self-owned capacity (if available) or resorted 
to cloud-based capacity. The required cloud-based capacity 
within each period is shown in Table 7. The adjusted produc-
tion plan is also presented in this table.

Application of existing methods

For comparison, some existing practices were also applied 
to this case. The first existing practice was the zero outsourc-
ing by considering uncertainty policy, in which all products 

Table 5   The production plan

t x̃s(t) (pieces) x̃f(t) (pieces)

1 (970, 994, 994) (0, 0, 60)
2 (1380, 1499, 1499) (0, 0, 255)
3 (1175, 1266, 1266) (0, 0, 187)
4 (1656, 1729, 1729) (0, 0, 162)
5 (1910, 2117, 2117) (0, 0, 337)
6 (2038, 2190, 2307) (43, 308, 612)
7 (2148, 2267, 2313) (0, 46, 304)
8 (1767, 1825, 1825) (0, 0, 133)
9 (1697, 1755, 1755) (0, 0, 140)
10 (1457, 1527, 1527) (0, 0, 170)
11 (2113, 2228, 2495) (0, 267, 565)
12 (2085, 2192, 2192) (0, 0, 258)

Table 6   Actual demand within 
each period

t a(t) (pieces)

1 1045
2 1536
3 1290
4 1663
5 2550
6 2451
7 2333
8 1752
9 1912
10 1550
11 2657
12 2208

Table 7   The adjusted production plan

t xs(t) (pieces) xf(t) (pieces) xc(t) (pieces)

1 1045 0 0
2 1536 0 0
3 1290 0 0
4 1663 0 0
5 2210 0 340
6 1838 613 0
7 2141 192 0
8 1752 0 0
9 1912 0 0
10 1550 0 0
11 2187 470 0
12 2208 0 0
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were self-made and the uncertainty in demand was consid-
ered. To guarantee 100% self-made, the factory needed to 
acquire at least five machines. As a result, total costs were up 
to 705,675 USD, which was 8% higher than that spent when 
the proposed methodology was applied. In addition, without 
cooperating with any foundry, it might be more difficult to 
access foundry capacity in the future.

The second practice was the zero-outsourcing without 
considering uncertainty policy that did not take the uncer-
tainty in demand into account. Only four machines were 
acquired. In this way, total costs were reduced to 676,525 
USD, which was still higher than that spent using the pro-
posed methodology. In addition, at period 5, the demand 
could not be fully met, and there was a possible shortage 
of 110 pieces. If the penalty for each lost sale was twice the 
price, i.e., 100 USD, then total costs amounted to 687,525 
USD, which was 5% higher than that spent using the pro-
posed methodology.

The third compared practice was the complete outsourc-
ing policy in which the factory did not build up any self-
owned capacity but resorted to foundry services all the time. 
Because foundry capacity was much more expensive than 
self-owned capacity, total costs became very high (up to 
1,078,509 USD). Nevertheless, the complete outsourcing 
policy was less vulnerable to possible drops in demand, 
since there was no capacity investment burden on the factory.

Discussion

According to the experimental results, the following points 
were noticed:

1.	 In Table 7, it seemed that the factory used very little 
foundry and cloud-based capacity. However, that was 
reasonable since foundry capacity and cloud-based 
capacity were much more expensive than self-owned 
capacity. Nevertheless, foundry and cloud-based capac-
ity still contributed to the effectiveness of production 
planning, because actual demand could not be fully 
met without foundry and cloud-based capacity, which 
incurred penalties and resulted in the loss of future sales.

2.	 The performances of various methods are compared in 
Table 8. The advantage of the proposed methodology 
over existing methods in reducing total costs and fulfill-
ing demand was obvious.

3.	 The optimization results of various fuzzy and crisp 
models are compared in Table 9. Obviously, by taking 
uncertainty into consideration, it was possible to further 
reduce total costs. In addition, the effect of predictive 
maintenance on availability also led to a better planning 
performance.

Conclusions

CMfg is an emerging manufacturing model that is expected to 
resolve the inefficient utilization of manufacturing resources. 
The short-term production planning or job scheduling of a 
CMfg system has been widely investigated. However, most 
of the past studies either focused on CMfg systems made of 
3D printers and CNC machines or ignored the coordination 
and transportation required for moving jobs across factories. 
In contrast, this study investigated the mid-term or long-term 
capacity and production planning of a traditional manufac-
turer with cloud-based capacity, which did not assume the 
utilization of 3D printers or CNC machines. In addition, the 
coordination and transportation issues ere reflected by the 
higher unit cost of cloud-based capacity and the prioritization 
of self-owned capacity (and/or foundry capacity). In addition, 
the implications of the capacity and production plan for two 
CMfg applications, predictive maintenance and RFID-based 
real-time information collection, were also discussed.

1.	 The manufacturer was both the consumer and supplier 
of cloud-based capacity.

2.	 The expected utilization within each period provided 
valuable information regarding the necessity of predic-
tive maintenance.

3.	 As the frequency of moving jobs across factories within 
each period increased, RFID-based real-time informa-
tion collection was more important. This is something 
ignored by many CMfg studies based on RFID applica-
tions.

Table 8   The performances of various methods

Method Total costs (USD) Unmet 
demand 
(pieces)

The zero outsourcing by consid-
ering uncertainty policy

705,675 0

The zero outsourcing without 
considering uncertainty policy

687,525 110

The complete outsourcing policy 1,078,509 0
The proposed methodology 655,295 0

Table 9   Comparison of the optimization results of various fuzzy and 
crisp models

Model Total costs (USD)

FMILP (587,073, 654,250, 791,602)
MILP 677, 642
FMINLP (591,121, 636,785, 755,353)
MINLP 655,295
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A case study was adopted to illustrate the proposed meth-
odology. According to the experimental results,

1.	 Compared to three existing practices, the proposed 
methodology was more effective in reducing total costs 
and fulfilling customers’ demand. The advantage of the 
proposed methodology over existing practices was up to 
8%.

2.	 In this case, only 1% of demand was met by utilizing 
cloud-based capacity, which highlighted the contingent 
nature of cloud-based capacity. Only when the self-
owned capacity of a manufacturer was insufficient to 
meet actual demand should the manufacturer resort to 
more expensive cloud-based capacity.

The fuzzy capacity and production planning model is 
designed for factories with parallel machines, and needs to 
be modified to be applicable for other types of manufactur-
ing systems. In addition, the proposed methodology has to 
be applied to more real cases in the future to further elabo-
rate its effectiveness. Further, the proposed methodology 
deals with a single-machine multiple-factory CMfg system, 
and should be extended to deal with a multiple-machine 
multiple-factory CMfg system in the future.
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