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Abstract
This article introduces the notion of vertex rough graph and discusses certain basic graph theoretic definitions and examples.
Adjacency of vertices is used to create a matrix corresponding to a vertex rough graph. Also, the membership function of a
vertex rough graph is introduced with the help of Pawlak’s Rough set theory, and using this certain results are obtained. The
concepts of rough precision and rough similarity degree are extended to vertex rough graphs.
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Introduction

Uncertainty and imprecision occurring in the form of vague-
ness and ambiguity make many of the naturally occurring
situations complex and complicated. Classical mathematical
techniques often fail to prosper in situations like this. Further,
most of these techniques are crisp, precise and deterministic.
The classical technique of probability theory has the limita-
tion that the happening of an event is strictly determined by
chance. Zadeh [1] has defined fuzzy sets which can mathe-
matically model situations which are imprecise and vague.
Pawlak [2] introduced the concept of rough sets which is an
excellent mathematical tool to handle ambiguity and equiv-
ocalness associated with the given information. The main
advantage of rough set theory is that it does not need any addi-
tional information about the data, like membership values in
fuzzy sets. In classical set theory, Crisp sets are defined by
a membership function, but in rough set theory, the primary
concept to define a rough set is an indiscernibility relation. It
employs indiscernibility relations to evaluate to what extent
two objects were similar. Using this indiscernibility relation,
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one can construct lower and upper approximations of a set.
Lower approximation consists of all instances which surely
belongs to the concept, and upper approximation consists of
all cases which possibly belongs to the concepts. One benefit
of the rough set theory is that it does not require any additional
parameter to extract information. Rough set theory has found
main applications [3] in many branches like rough classifica-
tion and logic [4,5], decision making [6,7], machine learning
[8], data mining [9,10], banking [11], medicine [12], etc.

A Graph is a symmetric binary relation on a set. It is a
fundamental tool in mathematical modelling and has appli-
cations in almost all branches of Science and Engineering.
Many of the real life problems were solved through mathe-
matical modelling with the help of graph theory. The theory
of rough graphs is an attempt to unify rough set theory and
graph theory. Graph theory, where objects are represented by
vertices and relations by edges, is a convenient way of repre-
senting information involving relationship between objects.
When there is ambiguity in the description of the objects or
in its relationships or in both, it is quite natural that we need
to design a structure supporting it, which is called a Rough
Graph.

With the advent of World Wide Web, the amount of data
need to be collected and stored has increased exponentially
and a major part of this data can be represented as graphs
which includes page link structures, social, professional and
academic networks such as Facebook, Linkedin, DBLP, etc.
Most of the times, the patterns of connection between entities
in these, which represents non trivial topological features,
which are neither purely crisp nor completely random, is
called a Complex Network [13]. A major challenge nowa-
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days is to mine these complex networks and the abundance
of data in these motivated a new area, called Graph mining,
which focus on investigate, propose and develop new algo-
rithms designed to mine complex networks. As ambiguity is
naturally inherited in these networks, a suitable modelling
can be achieved by utilizing the concept of Rough Graphs.

The notion of edge rough graph was introduced by He and
Shi [14]. They have established the concept using a partition
on the edge set of a graph. He et al. [15] extended this concept
toweighted rough graph by enduing the edges of rough graph
with weight attribute, and gave the algorithm of exploring the
class optimal tree inweighted roughgraph,whichgeneralizes
the classical Kruskal algorithm of exploring the optimal tree
andpresented an application in relationship analysis.Another
application of Weighted Rough graph was discussed in [16].
Combining the edge rough graphs and cayley graphs, Liang
et al. [17] studied an application of rough graph in data min-
ing. Tong He introduced further rough theoretic properties of
rough graphs [18] and representation forms of rough graphs
[19]. Some other hybrid structures of rough graphs like soft
rough graphs, neutrosophic soft rough graphs, intuitionistic
fuzzy rough graphs are also introduced in [20–22].

In edge rough graph, there is no significance for vertex
set. It is not possible to compare any two arbitrary rough
graphs. They can be compared only if their vertex sets are
same. If such a comparison is possible, then the real life
applications of rough graph will have more flexibility. The
main objective of this paper was to introduce the concept
of vertex rough graph which is a more general concept than
the edge rough graph. The vertex rough graph is constructed
using a partition on the vertex set. Using a partition of vertex
set, we define lower approximation and upper approximation
of a graph. Hence, this paper is an introduction to the theory
of vertex rough graph.

In this paper, the basic idea of edge rough graph is
extended to vertex rough graph. Section 2 discusses some
basic definitions of graph theory, rough set and edge rough
graph. In Sect. 3, the notion of vertex rough graph is intro-
duced and some examples are given. Basic graph theoretic
definitions of vertex rough graphs are defined and a counter
example for a connected graph which is not surely connected
is provided. Later, adjacency matrix of vertex rough graph is
defined and some of its properties are discussed. In the last
section, some rough theoretic ideas like membership func-
tions and precisions of a vertex rough graphs are defined and
related properties are derived.

Preliminaries

Some basic definitions from graph theory, Rough set theory
and edge rough graph are given:

Definition 2.1 [23] A graph G is an ordered triple
(V (G), E(G), ψG) consisting of a non-empty set V (G) of
vertices, a set E(G), disjoint from V (G), of edges, and an
incidence function ψG that associates with each edge of G
an unordered pair of (not necessarily distinct) vertices of G.
If e is an edge and u and v are vertices such thatψG(e) = uv,
then e is said to join u and v; the vertices u and v are called
the ends of e. Two graphs G and H are identical (written
G = H ) if V (G) = V (H), E(G) = E(H), and ψG = ψH .
Two graphs G and H are said to be isomorphic ( written
G ∼= H ) if there are bijections θ : V (G) → V (H) and
φ : E(G) → E(H) such that ψG(e) = uv if and only if
ψH (φ(e)) = θ(u)θ(v); such a pair (θ, φ) of mappings is
called an isomorphism between G and H .

Definition 2.2 [2] Suppose we are given a set of objects U
called the universe and an indiscernibility relation R ⊆ U ×
U , representing our lack of knowledge about elements ofU .
For the sake of simplicity we assume that R is an equivalence
relation. Let X be a subset ofU . We want to characterize the
set X with respect to R:

• R-lower approximation of X

R(x)∗ = ∪x∈X {R(x) : R(x) ⊆ X}

• R-upper approximation of X

R(x)∗ = ∪x∈X {R(x) : R(x) ∩ X 	= φ}

• R-boundary region of X

RNR(x) = R(x)∗ − R(x)∗

Thepair (R(x)∗, R(x)∗) is calledRoughSet. X is crisp (exact
with respect to R), if the boundary region of X is empty. Set
X is rough (inexact with respect to R), if the boundary region
of X is non-empty.

Definition 2.3 [14] Given universe of discourse U , V =
{v1, v2, . . . , v|V |}, P = {r1, r2, . . . , r|P|} is attributes set on
U , and P contains vertex attribute (vi , v j ), where,vi ∈ V ,
v j ∈ V . Let E = ∪ek(vi , v j ) is edge set on U , graph
U = (V , E) is called universe graph. For any attribute set
R ⊆ P on E , the elements (or be called edges) in E can
be classified into different equivalence classes [e]R . For any
subgraph T = (W , X), where W ⊆ V , X ⊆ E , graph T is
called R-definable graph or R-exact graph if X is the union
of some [e]R . Conversely, graph T is called R-undefinable
graphor R-roughgraph. For R-roughgraph, two exact graphs
R(T )∗ = (W , R(X)∗) and R(T )∗ = (W , R(X)∗) can be
used to define it approximately, where
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R(X)∗ = {e ∈ E : [e]R ⊆ X}
R(X)∗ = {e ∈ E : [e]R ∩ X 	= φ}

The graphs R(T )∗ and R(T )∗ are called R-lower and R-
upper approximate graphs of T . The pair of graph (R(T )∗,
R(T )∗) is called R-rough graph. The set bnR(X) = R(X)∗−
R(X)∗ is called the R-boundary of edges set X of T .

Vertex rough graph

In this section, Vertex rough graph of a graph with respect to
a indiscernability relation on vertex set V is presented.

Definition 3.1 Let G = (V , E) be a universe graph with
V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}. Let R be an
equivalence relation defined on V . Then the elements in V
can be divided into different equivalence classes [v]R .
Definition 3.2 Let T (W , X) be a subgraph of G(V , E)

where W ⊆ V ,X ⊆ E , graph T is called R-definable graph
or R-exact graph ifW is the union of some [v]R . Otherwise,
the graph T is called R-undefinable graph or R-rough graph.

Definition 3.3 R-vertex rough graph is defined in terms of
two exact graphs R∗(T ) = (R∗(W ), R∗(X)) and R∗(T ) =
(R∗(W ), R∗(X)), where

R∗(W ) = {v ∈ V : [v]R ⊆ W }
R∗(W ) = {v ∈ V : [v]R ∩ W 	= φ}
R∗(X) = {(vi ,v j ) ∈ X :vi ,v j ∈ [v]R for some v∈sR∗(W )}

R∗(X) =
{

(vi ,v j ) ∈ E :vi ∈ [vi ]R & [vi ]R ∩ X 	=φ and

v j ∈ [v j ]R & [v j ]R ∩ X 	= φ} .

Thegraphs R∗(T ) and R∗(T ) are calledR-lower approximate
graph of T and R-upper approximate graph of T . The pair
of graph (R∗(T ), R∗(T ))is called R-vertex rough graph.

Example 3.1 Consider G(V , E) V = {v1, v2, v3, v4, v5}
V /R = {{v3, v4, v5}, {v1, v2}}
Consider T = (W , X) be a subgraph of G(V , E) (Fig. 1)
Byusingdefinition3.3,weget the lower andupper approx-

imations of vertex set and edge set as (Fig. 2):

R∗(W ) = {v3, v4, v5} R∗(W ) = {v1, v2, v3, v4, v5}
R∗(X) = {e3, e4} R∗(X) = {e1, e2, e3, e4, e5, e6}
R∗(T ) = (R∗(W ), R∗(X)), R∗(T ) = (R∗(W ), R∗(X))

Proposition 3.1 Lower and upper approximations of a graph
have the following properties:

For all T , T1, T2 ⊆ G,

G(V,E) T(W,X)

v1 v2 v3

v4v5 v5

v2 v3

v4

e1 e2

e3

e4

e5
e6

e5

e2

e3

e4

Fig. 1 Graph G(V , E) and its sub-graph T (W , X) in Example 3.1

1. R∗(T ) ⊆ T ⊆ R∗(T ).

2. R∗(Kc) = R∗(Kc) = Kc, R∗(G) = R∗(G) = G
where K is the Complete graph.

3. R∗(T1 ∩ T2) = R∗(T1) ∩ R∗(T2).
4. R∗(T1 ∪ T2) = R∗(T1) ∪ R∗(T2).
5. R∗(T1 ∪ T2) ⊇ R∗(T1) ∪ R∗(T2).
6. R∗(T1 ∩ T2) ⊆ R∗(T1) ∩ R∗(T2).
7. T1 ⊆ T2 ⇒ R∗(T1) ⊆ R∗(T2) & R∗(T1) ⊆ R∗(T2).
8. R∗R∗(T ) = R∗R∗(T ) = R∗(X),

R∗R∗(T ) = R∗R∗(T ) = R∗(T ).

Definition 3.4 Let T (W1, X) and S(W2,Y ) are subgraphs
of G(V , E) where W1 ⊆ V , W2 ⊆ V , X ⊆ E , Y ⊆ E ,
T = (R∗(T ), R∗(T )) and S = (R∗(S), R∗(S)) be its rough
graphs. S is said to be surely subgraph of T if R∗(S) ⊆
R∗(T ). Also S is said to be possibly subgraph of T if R∗(S) ⊆
R∗(T ) if S is both surely subgraph and possibly subgraph of
T , then S is a rough subgraph of T .

Definition 3.5 A set of two or more edges of a rough graph
T is said to be multiple or parallel edges if they have
the same end vertices. An edge for which two ends are
the same is called a loop at the common vertex. A rough
graph T = (R∗(T ), R∗(T )) is said to be surely simple
if R∗(T ) contains no loops and parallel edges. A rough
graph T = (R∗(T ), R∗(T )) is said to be possibly simple if
R∗(T ) contains no loops and parallel edges. A rough graph
T = (R∗(T ), R∗(T )) is said to be simple if it is both surely
and possibly simple graphs.

Definition 3.6 Two rough graphs T = (R∗(T ), R∗(T )) and
S = (R∗(S), R∗(S)) are said to be surely isomorphic if there
is a graph isomorphism between R∗(T ) and R∗(S). Also
it is said to be possibly isomorphic if there is a graph iso-
morphism between R∗(T ) and R∗(S). Two rough graphs
T = (R∗(T ), R∗(T )) and S = (R∗(S), R∗(S)) are said to be
isomorphic if they are both surely and possibly isomorphic.

Definition 3.7 Let T = (R∗(T ), R∗(T )) be a Rough graph.
The Complement T c of T with respect to G is defined by
taking V (T c) = V (T ) and T c = (R∗(T )c, R∗(T )c) where
adjacency of R∗(T )c is defined as two vertices of u and v are
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Fig. 2 Lower and upper
approximations of the graph T
in Example 3.1

R∗(T )

R*(T)

v5 v4

v3 v1 v2 v3

v4v5

e4

e3

e1 e2

e3

e4

e5
e6

Fig. 3 Graph G and its
sub-graph T in Example 3.2

G

T

v1 v2

v3 v4

v6 v7

v5

e1

e2

e3 e4

e5 e6

v3 v4 v5

v6 v7

e3 e4

e5 e6

adjacent if and only if they are non adjacent in R∗(T ). Also
adjacency of R∗(T )c is defined as two vertices u and v are
adjacent if and only if they are non adjacent in R∗(T ).

Remark 3.1 The connectedness of vertex rough graph is the
same as the connectedness of edge rough graph.

Result 3.1 If T (W , X) is connected then it need not be surely
connected. Similarly T is a tree then it need not be a sure
tree.

Example 3.2 Consider G(V , E)

V = {v1, v2, v3, v4, v5, v6, v7},
V /R = {{v7}{v4, v5}, {v1, v2}, {v3, v6}}

Consider T = (W , X) be a subgraph (Fig. 3) of G(V , E)

Then, we get the lower approximation of vertex set and
edge set as (Fig. 4)

R∗(W ) = {v3, v4, v5, v6}R(X)∗ = {e4, e5}
R∗(T ) = (R∗(W ), R∗(X))

Here R∗(T ) is disconnected. but T = (W , X) is con-
nected. Also T is a tree but R∗(T ) is not a tree. It is a forrest.

Matrix corresponding to a rough graph

LetG=(V , E) be a universe graphwith V={v1, v2, . . . , vn}.
R be an equivalent relation defined on V. Let T (W , X) be a

R∗(T )

v3 v4 v5

v6

e4

e5

Fig. 4 Lower approximation of T in Example 3.2

subgraph of G. T = (R∗(T ), R∗(T )) be the corresponding
rough graph. Then we can define a nonzero ternary matrix
AR(T ) of T by

AR(T ) = (ai j ) =

⎧⎪⎨
⎪⎩
0 i f (vi , v j ) /∈ R∗(X)

1 i f (vi , v j ) ∈ R∗(X) & (vi , v j ) /∈ R∗(X)

2 i f (vi , v j ) ∈ R∗(X)

Example 3.3 Matrix corresponding to the rough graph in
Example 3.1 is

⎡
⎢⎢⎢⎢⎣
0 1 0 0 0
1 0 1 0 0
0 1 0 2 0
0 0 2 0 2
0 0 0 2 0

⎤
⎥⎥⎥⎥⎦
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Note: There is no one to one correspondence between set
of all rough graph and set of all ternary matrices. But for
every rough graph, there is a ternary matrix.

Remark 3.2 Let T be a rough graph and AR(T ) be its corre-
sponding matrix. Then

1. T is exact if all entries of AR(T ) are 0 & 2.
2. T is Rough if atleast one entry of AR(T ) is 1.

Rough properties of rough graph

In the same way of rough set theory, rough graph can be also
defined employing instead of approximation, roughmember-
ship function.

Definition 4.1 The rough vertex membership function of a
rough graph T = (R∗(T ), R∗(T )) is a fuction μR

W : V →
[0, 1] is defined as μR

W (v) = |W ∩ [v]R |
|[v]R | .

Also, the rough edge membership function of a rough
graph T = (R∗(T ), R∗(T )) is a fuction δRW : V×V → [0, 1]
is defined as δRW (vi , v j ) = min{μR

W (vi ), μ
R
W (v j )}.

Definition 4.2 The vertex and edgemembership function can
be used to define the rough graph of a graph as shown

R∗(W ) = {v ∈ V : μR
W (v) = 1}

R∗(W ) = {v ∈ V : μR
W (v) > 0}

R∗(X) = {(vi , v j ) ∈ X : δRW (vi , v j ) = 1}
R∗(X) = {(vi , v j ) ∈ E : δRW (vi , v j ) > 0}

Proposition 4.1 The membership function has the following
properties:

1. μR
W (v) = 1 iff v ∈ R∗(W ) and δRW (vi , v j ) = 1

iff(vi , v j ) ∈ R∗(X)

2. μR
W (v) = 0 iff v ∈ V − R∗(W ) and δRW (vi , v j ) = 0 iff

(vi , v j ) ∈ E − R∗(X)

3. μR
V−W (v) = 1 − μR

W (v) and δRV−W (vi , v j ) ≤ 1 −
δRX (vi , v j )

4. μR
W1∪W2

(v) = μR
W1

(v) + μR
W2

(v) − μR
W1∩W2

(v))

Proof 1.

μR
W (v) = 1 ⇔ |W ∩ [v]R |

|[v]R | = 1

⇔ |W ∩ [v]R | = |[v]R |
⇔ [v]R | ⊆ W

⇔ v ∈ R∗(W )

δRW (vi , v j ) = 1 ⇔ min{μR
W (vi ), μ

R
W (v j )} = 1

⇔ μR
W (vi ) = 1 & μR

W (v j ) = 1

⇔ vi ∈ R∗(W ) & v j ∈ R∗(W )

⇔ (vi , v j ) ∈ R∗(X)

2.

μR
W (v) = 0 ⇔ |W ∩ [v]R |

|[v]R | = 0

⇔ |W ∩ [v]R | = 0

⇔ W ∩ [v]R = φ

⇔ [v]R | ⊆ V − W

⇔ v ∈ V − R∗(W )

δRW (vi , v j ) = 0 ⇔ min{μR
W (vi ), μ

R
W (v j )} = 0

⇔ μR
W (vi ) = 0 or μR

W (v j ) = 0

⇔ vi ∈ V − R∗(W ) or v j ∈ V − R∗(W )

⇔ (vi , v j ) ∈ E − R∗(X)

3.

μR
V−W (v) = |(V − W ) ∩ [v]R |

|[v]R |
= 1 − |W ∩ [v]R |

|[v]R |
= 1 − μR

W (v)

δRV−W (vi , v j ) = min{μR
V−W (vi ), μ

R
V−W (v j )}

= min{1 − μR
W (vi ), 1 − μR

W (v j )}
≤ 1 − min{μR

W (vi ), μ
R
W (v j )}

≤ 1 − δRW (v)

4.

μR
W1∪W2

(v) = |(W1 ∪ W2) ∩ [v]R |
[v]R

= |W1 ∩ [v]R | + |W2 ∩ [v]R |
− |(W1 ∩ W2) ∩ [v]R |

= μR
W1

(v) + μR
W2

(v) − μR
W1∩W2

(v)

Next we extend the definition of Edge precision αR(T ) [18]
of a edge rough graph to vertex rough graph:
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Definition 4.3 A vertex rough graph T = (R∗(T ), R∗(T ))

where R∗(T ) = (R∗(W ), R∗(X)) and R∗(T ) =
(R∗(W ), R∗(X)). αR(T ) is the R-vertex precision of T and
βR(T ) is the R-edge precision of T defined by αR(T ) =
|R∗(W )|
|R∗(W )| and βR(T ) = |R∗(X)|

|R∗(X)| where W 	= φ, X 	= φ.

Result 4.1 Let M be the set of all vertex rough graphs. For
any vertex attribute setW and edge attribute set X and t ⊆ M
then, 0 ≤ αR(T ) ≤ 1 & 0 ≤ βR(T ) ≤ 1. If T is exact iff
αR(T ) = 1 & βR(T ) = 1.

Proof Since R∗(W ) ⊆ R∗(W ) and R∗(X) ⊆ R∗(X).
Therefore, 0 ≤ αR(T ) ≤ 1 & 0 ≤ βR(T ) ≤ 1.

If T is exact ⇔ R∗(W ) = R∗(W ) & R∗(X) = R∗(X)

⇔ αR(T ) = 1 & βR(T ) = 1

Result 4.2 If T and S are two vertex rough graphs, where
T = (W1, X1) and S = (W2, X2). S is a vertex rough sub-
graph of T , then αR(S) ≤ αR(T ) and βR(S) ≤ βR(T ).

To compare two rough graphs, rough similarity degree [18]
is an important measure. We can extend it to vertex rough
graph.

Definition 4.4 Given vertex rough graph set M , attribute set
R. K = (M, R) is a knowledge system. Let H , J ⊆ M
where H = (W1, X), J = (W2,Y ) and

R∗(H) = (R∗(W1), R∗(X)), R∗(H) = (R∗(W1), R
∗(X))

R∗(J ) = (R∗(W2), R∗(Y )), R∗(J ) = (R∗(W2), R
∗(Y )).

1. Roughvertex similarity degree (〈H , J 〉R) and rough edge
similarity degree([H , J ]R) between H and J are defined
by

〈H , J 〉R = min

{ |R∗(W1) ∩ R∗(W2)|
|R∗(W1) ∪ R∗(W2)| ,

|R∗(W1) ∩ R∗(W2)|
|R∗(W1) ∪ R∗(W2)|

}

[H , J ]R = min

{ |R∗(X) ∩ R∗(Y )|
|R∗(X) ∪ R∗(Y )| ,

|R∗(X) ∩ R∗(Y )|
|R∗(X) ∪ R∗(Y )|

}
.

2. Lower rough vertex similarity degree(〈H , J 〉R∗ ) and
lower rough edge similarity degree([H , J ]R∗ ) between H

and J are defined by 〈H , J 〉R∗ = |R∗(W1) ∩ R∗(W2)|
|R∗(W1) ∪ R∗(W2)|

and [H , J ]R∗ = |R∗(X) ∩ R∗(Y )|
|R∗(X) ∪ R∗(Y )|

3. Upper rough vertex similarity degree (< H , J >R∗ ) and
upper rough edge similarity degree ([H , J ]R∗) between
H and J are defined by

〈H , J 〉R∗ = |R∗(W1) ∩ R∗(W2)|
|R∗(W1) ∪ R∗(W2)| and [H , J ]R∗ =

|R∗(X) ∩ R∗(Y )|
|R∗(X) ∪ R∗(Y )|

Proposition 4.2 Given vertex rough graph set M, R to be
the attribute set.K = (M, R) to be the knowledge system.
H , J ⊆ M. Then

1. H and J are R-rough equal iff 〈H , J 〉R = [H , J ]R = 1
2. H and J are R-lower rough equal iff 〈H , J 〉R∗ =

[H , J ]R∗ = 1
3. H and J are R-upper rough equal iff 〈H , J 〉R∗ =

[H , J ]R∗ = 1

Proof 1.

〈H , J 〉R = [H , J ]R = 1

⇔ min

{ |R∗(W1) ∩ R∗(W2)|
|R∗(W1) ∪ R∗(W2)| ,

|R∗(W1) ∩ R∗(W2)|
|R∗(W1) ∪ R∗(W2)|

}
= 1,

min

{ |R∗(X) ∩ R∗(Y )|
|R∗(X) ∪ R∗(Y )| ,

|R∗(X) ∩ R∗(Y )|
|R∗(X) ∪ R∗(Y )|

}
= 1

⇔ |R∗(W1) ∩ R∗(W2)|
|R∗(W1) ∪ R∗(W2)| = 1 &

|R∗(W1) ∩ R∗(W2)|
|R∗(W1) ∪ R∗(W2)| = 1,

|R∗(X) ∩ R∗(Y )|
|R∗(X) ∪ R∗(Y )| = 1 &

|R∗(X) ∩ R∗(Y )|
|R∗(X) ∪ R∗(Y )| = 1

⇔ |R∗(W1) ∩ R∗(W2)| = |R∗(W1) ∪ R∗(W2)| &

|R∗(W1) ∩ R∗(W2)| = |R∗(W1) ∪ R∗(W2)|,
|R∗(X) ∩ R∗(Y )| = |R∗(X) ∪ R∗(Y )| &

|R∗(X) ∩ R∗(Y )| = |R∗(X) ∪ R∗(Y )|
⇔ R∗(W1) = R∗(W2) & R∗(W1) = R∗(W2),

R∗(X) = R∗(Y ) & R∗(X) ∩ R∗(Y )

⇔ H & J are R − rough equal.
2.

〈H , J 〉R∗ = [H , J ]R∗ = 1

⇔ |R∗(W1) ∩ R∗(W2)|
|R∗(W1) ∪ R∗(W2)| = 1 &

|R∗(X) ∩ R∗(Y )|
|R∗(X) ∪ R(Y )∗| = 1

⇔ |R∗(W1) ∩ R∗(W2)| = |R∗(W1) ∪ R∗(W2)| &

|R∗(X) ∩ R∗(Y )| = |R∗(X) ∪ R∗(Y )|
⇔ R∗(W1) = R∗(W2) & R∗(X) = R∗(Y )

⇔ H and J are R-lower rough equal

3.

〈H , J 〉R∗ = [H , J ]R∗ = 1

⇔ |R∗(W1) ∩ R∗(W2)|
|R∗(W1) ∪ R∗(W2)| = 1 &

|R∗(X) ∩ R∗(Y )|
|R∗(X) ∪ R∗(Y )| = 1

⇔ |R∗(W1) ∩ R∗(W2)| = |R∗(W1) ∪ R∗(W2)| &

|R∗(X) ∩ R∗(Y )| = |R∗(X) ∪ R∗(Y )|
⇔ R∗(W1) = R∗(W2) & R∗(X) = R∗(Y )

⇔ H and J are R-upper rough equal
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Conclusion

Both the Rough set theory and the graph theory have a variety
of applications across different fields. This paper introduced
the concept of vertex rough graph which combines rough
set theory and the graph theory. Similar to rough set theory,
the notion of vertex and edge rough membership function
is introduced and using this membership functions, an alter-
native definition of vertex rough graph has been developed.
Later, vertex precision and edge precision are defined and
some properties are discussed. Since edge rough graph has
lot of applications in various fields, like relationship analy-
sis, data mining, etc., the vertex rough graphs also will have
applications in these fields as well as many other fields. In
future we will find out further rough properties and applica-
tions of vertex rough graphs.
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