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Abstract
Graph theory plays crucial role in structuring many real-world problems including, medical sciences, control theory, expert
systems and network security. Product in graphs, an operation that consider two graphs and produce a new graph by simple
or complex changes, has wide range of applications in games theory, automata theory, structural mechanics and networking
system. An intuitionistic fuzzy model is used to handle the vagueness and uncertainty in network problems. A Pythagorean
fuzzy model is a powerful tool for describing vagueness and uncertainty more accurately as compared to intuitionistic
fuzzy model. The objective of this paper is to apply the concept of Pythagorean fuzzy sets to graphs and then combine
two Pythagorean fuzzy graphs (PFGs) using two new graph products namely, maximal product and the residue product.
This research paper investigates the regularity for these products. Moreover, it discusses some eminent properties such as
strongness, connectedness and completeness. Further, it proposes some necessary and sufficient conditions for G1 ∗ G2 and
G1 · G2 to be regular. Finally, decision-making problems concerning evaluation of best company for investment and alliance
partner selection of a software company are solved to better understand PFGs.
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Introduction

Fuzzy set theory [1] is the most efficient tool having the
capability to deal with imprecise and incomplete information
in different disciplines, including engineering, mathematics,
statistics, artificial intelligence, medical and social sciences.
To cope with imprecise and incomplete information, con-
sisting of doubts in human judgement, the fuzzy set shows
some restrictions. So, for characterizing the hesitancy more
explicitly, fuzzy sets were extended to intuitionistic fuzzy
sets (IFSs) by Atanassov [2], which assign a membership
grade (μ) and a non-membership grade (ν) to the objects,
satisfying the condition μ + ν ≤ 1 and the hesitancy part
π = 1 − μ − ν. The IFSs have gained extensive attentions
and have been broadly applied in different areas of real life.
The limitation μ + ν ≤ 1 confines the choice of the mem-
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bership and non-membership grades in IFS. To evade this
situation, Yager [3–5] initiated the idea of Pythagorean fuzzy
set (PFS), depicted by a membership grade (μ) and a non-
membership grade (ν) with the conditionμ2+ν2 ≤ 1.Zhang
andXu [6] introduced the concept of Pythagorean fuzzynum-
ber (PFN) for interpreting the dual aspects of an element. In
a decision-making environment, a specialist gives the prefer-
ence information about an alternative with the membership
grade 0.9 and the non-membership grade 0.3; it is noted
that the IFN fails to address this situation, as 0.9 + 0.3 >

1, but (0.9)2 + (0.3)2 ≤ 1. Thus, the PFS has much
stronger ability than IFS to model fuzziness in the practical
MCDM problems. Under Pythagorean fuzzy environment,
many researchers have initiated work in different directions
and acquired various eminent results [7]. Some operations
on PFSs [8] and Pythagorean fuzzy TODIM approach to
multi-criteria decision-making [9] have been discussed. Fur-
thermore, the PFS has been investigated from different
perspectives, including aggregation operators [10,11]. Garg
[12–18] explored applications of Pythagorean fuzzy sets in
decision-making. Lately, the concept of Pythagorean fuzzy
set has been extended to interval-valued Pythagorean fuzzy
set and hesitant Pythagorean fuzzy set. Garg [19,20] elab-
orated exponential operational laws and their aggregation
operators under interval-valued Pythagorean fuzzy informa-
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tion. Yu et al. [21] discussed hesitant Pythagorean fuzzy
Maclaurin symmetric mean operators and its applications to
multi-attribute decision-making.

Graphs are the pictorial representation that bond the
objects and highlight their information. Graph theory is
rapidly moving into the core of mathematics due to its
applications in various fields, including physics, biochem-
istry, biology, electrical engineering, astronomy, operations
research and computer science. To emphasize on a real-world
problem, the bondedness between the objects occur due to
some relations. But when there exists uncertainty and hazi-
ness in the bonding, then the corresponding graph model can
be taken as fuzzy graph model. For example, a social net-
workmay be represented as a graph, where vertices represent
members and edges represent relation between members. If
the relations among the members are to be measured as good
or bad, then fuzziness should be added to the representa-
tion. This andmany other problemsmotivated to define fuzzy
graph. The concept of fuzzy graphs was presented by Kauf-
mann [22], based on Zadeh’s fuzzy relation in 1971. Later,
Rosenfeld [23] discussed several basic graph theoretical con-
cepts, including paths, cycles, bridges and connectedness
in fuzzy environment. Nagoor Gani and Radha [24] initi-
ated the concept of regular fuzzy graph in 2008. Mordeson
and Peng [25] introduced some operations on fuzzy graphs
and studied their properties. Further, Nirmala and Vijaya
[26] explored new operations on fuzzy graphs. Parvathi and
Karunambigai [27] considered intuitionistic fuzzy graphs
(IFGs). Later, Akram and Davvaz [28] discussed IFGs. An
algorithm for computing sum distancematrix, eccentricity of
vertices, diameter and radius in IFGswas presented by sarwar
and Akram [29]. Akram and Dudek [30] described intuition-
istic fuzzy hypergraphs with applications. Recently, Naz et
al. [31] originally proposed the concept of PFGs, a gener-
alization of the notion of Akram and Davvaz’s IFGs [28],
along with its applications in decision-making. Akram and
Naz [32] studied energy of PFGs with applications. Akram
et al. [33] introduced the concept of Pythagorean fuzzy Pla-
nar graphs. Dhavudh and Srinivasan [35] dealt with IFGs2T.
Ghorai and Pal [37,38] studied some properties of m-polar
fuzzy graphs. Recently, Akram et al. [34] introduced some
new operations including rejection, symmetric difference,
maximal product and residue product of PFGs. This paper
describes two new operations namely, maximal product and
residue product of PFGs that can allow the mathematical
design of network. These products can be applied to con-
struct and analyze several real-world networks such as road
networks and communication networks. The work explores
some significant properties such as regularity, strongness,
completeness and connectedness. As regularity plays a sub-
stantial role in designing reliable communication networks,
so the main focus is to familiarize the regularity of these
product with illustrative examples. The work also proposes

some necessary and sufficient conditions for these two prod-
ucts to be regular. Finally, it discusses some applications of
PFGs in decision-making.

For better understanding, we present prerequisite termi-
nologies and notations:

Definition 1.1 [1] A fuzzy set (FS) on a universe X is an
object of the form

A = {〈u, μA (u)〉|u ∈ X },

where μA : X −→ [0, 1] represents the membership func-
tions of A .

Definition 1.2 [22] A fuzzy graph (FG) on a non-empty set
X is a pair G = (A ,B) withA a FS onX andB a fuzzy
relation on X such that

μB(uv) ≤ μA (u) ∧ μA (v)

for all u, v ∈ X , where A : X −→ [0, 1] and B :
X × X −→ [0, 1].
Definition 1.3 [2] An intuitionistic fuzzy set (IFS) on a uni-
verse X is an object of the form

A = {〈u, μA (u), νA (u)〉|u ∈ X },

where μA : X −→ [0, 1] and νA : X −→ [0, 1] repre-
sents the membership and non-membership functions ofA ,

and μA , νA satisfies the condition 0 ≤ μA (u)+νA (u) ≤ 1
for all u ∈ X .

Definition 1.4 [27] An intuitionistic fuzzy graph (IFG) on a
non-empty set X is a pair G = (A ,B) with A an IFS on
X and B an IFR onX such that

μB(uv) ≤ μA (u) ∧ μA (v), νB(uv) ≥ νA (u) ∨ νA (v)

and 0 ≤ μB(uv) + νB(uv) ≤ 1 for all u, v ∈ X , where,
μB : X × X −→ [0, 1] and νB : X × X −→ [0, 1]
represents the membership and non-membership functions
of B, respectively.

Definition 1.5 [3] A Pythagorean fuzzy set (PFS) on a uni-
verse X is an object of the form

A = {〈u, μA (u), νA (u)〉|u ∈ X },

where μA : X −→ [0, 1] and νA : X −→ [0, 1] repre-
sents the membership and non-membership functions ofA ,

and μA , νA satisfies the condition 0 ≤ μ2
A (u)+ν2A (u) ≤ 1

for all u ∈ X .
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Fig. 1 Pythagorean fuzzy graph
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Definition 1.6 Let A1 = {〈u, μA1(u), νA1(u)〉|u ∈ X }
and A2 = {〈u, μA2(u), νA2(u)〉|u ∈ X } be two
Pythagorean fuzzy sets, then some set operations can be
defined as

1. A1 ⊆ A2 if and only if μA1(u) ≤ μA2(u) and νA1(u) ≥
νA2(u),

2. A1 = A2 if and only if A1(u) ⊆ A2(u) and A2(u) ⊆
A1(u),

3. A1
c = {〈u, νA1(u), μA1(u)〉|u ∈ X },

4. A1 ∩ A2 = {〈u,min{μA1(u), μA2(u)},max{νA1(u),

νA2(u)}〉| u ∈ X },
5. A1 ∪ A2 = {〈u,max{μA1(u), μA2(u)},min{νA1(u),

νA2(u)}〉| u ∈ X }.

Definition 1.7 [31]APythagorean fuzzy setB onX ×X is
said to be aPythagorean fuzzy relation (PFR) onX , denoted
by

B = {〈uv, μB(uv), νB(uv)〉|uv ∈ X × X },

where μB : X × X −→ [0, 1] and νB : X × X −→
[0, 1] represents the membership and non-membership func-
tions of B, and μB , νB satisfies the condition 0 ≤
μ2
B(uv) + ν2B(uv) ≤ 1 for all uv ∈ X × X .

Definition 1.8 [31] A Pythagorean fuzzy graph (PFG) on a
non-empty set X is a pair G = (A ,B) with A a PFS on
X and B a PFR on X such that

μB(uv) ≤ μA (u) ∧ μA (v), νB(uv) ≥ νA (u) ∨ νA (v)

and 0 ≤ μ2
B(uv)+ ν2B(uv) ≤ 1 for all u, v ∈ X , where,

μB : X × X −→ [0, 1] and νB : X × X −→ [0, 1]
represents the membership and non-membership functions
of B, respectively.

Example 1.1 Consider a graph G = (V , E) where V =
{a, b, c, d, e, f } and E = {ad, bc, cd, a f , e f }. Let A and
B be Pythagorean fuzzy vertex set and Pythagorean fuzzy
edge set defined on V and V × V , respectively.

A =
〈(

a

0.9
,

b

0.25
,

c

0.6
,
d

0.5
,

e

0.65
,

f

0.4

)
,

×
(

a

0.4
,
b

0.8
,

c

0.5
, ,

d

0.7
,

e

0.6

f

0.7

)〉
and

B =
〈(

ad

0.4
,

bc

0.25
,
cd

0.4
,
a f

0.4
,
f e

0.3

)
,

×
(
ad

0.7
,
bc

0.9
,
cd

0.8
,
a f

0.8
,
f e

0.9

)〉
.

By routine calculation, one can see from Fig. 1 that it is a
Pythagorean fuzzy graph.

Definition 1.9 A Pythagorean fuzzy preference relation
(PFPR) on the set of alternatives X = {x1, x2, . . . , xn}
is represented by a matrix R = (ri j )n×n , where ri j =
(xi x j , μ(xi x j ), ν(xi x j )) for all i, j = 1, 2, . . . , n. For con-
venience, let ri j = (μi j , νi j ) where μi j indicates the degree
towhich the object xi is preferred to the object x j , νi j denotes
the degree to which the object xi is not preferred to the object

x j , and πi j =
√
1 − μ2

i j − ν2i j is interpreted as a hesitancy

degree, with the conditions:

μi j , νi j ∈ [0, 1], μ2
i j + ν2i j ≤ 1, μi j = ν j i ,

μi i = νi i = 0.5, for all i, j = 1, 2, . . . , n.

Regular maximal product in Pythagorean
fuzzy graphs

Definition 2.1 Let G1 = (A1,B1) and G2 = (A2,B2) be
two PFGs of G1 = (V1, E1) and G2 = (V2, E2), respec-
tively. The maximal product of G1 and G2 is denoted by
G1 ∗ G2 = (A1 ∗ A2,B1 ∗ B2) and defined as:

(i)
{

(μA1 ∗ μA2)(u1, u2) = μA1(u1) ∨ μA2(u2)
(νA1 ∗ νA2)(u1, u2) = νA1(u1) ∧ νA2(u2)

for all (u1, u2) ∈ V1 × V2,

(ii)
{

(μB1 ∗ μB2)((u, u2)(u, v2))=μA1(u) ∨ μB2(u2v2)
(νB1 ∗ νB2)((u, u2)(u, v2)) = νA1(u) ∧ νB2(u2v2)

for all u ∈ V1 and u2v2 ∈ E2,
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Fig. 2 Strong Pythagorean fuzzy graph

(iii)
{

(μB1 ∗ μB2)((u1, z)(v1, z)) = μB1(u1v1) ∨ μA2(z)
(νB1 ∗ νB2)((u1, z)(v1, z)) = νB1(u1v1) ∧ νA2(z)

for all z ∈ V2 and u1v1 ∈ E1.

Definition 2.2 A Pythagorean fuzzy graph G = (A ,B) is
said to be a strong Pythagorean fuzzy graph of underlying
crisp graph G = (V , E) if

μB(uv) = μA (u) ∧ μA (v),

νB(uv) = νA (u) ∨ νA (v) for all uv ∈ E.

Example 2.1 Consider a graph G = (V , E) where V =
{a, b, c, d, e, f } and E = {a f , b f , c f , d f , e f }. LetA and
B be Pythagorean fuzzy vertex set and Pythagorean fuzzy
edge set defined on V and V × V , respectively.

A =
〈(

a

0.9
,

b

0.25
,

c

0.6
,
d

0.5
,

e

0.65
,

f

0.4
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(

a

0.4
,
b

0.8
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0.5
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f
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)〉
and
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〈(

a f

0.4
,
b f
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,
c f

0.4
,
d f

0.4
,
e f

0.4

)
,

×
(
a f

0.7
,
b f
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c f
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.

By routine calculation, one can see from Fig. 2 that it is a
strong Pythagorean fuzzy graph.

Theorem 2.1 If G1 = (A1,B1) and G2 = (A2,B2) are
two strong PFGs, then their maximal product is also a strong
PFG.

Proof Let G1 = (A1,B1) and G2 = (A2,B2) be two
strong PFGs of the graph G1 and G2, respectively. Then,

μB1(u1u2) = μA1(u1) ∧ μA1(u2),

νB1(u1u2) = νA1(u1) ∨ νA1(u2) f or all u1u2 ∈ E1,

μB2(v1v2) = μA2(v1) ∧ μA2(v2),

νB2(v1v2) = νA2(v1) ∨ νA2(v2) f or all v1v2 ∈ E2.

By definition of maximal product, we have
If u1 = u2 and v1v2 ∈ E2,

(μB1 ∗ μB2)((u1, v1)(u2, v2))

= μA1(u1) ∨ μB2(v1v2)

= μA1(u1) ∨ {μA2(v1) ∧ μA2(v2)}
= {μA1(u1) ∨ μA2(v1)} ∧ {μA1(u1) ∨ μA2(v2)}
= (μA1 ∗ μA2)(u1, v1) ∧ (μA1 ∗ μA2)(u2, v2),

(νB1 ∗ νB2)((u1, v1)(u2, v2))

= νA1(u1) ∧ νB2(v1v2)

= νA1(u1) ∧ {νA2(v1) ∨ νA2(v2)}
= {νA1(u1) ∧ νA2(v1)} ∨ {νA1(u1) ∧ νA2(v2)}
= (νA1 ∗ νA2)(u1, v1) ∨ (νA1 ∗ νA2)(u2, v2).

If v1 = v2 and u1u2 ∈ E1,

(μB1 ∗ μB2)((u1, v1)(u2, v2))

= μB1(u1u2) ∨ μA2(v1)

= {μA1(u1) ∧ μA1(u2)} ∨ μA2(v1)

= {μA1(u1) ∨ μA2(v1)} ∧ {μA1(u2) ∨ μA2(v1)}
= (μA1 ∗ μA2)(u1, v1) ∧ (μA1 ∗ μA2)(u2, v2),

(νB1 ∗ νB2)((u1, v1)(u2, v2))

= νB1(u1u2) ∧ νA2(v1)

= {νA1(u1) ∨ νA1(u2)} ∧ νA2(v1)

= {νA1(u1) ∧ νA2(v1)} ∨ {νA1(u2) ∧ νA2(v1)}
= (νA1 ∗ νA2)(u1, v1) ∨ (νA1 ∗ νA2)(u2, v2).

Hence, the maximal product G1 ∗ G2 of two strong PFGs is
a strong PFG. ��
Remark 2.1 Converse of the Theorem 2.1 may not be true as
it can be seen in the following example.
Consider two Pythagorean fuzzy graphs G1 = (A1,B1) and
G2 = (A2,B2) as shown in Fig. 3, their maximal product is
given in Fig. 4.

Here μB1(u1u2) �= μA1(u1) ∧ μA1(u2), νB1(u1u2) �=
νA1(u1) ∨ νA1(u2) and μB2(v1v2) �= μA2(v1) ∧ μA2(v2),

νB2(v1v2) �= νA2(v1) ∨ νA2(v2). Hence, G1 and G2 are not
strong PFGs.
But (μB1 ∗ μB2)((u, v)(x, y)) = μA1(u, v) ∧ μA2(x, y),
(νB1 ∗ μB2)((u, v)(x, y)) = νA1(u, v) ∨ νA2(x, y) for all
edge (u, v)(x, y) in E. Thus, their maximal product G1 ∗ G2

is a strong PFG.

Definition 2.3 Let G = (A ,B) be a Pythagorean fuzzy
graph on underlying crisp graph G = (V , E). G is said to
be connected, if for every pair of vertices, there exist at least
one non-zero path, that is, for all u, v ∈ V , the μ-strength of
connectedness
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μ∞(u, v) = sup { μl(u, v) : for some l}

and ν-strength of connectedness

ν∞(u, v) = inf { νl(u, v) : for some l}

satisfy one of the following conditions:

μ∞(u, v) > 0 and ν∞(u, v) > 0

or μ∞(u, v) = 0 and ν∞(u, v) > 0

or μ∞(u, v) > 0 and ν∞(u, v) = 0.

where,

μl(u, v) = μ(uu1) ∧ μ(u1u2) ∧ . . . ∧ μ(ul−1v),

νl(u, v) = ν(u, u1) ∨ ν(u1u2) ∨ . . . ∨ ν(ul−1v) for some l

representsμ-strength of path and ν-strength of path of length
l, respectively.

Example 2.2 Consider a Pythagorean fuzzy graph G =
(A ,B) as displayed in the following Fig. 5.

For b, f ∈ V , using Definition 2.3 we have

μ5(b, f ) = μB(b, c) ∧ μB(c, i) ∧ μB(i, h) ∧ μB(h, g)

∧μB(g, f ) = 0.6 ∧ 0.2 ∧ 0.4
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Fig. 5 G = (A ,B)

∧0.8 ∧ 0.4 = 0.2,

μ4(b, f ) = μB(b, c) ∧ μB(c, d) ∧ μB(d, e) ∧ μB(e, f )

= 0.6 ∧ 0.5 ∧ 0.5 ∧ 0.5 = 0.5,

μ4(b, f ) = μB(b, c) ∧ μB(c, d) ∧ μB(d, g) ∧ μB(g, f )

= 0.6 ∧ 0.5 ∧ 0.5 ∧ 0.4 = 0.4,

μ3(b, f ) = μB(b, h) ∧ μB(h, g) ∧ μB(g, f )

= 0.8 ∧ 0.8 ∧ 0.4 = 0.4.

This implies

μ∞(b, f ) = sup{μ5(b, f ), μ4(b, f ), μ4(b, f ), μ3(b, f )}
= sup{0.2, 0.5, 0.4, 0.4} = 0.5 > 0,

and

ν5(b, f ) = νB(b, c) ∨ νB(c, i) ∨ νB(i, h) ∨ νB(h, g)

∨νB(g, f ) = 0.7 ∨ 0.9 ∨ 0.8 ∨ 0.5 ∨ 0.7=0.9,

ν4(b, f ) = νB(b, c) ∨ νB(c, d) ∨ νB(d, e) ∨ νB(e, f )

= 0.4 ∨ 0.7 ∨ 0.8 ∨ 0.7 = 0.8,

ν4(b, f ) = μB(b, c) ∨ νB(c, d) ∨ νB(d, g) ∨ νB(g, f )

= 0.4 ∨ 0.7 ∨ 0.6 ∨ 0.7 = 0.7,

ν3(b, f ) = νB(b, h) ∨ νB(h, g) ∨ νB(g, f )

= 0.4 ∨ 0.5 ∨ 0.7 = 0.7.

This implies

ν∞(b, f ) = inf{ν5(b, f ), ν4(b, f ), ν4(b, f ), ν3(b, f )}
= inf{0.9, 0.8, 0.7, 0.7} = 0.7 > 0.

That is, there exist a non-zero path between b and f . There-
fore, G = (A ,B) in Fig. 5, is connected Pythagorean fuzzy
graph.
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Theorem 2.2 The maximal product G1 ∗G2 of two connected
PFGs is always a connected PFG.

Proof Let G1 = (A1,B1) and G2 = (A2,B2) be two con-
nected PFGs with underlying crisp graph G1 = (V1, E1)

and G2 = (V2, E2), respectively. Let V1 = {u1, u2, . . . , um}
and V2 = {v1, v2, . . . , vn}. Then μ∞

1 (uiu j )> 0, ν∞
1 (uiu j )

> 0 for all ui , u j ∈ V1 and μ∞
2 (viv j )> 0, ν∞

2 (viv j )> 0
for all vi , v j ∈ V2.

The maximal product of G1 = (A1,B1) and G2 =
(A2,B2) can be taken as G = (A ,B). Consider the k
subgraphs of G = (A ,B) with the vertex sets V2 =
{uiv1, uiv2, . . . , uivn} for i = 1, 2, . . . ,m. Each of these
subgraphs of G = (A ,B) is connected as u′

i s are same.
SinceG1 = (A1,B1) and G2 = (A2,B2) are connected,

each ui and vi are adjacent to at least one of the vertices in
V1 and V2. Therefore, there exists at least one edge between
any pair of the above k subgraphs.
Thus, we have

μ∞((uiv j )(uk, vl)) > 0,

ν∞((uiv j )(uk, vl)) > 0 f or all (ui , v j )(uk, vl) ∈ E .

Hence, G = (A ,B) is a connected PFG. ��
Definition 2.4 A Pythagorean fuzzy graph G = (A ,B) is
said to be a complete Pythagorean fuzzy graph on underlying
crisp graph G = (V , E) if

μB(uv) = μA (u) ∧ μA (v),

νB(uv) = νA (u) ∨ νA (v) for all u, v ∈ V.

Example 2.3 Consider a graph G = (V , E) where V =
{a, b, c, d, e} and E = {ab, ac, ad, ae, bc, bd, be, cd, ce,
de}. Let A and B be Pythagorean fuzzy vertex set and
Pythagorean fuzzy edge set defined on V and V ×V , respec-
tively.

A =
〈(

a

0.25
,

b

0.8
,

c

0.65
,
d

0.4
,

e

0.9

)
,

×
(

a

0.8
,

b

0.7
,

c

0.6
, ,

d

0.7
,

e

0.4

)〉
and

B =
〈(

ab

0.4
,

ac

0.25
,
ad

0.4
,
ae

0.4
,
bc

0.4
,
bd

0.4
,
be

0.4
,
cd

0.4
,
ce

0.4
,
de

0.4

)
,

×
(
ab

0.7
,
ac

0.8
,
ad

0.7
,
ae

0.7
,
bc

0.7
,
bd

0.4
,
be

0.4
,
cd

0.4
,
ce

0.4
,
de

0.4

)〉
.

By routine calculation, one can see from Fig. 6 that it is a
complete Pythagorean fuzzy graph.

Remark 2.2 If two Pythagorean fuzzy graphs are complete,
their maximal product may not be a complete PFG, as it
can be seen in the following example. Consider two PFGs
G1 = (A1,B1) and G2 = (A2,B2) on V1 = {u1, u2} and

a

(0.9, 0.4)

(0.4, 0.7)

(0.65, 0.6)

(0.5, 0.7)

(0.4, 0.7)

(0.25, 0.8)

(0.5, 0.7)

(0.25, 0.8)

d

e b

c(0.4, 0.7)

(0.
25,

0.8
)

(0
.5
, 0
.7
)

(0.65, 0.6) (0.4
, 0.

7)

(0
.2
5,
0.
8)

(0.25, 0.8)

Fig. 6 Complete Pythagorean fuzzy graph

u1
(0.6, 0.7)

u2
(0.5, 0.6)

(0.5, 0.7)

(a) G1

v1
(0.5, 0.6)

v2
(0.7, 0.4)

(0.5, 0.6)

(b) G2

Fig. 7 Pythagorean fuzzy graphs

(u1, v2)
(0.7, 0.4)

(u2, v2)
(0.7, 0.4)

(0
.7,
0.4
)

(0.6, 0.6)

(0.
5,
0.6

) (0.6, 0.6)

(0.5, 0.6)

(0.5, 0.6)

(u1, v1)

(u2, v1)

Fig. 8 Maximal product of two PFGs

V2 = {v1, v2}, respectively, as shown in Fig. 7. Their maxi-
mal product G1 ∗ G2 is shown in Fig. 8.

By routine calculation, one can see from Fig. 7 that G1

and G2 are complete PFGs. While notice that G1 ∗ G2 is not
a complete PFG, as the case u1u2 ∈ E1 and v1v2 ∈ E2 is not
included in the definition of the maximal product. Further,
one can notice that the maximal product of two complete
PFGs is a strong PFG (Fig. 9).
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(0.9, 0.2)

u1
(0.7, 0.5)

u2 u3

u6u5u4

(0.5, 0.6)

(0.9, 0.2) (0.9, 0.2)

(0.8, 0.3)

(0.3, 0.7)(0
.3,
0.7
)

(0.
3, 0

.7)

(0.3, 0.7)

(0.3, 07)
(0
.3
, 0
.7
)

Fig. 9 G = (A ,B)

Definition 2.5 Let G = (A ,B) be a Pythagorean fuzzy
graph on underlying crisp graph G = (V , E). If

dμ(u) =
∑

u,v �=u∈V
μB(uv) = k,

dν(u) =
∑

u,v �=u∈V
νB(uv) = l for all u ∈ V,

then G is said to be regular Pythagorean fuzzy graph of
degree (k, l) or (k, l)-regular PFG.

Example 2.4 Consider a graph G = (V , E) where V =
{u1, u2, u3, u4, u5, u6} and E = {u1u5, u1u6, , u2u4,
u2u6, u3u4, u3u5}. LetA andB be Pythagorean fuzzy ver-
tex set and Pythagorean fuzzy edge set defined on V and
V × V , respectively.

A =
〈(

u1
0.5

,
u2
0.7

,
u3
0.8

,
u4
0.9

,
u5
0.9

,
u6
0.9

)
,

×
(
u1
0.6

,
u2
0.5

,
u3
0.3

,
u4
0.2

,
u5
0.2

,
u6
0.2

)〉
and

B =
〈(

u1u5
0.3

,
u1u6
0.3

,
u2u4
0.3

,
u2u6
0.3

,
u3u4
0.3

,
u3u5
0.3

)
,

×
(
u1u5
0.7

,
u1u6
0.7

,
u2u4
0.7

,
u2u6
0.7

,
u3u4
0.7

,
u3u5
0.7

)〉
.

Since dμ(ui ) = 0.6 and dν(ui ) = 1.4 for all ui ∈ V and
i = 1, 2, . . . , 6, G is a regular Pythagorean fuzzy graph of
degree (0.3, 0.7) or (0.3, 0.7)-regular PFG.

Remark 2.3 If G1 = (A1,B1) and G2 = (A2,B2) are two
regular PFGs, then their maximal product G1 ∗G2 may not be
regular PFG as it can be seen in this example. Consider two
PFGs G1 = (A1,B1) and G2 = (A2,B2) on V1 = {a, b}
andV2 = {c, d, e, f }, respectively, as shown inFig. 10. Their
maximal product G1 ∗ G2 is shown in Fig. 11.

By routine calculation, one can see from Fig. 10 that G1

and G2 are regular PFGs. While notice that

(dμ)G1∗G2(a, c) = {μA1(a) ∨ μB2(cd)}

+{μA1(a) ∨ μB2(c f )} + {μB1(ab) ∨ μA2(c)} = 1.4,

(dν)G1∗G2(a, c) = {νA1(a) ∧ νB2(cd)}
+{νA1(a) ∧ νB2(c f )} + {νB1(ab) ∧ νA2(c)} = 1.8,

(dμ)G1∗G2(b, f ) = {μA1(b) ∨ μB2( f c)}
+{μA1(b) ∨ μB2( f e)} + {μB1(ab) ∨ μA2( f )} = 1.2,

(dν)G1∗G2(b, f ) = {νA1(b) ∧ νB2( f c)}
+{νA1(b) ∧ νB2( f e)} + {νB1(ab) ∧ νA2( f )} = 1.7.

That is, (d)G1∗G2(a, c) �= (d)G1∗G2(b, f ). Therefore,G1 ∗ G2

is not regular PFG.

Definition 2.6 Let G = (A ,B) be a Pythagorean fuzzy
graph on underlying crisp graph G = (V , E). Then, G is
said to be a partially regular Pythagorean fuzzy graph if
G = (V , E) is a regular graph.

Example 2.5 Consider a Pythagorean fuzzy graph G =
(A ,B) as displayed in the Fig. 12.

Since dμ(a) = 1.65 �= 2 = dμ(a) and dν(a) = 2.35 �=
1.8 = dν(b). Hence, G is not a regular Pythagorean fuzzy
graph but G is a regular graph as the degree of each vertex
is equal. Thus, G is a partially regular Pythagorean fuzzy
graph.

The following theorems explain the conditions for the
maximal product of two regular PFGs to be regular.

Theorem 2.3 If G1 = (A1,B1) is a partially regular PFG
and G2 = (A2,B2) is a PFG such that μA1 ≤ μB2 , νA1 ≥
νB2 and μA2 , νA2 are constant functions of values c1 and
c2, respectively, then their maximal product is regular if and
only if G2 = (A2,B2) is regular PFG.

Proof Let G1 = (A1,B1) be a partially regular PFG such
that G1 = (V1, E1) is r-regular and G2 = (A2,B2) be
any PFG with μA1 ≤ μB2 , νA1 ≥ νB2 then μA2 ≥ μB1 ,
νA2 ≤ νB1 and μA2 , νA2 are constant functions of values c1
and c2, respectively.

Now assume that G2 = (A1,B1) is a (k, l)-regular PFG.
Then, the degree of any vertex in maximal product is given
by,

(dμ)G 1∗G 2 (u1, u2) =
∑

(u1,u2)(v1,v2)∈E1×E2

(μB 1 ∗ μB 2 )((u1, u2)(v1, v2))

=
∑

u1=v1,u2v2∈E2

μA 1 (u1) ∨ μB 2 (u2v2)

+
∑

u2=v2,u1v1∈E1

μB 1 (u1v1) ∨ μA 2 (u2)

=
∑

u1=v1,u2v2∈E2

μB 2 (u2v2)

+
∑

u2=v2,u1v1∈E1

μA 2 (u2)

= (dμ)G 2 (u2) + dG1 (u1)μA 2 (u2)

= rc1 + k,
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Fig. 10 Pythagorean fuzzy
graphs

ba
(0.5, 0.6) (0.3, 0.8)

(0.2, 0.8)

(a) G1

c

d

e

f

(0.4, 0.6)

(0.6, 0.5)

(0.5, 0.6)

(0.5, 0.5)

(0
.3
, 0
.6
) (0.4, 0.6)

(0
.3
, 0
.6
)(0.4, 0.6)

(b) G2

Fig. 11 Maximal product of
two PFGs

(a, c)

(a, d) (a, e)

(a, f)

(b, f)(b, c)

(b, d) (b, e)

(0.5, 0.6)

(0.6, 0.5) (0.5, 0.6)

(0.5, 0.5)

(0.5, 0.5)

(0.5, 0.6)(0.6, 0.5)

(0.4, 0.6)

(0.5
, 0.

6)

(0.5, 0.6)
(0.5, 0.6)

(0.5, 0.6)

(0.5, 0.5)(0.4, 0.6)

(0.4, 0.6)

(0.3, 0.6)
(0.

4, 0
.6)

(0.3, 0.6)

(0.6, 0.5) (0.5, 0.6)

a

(0.6, 0.7)(0.9, 0.4)

b

f

e d

c
j h

i

g

(0.45, 0.7) (0.8, 0.5)

(0.9, 0.2)(0.65, 0.75)

(0.7, 0.7)

(0.7, 0.5)

(0.84, 0.5)

(0.3, 0.9)

(0.6, 0.8)

(0
.6,
0.5
)(0.65, 0.75)

(0
.4,
0.8
) (0.8, 0.5)

0(
.3
,0

.
)9

(0
.6,
0.7
)

(0.4, 0.75)

(0.6, 0.8)

(0
.6
, 0

.8
)

(0
.8
, 0

.5)

(0.4, 0.7) (0.6, 0.7)(0.2, 0.9) (0
.2,
0.9
)

Fig. 12 Pythagorean fuzzy graph

(dν)G 1∗G 2 (u1, u2) =
∑

(u1,u2)(v1,v2)∈E1×E2

(νB 1 ∗ νB 2 )((u1, u2)(v1, v2))

=
∑

u1=v1,u2v2∈E2

νA 1 (u1) ∧ νB 2 (u2v2)

+
∑

u2=v2,u1v1∈E1

νB 1 (u1v1) ∧ νA 2 (u2)

=
∑

u1=v1,u2v2∈E2

νB 2 (u2v2)

+
∑

u2=v2,u1v1∈E1

νA 2 (u2)

= (dμ)G 2 (u2) + dG1 (u1)νA 2 (u2)

= rc2 + l.

This is constant for all vertices in V1 × V2. Hence, G1 ∗ G2

is a regular PFG.
Conversely, assume that G1 ∗ G2 is a regular PFG. Then,

for any two vertices (u1, v1) and (u2, v2) in V1 × V2,

(dμ)G1∗G2(u1, v1) = (dμ)G1∗G2(u2, v2)

(dμ)G2(v1) + dG1(u1)μA2(v1) = (dμ)G2(v2)

+ dG1(u2)μA2(v2)

rc1 + (dμ)G2(v1) = rc1 + (dμ)G2(v2)

(dμ)G2(v1) = (dμ)G2(v2),

(dν)G1∗G2(u1, v1) = (dν)G1∗G2(u2, v2)

(dν)G2(v1) + dG1(u1)νA2(v1) = (dν)G2(v2)

+ dG1(u2)νA2(v2)

rc2 + (dν)G2(v1) = rc2 + (dν)G2(v2)

(dν)G2(v1) = (dν)G2(v2).

This is true for all vertices in G2. Hence, G2 is regular PFG.
��

Theorem 2.4 IfG1 = (A1,B1) and G2 = (A2,B2) are two
partially regular PFG such that μA1 ≥ μB2 , νA1 ≤ νB2 ,
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μA2 ≥ μB1 , νA2 ≤ νB1 andμA2 , νA2 are constant functions
of values c1 and c2, respectively, then their maximal product
is regular if and only if μA1 and νA1 are constant functions.

Proof Let G1 = (A1,B1) and G2 = (A2,B2) are two
partially regular PFG such that μA1 ≥ μB2 , νA1 ≤ νB2 ,
μA2 ≥ μB1 , νA2 ≤ νB1 andμA2 , νA2 are constant functions
of values c1 and c2, respectively, with Gi is ri -regular, i =
1, 2. Now assume thatμA1 and νA1 are constant functions of
values c3 and c4, respectively. Then, the degree of any vertex
in maximal product is given by,

(dμ)G 1∗G 2 (u1, u2) =
∑

(u1,u2)(v1,v2)∈E1×E2

(μB 1 ∗ μB 2 )((u1, u2)(v1, v2))

=
∑

u1=v1,u2v2∈E2

μA 1 (u1) ∨ μB 2 (u2v2)

+
∑

u2=v2,u1v1∈E1

μB 1 (u1v1) ∨ μA 2 (u2)

=
∑

u1=v1,u2v2∈E2

μA 1 (u1)

+
∑

u2=v2,u1v1∈E1

μA 2 (u2)

= dG2 (u2)μA 1 (u1) + dG1 (u1)μA 2 (u2)

= r1c1 + r2c3,

(dν)G 1∗G 2 (u1, u2) =
∑

(u1,u2)(v1,v2)∈E1×E2

(νB 1 ∗ νB 2 )((u1, u2)(v1, v2))

=
∑

u1=v1,u2v2∈E2

νA 1 (u1) ∧ νB 2 (u2v2)

+
∑

u2=v2,u1v1∈E1

νB 1 (u1v1) ∧ νA 2 (u2)

=
∑

u1=v1,u2v2∈E2

νA 1 (u1)

+
∑

u2=v2,u1v1∈E1

νA 2 (u2)

= dG2 (u2)νA 1 (u1) + dG1 (u1)νA 2 (u2)

= r1c2 + r2c4.

This is constant for all vertices in V1 × V2. Hence, G1 ∗ G2

is a regular PFG.
Conversely, assume that G1 ∗ G2 is a regular PFG. Then,

for any two vertices (u1, v1) and (u2, v2) in V1 × V2,

(dμ)G1∗G2(u1, v1) = (dμ)G1∗G2(u2, v2)

dG1(u1)μA2(v1) + dG2(v1)μA1(u1) = dG1(u2)μA2(v2)

+ dG2(v2)μA1(u2)

rc1 + r2μA1(u1) = rc1 + r2μA1(u2)

μA1(u1) = μA1(u2),

(dν)G1∗G2(u1, v1) = (dν)G1∗G2(u2, v2)

dG1(u1)νA2(v1) + dG2(v1)νA1(u1) = dG1(u2)νA2(v2)

+ dG2(v2)νA1(u2)

rc2 + r2νA1(u1) = rc2 + r2νA1(u2)

νA1(u1) = νA1(u2).

u1

u4

u3

u2

u6

u5

(0.8, 0.3)

(0.6, 0.6) (0.7, 0.5)

(0.5, 0.6)

(0.9, 0.2)

(0.9, 0.2)
(0.5, 0.7)

(0.5, 0.7)

(0.5, 0.6) (0.5, 0.7)

(0.5
, 0.6

)

(0
.5
,0

.7)

(0.5
, 0.7

) (0.5, 0.6)

(0.5, 0.7)

Fig. 13 Pythagorean fuzzy graph

This is true for all vertices in G1. Hence, μA1 and νA1 are
constant functions. ��
Definition 2.7 Let G = (A ,B) be a Pythagorean fuzzy
graph on underlying crisp graph G = (V , E). Then G is
said to be a full regular Pythagorean fuzzy graph if G is both
regular and partially regular graph.

Example 2.6 Consider a Pythagorean fuzzy graph G =
(A ,B) as displayed in the Fig. 13.

Since dμ(ui ) = 1.5 and dν(ui ) = 2 for all ui ∈ V , where
i = 1, . . . , 6.Hence, G is a regular Pythagorean fuzzy graph
of degree (1.5, 2). Also, G is a regular graph as the degree
of each vertex is equal. Thus, G is a full regular Pythagorean
fuzzy graph.

Remark 2.4 If two Pythagorean fuzzy graphs are full regular,
their maximal product may not be full regular PFG as it can
be seen in this example. Consider two PFGs G1 = (A1,B1)

and G2 = (A2,B2) on V1 = {a, b} and V2 = {c, d, e},
respectively, as shown in Fig. 14. Their maximal product
G1 ∗ G2 is shown in Fig. 15.

By routine calculation, one can see that G1 and G2 are full
regular PFGs. But (d)G1∗G2(a, d) �= (d)G1∗G2(b, d). Hence,
G1 ∗ G2 is not full regular PFG.

Remark 2.5 The maximal product of two regular PFGs on
complete graphs is partially regular.Consider twoPFGsG1 =
(A1,B1) and G2 = (A2,B2) on V1 = {u1, v1} and V2 =
{u2, v2}, respectively, as shown in Fig. 16. Their maximal
product G1 ∗ G2 is shown in Fig. 17.

By routine calculation, one can see that G1 and G2 are reg-
ular PFGs. But (d)G1∗G2(u1, u2) �= (d)G1∗G2(v1, v2). Hence,
G1 ∗ G2 is a partially regular PFG as crisp graph is regular.

123



136 Complex & Intelligent Systems (2019) 5:127–144

Fig. 14 Pythagorean fuzzy
graphs

(0.9, 0.2) (0.6, 0.5)

a b(0.6, 0.5)

(a) G1

(0.6, 0.5) (0.7, 0.5)
e d(0.4, 0.5)

(0.8, 0.4)
c

(0.4, 0.5)(0.4, 0.5)

(b) G2

Fig. 15 Maximal product of
two PFGs

(0.9, 0.2)
(a, d) (0.9, 0.2)

(a, e)

(0.8, 0.4)
(b, c)

(b, d)
(0.7, 0.5)

(b, e)
(0.6, 0.5)

(a, c)
(0.9, 0.2)

(0.9, 0.2)

(0.9
, 0.2

)
(0.9, 0.

2)

(0.8, 0.4)

(0.
6, 0

.5)

(0.6, 0.5)

(0.
6,
0.5

)
(0.6, 0

.5)

(0.7, 0.5)

Fig. 16 Pythagorean fuzzy
graph

u1

(0.4, 0.7)

v1

(0.3, 0.7)

(0.3, 0.7)

(a) G1

(0.4, 0.7)

u2

(0.5, 0.6)

v2(0.4, 0.7)

(b) G2

(0.4, 0.7)(0.5, 0.6)
(u1, u2) (u1, v2)

(v1, u2) (v1, v2)

(0.4, 0.7)

(0.4, 0.7)
(0.5, 0.6) (0.4, 0.7)

(0.4, 0.7)(0.5, 0.6)

Fig. 17 Maximal product of two PFGs

Regular residue product in Pythagorean
fuzzy graphs

Definition 3.1 Let G1 = (A1,B1) and G2 = (A2,B2) be
twoPFGsof thegraphsG1 = (V1, E1) and G2 = (V2, E2),
respectively. The residue product of G1 and G2 is denoted
by G1 · G2 = (A1 · A2,B1 · B2) and defined as:

(i)

⎧⎨
⎩

(μA1 · μA2)(u1, u2) = μA1(u1) ∨ μA2(u2)
(νA1 · νA2)(u1, u2) = νA1(u1) ∧ νA2(u2)

for all (u1, u2) ∈ V1 × V2,

(ii)

⎧⎨
⎩

(μB1 · μB2)(u1, u2)(v1, v2) = μB1(u1v1)
(νB1 · νB2)(u1, u2)(v1, v2) = νB1(u1v1)

for all u1v1 ∈ E1, u2 �= v2.

u1 u2

u3

(0.7, 0.5)

(0.6, 0.5)

(0.2, 0.9)

(0.2, 0.9)

(0.6, 0.5)

(a) G1

v1

v2

(0.7, 0.4)

(0.7, 0.4)

(0.8, 0.3)

(b) G2

Fig. 18 Pythagorean fuzzy graphs

Remark 3.1 In general, the residue product of two strong
PFGs may not be strong PFG as it is explained in this exam-
ple. Consider two Pythagorean fuzzy graphs G1 = (A1,B1)

and G2 = (A2,B2) as shown in Fig. 18.
Here μB1(u1u2) = μA1(u1) ∧ μA1(u2), νB1(u1u2) =

νA1(u1) ∨ νA1(u2) for all u1u2 ∈ E1 and μB2(v1v2) =
μA2(v1)∧μA2(v2), νB2(v1v2) = νA2(v1)∨νA2(v2) for all
v1v2 ∈ E2. Hence, G1 and G2 are strong PFGs.

But (μB1 ·μB2)((u1, v2)(u2, v1)) = 0.6 �= μA1(u1, v2)∧
μA2(u2, v1) = 0.7 and (νB1 · νB2)((u1, v2)(u2, v1))
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= 0.5 �= νA1(u1, v2) ∧ νA2(u2, v1) = 0.4. Thus, their
residue product G1 · G2 is not a strong PFG.

The following theorem gives the condition under which
the residue product is strong.

Theorem 3.1 The residue product of a strong PFG G1 =
(A1,B1) with any PFG G2 = (A2,B2) is a strong PFG if
μA1 ≥ μA2 , νA1 ≤ νA2 .

Proof Let G1 = (A1,B1) be a strong PFG and G2 = (A2,

B2) be any PFG with μA1 ≥ μA2 , νA1 ≤ νA2 . Then

μB1(u1u2) = μA1(u1) ∧ μA1(u2),

νB1(u1u2) = μA1(u1) ∨ μA1(u2) f or all u1u2 ∈ E1.

By definition of residue product, we have
If u1u2 ∈ E1 and v1 �= v2, then

(μB1 · μB2)((u1, v1)(u2, v2))

= μB1(u1u2)

= μA1(u1) ∧ μA1(u2)

= {μA1(u1) ∨ μA2(v1)} ∧ {μA1(u2) ∨ μA2(v2)}
= (μA1 · μA2)(u1, v1) ∧ (μA1 · μA2)(u2, v2),

(νB1 · νB2)((u1, v1)(u2, v2))

= νB1(u1u2)

= νA1(u1) ∨ νA1(u2)

= {νA1(u1) ∧ νA2(v1)} ∨ {νA1(u2) ∧ νA2(v2)}
= (νA1 · νA2)(u1, v1) ∨ (νA1 · νA2)(u2, v2).

Hence, G1 · G2 is a strong PFG. ��
Theorem 3.2 The residue product G1 ∗ G2 of two connected
PFGs is always a connected PFG.

Proof Let G1 = (A1,B1) and G2 = (A2,B2) be two con-
nected PFGs with underlying crisp graph G1 = (V1, E1)

and G2 = (V2, E2), respectively. Let V1 = {u1, u2, . . . , um}
and V2 = {v1, v2, . . . , vn}. Then μ∞

1 (uiu j ) > 0,
ν∞
1 (uiu j ) > 0 for all ui , u j ∈ V1 and μ∞

2 (viv j ) > 0,
ν∞
2 (viv j ) > 0 for all vi , v j ∈ V2.
The residue product of G1 = (A1,B1) and G2 =

(A2,B2) can be taken as G = (A ,B). Consider the k
subgraphs of G = (A ,B) with the vertex sets V2 =
{uiv1, uiv2, . . . , uivn} for i = 1, 2, . . . ,m. Each of these
subgraphs of G = (A ,B) is connected as u′

i s are same.
SinceG1 = (A1,B1) and G2 = (A2,B2) are connected,

each ui and vi are adjacent to at least one of the vertices in
V1 and V2. Therefore, there exists at least one edge between
any pair of the above k subgraphs.
Thus, we have

μ∞((uiv j )(uk, vl)) > 0,

(u1, v1)
(0.7, 0.4)

(0.8, 0.3)(0.8, 0.3)

(0.7, 0.4)(0.7, 0.4)

(0.8, 0.3)

(0.2, 0.9)
(0.6, 0.5)

(0.2
, 0.

9)

(0
.6,
0.5
)

(u2, v1) (u3, v1)

(u1, v2) (u3, v2)(u2, v2)

Fig. 19 Residue product of two PFGs

ν∞((uiv j )(uk, vl)) > 0 f or all (ui , v j )(uk, vl) ∈ E .

Hence, G = (A ,B) is a connected PFG (Fig. 19). ��
Remark 3.2 The residue product of two complete PFGs is not
a complete PFG. We explain with an example. Consider two
PFGs G1 = (A1,B1) and G2 = (A2,B2) on V1 = {a, b, c}
and V2 = {d, e}, respectively, as shown in Fig. 20. Their
residue product G1 · G2 is shown in Fig. 21.

By routine calculation, one can see from Fig. 20 that G1

and G2 are complete PFGs. While notice that G1 · G2 is not
a complete PFG as the only case u1u2 ∈ E1, is included in
the definition of the residue product.

Remark 3.3 If G1 = (A1,B1) and G2 = (A2,B2) are two
regular PFGs, then their residue product G1 ·G2 may not to be
regular PFG as it is explained in this example. Consider two
PFGs G1 = (A1,B1) and G2 = (A2,B2) on V1 = {a, b}
and V2 = {c, d}, respectively, as shown in Fig. 22. Their
residue product G1 · G2 is shown in Fig. 23.

By routine calculation, one can see from Fig. 22 that G1

and G2 are regular PFGs. While notice that (d)G1·G2(a, d) �=
(d)G1∗G2(a, c). Therefore, G1 · G2 is not regular PFG.

The following theorems explain the conditions for the
residue product of two regular PFGs to be regular.

Theorem 3.3 The residue product G1 · G1 of any PFG G1 =
(A1,B1) with a PFG G2 = (A2,B2) such that |V2| = 1, is
always a PFG with no edge.

Proof The proof follows from the Definition 3.1. ��
Theorem 3.4 If G1 = (A1,B1) and G2 = (A2,B2) are
two PFGs such that |V2| > 1, then their residue product is
regular if and only if G1 is regular.

Proof Let G1 = (A1,B1) be a (k, l)-regular PFG and G2 =
(A2,B2) be any PFG with |V2| > 1.
If |V2| > 1, then the degree of any vertex in Residue product
is given by,
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Fig. 20 Pythagorean fuzzy
graphs

•

a

b c

(0.8, 0.4)

(0.6, 0.7) (0.7, 0.5)

(0
.6
, 0
.7
) (0.7, 0.5)

(0.6, 0.7)

(a) G1

d e

(0.6, 0.6)

(0.9, 0.2) (0.6, 0.6)

(b) G2

(a, d)
(0.9, 0.2) (0.9, 0.2)

(b, d)

(0.7, 0.5)
(c, d)

(0.6, 0.6)

(0.7, 0.5)

(0.8, 0.4)

(c, e)

(a, e)(b, e)

(0
.7,
0.5
)

(0
.7,
0.5
)

(0.6
, 0.7

)

(0.6,
0.7)

0(
.6
, 0

.
)7

(0
.6
, 0

.7
)

Fig. 21 Residue product of two PFGs

a
(0.2, 0.8)

b
(0.3, 0.7)

(0.1, 0.8)

(a) G1

c
(0.4, 0.8)

d
(0.5, 0.6)

(0.4, 0.8)

(b) G2

Fig. 22 Pythagorean fuzzy graphs

(a, c)
(0.2, 0.8)

(0.5, 0.6)(0.3, 0.7)

(0.5, 0.6)

(0.1, 0.8)

(0.
1,
0.8

)

(a, d)

(b, d)(b, c)

Fig. 23 Residue product of two PFGs

(dμ)G1·G2(u1, u2) =
∑

u1v1∈E1,u2 �=y2

μB1(u1v1)

= (dμ)G1(u1) = k,

(dν)G1·G2(u1, u2) =
∑

u1v1∈E1,u2 �=y2

νB1(u1v1)

= (dν)G1(u1) = l.

This is a constant for all vertices in V1 × V2. Hence, G1 · G2

is a regular PFG.
Conversely, assume that G1 · G2 is a regular PFG. Then,

for any two vertices (u1, v1) and (u2, v2) in V1 × V2,

(dμ)G1·G2(u1, v1) = (dμ)G1·G2(u2, v2)

(dμ)G1(u1) = (dμ)G1(u2),

(dν)G1·G2(u1, v1) = (dν)G1·G2(u2, v2)

(dν)G1(u1) = (dν)G1(u2).

This is true for all vertices in V1. Hence, G1 is a regular PFG.
��

Example 3.1 Consider two PFGs G1 = (A1,B1) and G2 =
(A2,B2) on V1 = {u1, u2} and V2 = {v1, v2, v3}, respec-
tively, as shown in Fig. 24. Their residue product G1 · G2 is
shown in Fig. 25.

Since (d)G1(ui ) = (0.3, 0.7) for i=1,2 and (d)G2(v1) �=
(d)G2(v2), therefore G1 = (A1,B1) is a regular PFG and
G2 = (A2,B2) is not regular PFG with |V2| > 1. Now,
(d)G1·G2(ui , v j ) = (0.6, 1.4) for i = 1, 2 and j = 1, 2, 3.
Thus, the residue product G1 · G2 is a regular PFG.

Theorem 3.5 If G1 = (A1,B1) and G2 = (A2,B2) are
two PFGs such that μA1 ≥ μA2 , νA1 ≤ νA2 , then the total
degree of any vertex in the residue product G1 · G2 is given
as,

(tdμ)G1·G2(ui , v j ) =
{

(tdμ)G1(ui ) if |V1| > 1,
μA1(ui ) if |V1| = 1,

(tdν)G1·G2(ui , v j ) =
{

(tdν)G1(ui ) if |V1| > 1,
νA1(ui ) if |V1| = 1.
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Fig. 24 Pythagorean fuzzy
graphs

(0.9, 0.2)

(0.3, 0.7)

(0.4, 0.7)

u1 u2

(a) G1

(0.8, 0.3) (0.7, 0.5)
v3 v2(0.7, 0.5)

(0.5, 0.6)
v1

(0.4, 0.6)(0.4, 0.6)

(b) G2

(0.9, 0.2)

(u1, v1)
(0.7, 0.5)
(u1, v2) (u1, v3)

(u2, v3)(u2, v2)(u2, v1)

(0.5, 0.6)

(0.9, 0.2) (0.9, 0.2)

(0.8, 0.3)

(0.3, 0.7)(0
.3,
0.7
)

(0.
3, 0

.7)

(0.3, 0.7)

(0.3, 07)

(0
.3
, 0
.7
)

Fig. 25 Residue product of two PFGs

Proof If μA1 ≥ μA2 , νA1 ≤ νA2 and |V2| > 1, then

(tdμ)G1·G2(ui , v j )

=
∑

(ui ,v j )(uk ,vl )∈E1×E2

(μB1 · μB2)((ui , v j )(uk, vl))

+(μA1 · μA2)(ui , v j )

=
∑

ui uk∈E1,v j �=vl

μB1(uiuk) + μA1(ui ) ∨ μA2(v j )

=
{

(dμ)G1(ui ) + μA1(ui ) if |V2| > 1,
μA1(ui ) if |V2| = 1,

=
{

(tdμ)G1(ui ), if |V2| > 1,
μA1(ui ), if |V2| = 1.

(tdν)G1·G2(ui , v j )

=
∑

(ui ,v j )(uk ,vl )∈E1×E2

(νB1 · νB1)((ui , v j )(uk, vl))

+(νA1 · νA1)(ui , v j )

=
∑

ui uk∈E1,v j �=vl

νB1(uiuk)

+νA1(ui ) ∧ νA2(v j )

=
{

(dν)G1(ui ) + νA1(ui ) if |V2| > 1,
νA1(ui ) if |V2| = 1,

=
{

(tdν)G1(ui ) if |V2| > 1,
νA1(ui ) if |V2| = 1.

��

u1
(0.7, 0.5)

(0.7, 0.5)(0.7, 0.5)

(0.7, 0.5)

u3u4

u2

(0
.7
, 0
.6
) (0.7, 0.6)

(0.6, 0.6)

(0.6, 0.6)

Fig. 26 G = (A ,B)

Definition 3.2 Let G = (A ,B) be a Pythagorean fuzzy
graph on underlying crisp graph G = (V , E). If

tdμ(u) =
∑

u,v �=u∈V
μB(uv) + μ(u) = k,

tdν(u) =
∑

u,v �=u∈V
νB(uv) + ν(u) = l for all u ∈ V,

then G is said to be totally regular Pythagorean fuzzy graph
of total degree (k, l) or (k, l)-totally regular PFG.

Example 3.2 Consider a graph G = (V , E) where V =
{u1, u2, u3, u4} and E = {u1u2, u1u3, u2u4, u3u4}. Let
A and B be Pythagorean fuzzy vertex set and Pythagorean
fuzzy edge set defined onV andV×V , respectively (Fig. 26).

A =
〈(

u1
0.7

,
u2
0.7

,
u3
0.7

,
u4
0.7

)
,

×
(
u1
0.5

,
u2
0.5

,
u3
0.5

,
u4
0.5

)〉
and

B =
〈(

u1u2
0.6

,
u1u3
0.7

,
u2u4
0.7

,
u3u4
0.6

)
,

×
(
u1u2
0.6

,
u1u3
0.6

,
u2u4
0.6

,
u3u4
0.6

)〉
.
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Since tdμ(ui ) = 1.8 and tdν(ui ) = 1.7 for all ui ∈ V
and i = 1, 2, 3, 4. Hence, G is a totally regular Pythagorean
fuzzy graph of total degree (1.8, 1.7) or (1.8, 1.7)-totally
regular PFG.

Theorem 3.6 IfG1 = (A1,B1) is a totally regular PFGand
G2 = (A2,B2) is a PFG such that μA1 ≥ μA2 , νA1 ≤ νA2

and |V2| > 1, then the residue product is totally regular PFG.

Proof Let G1 = (A1,B1) be a ( k, l )-totally regular PFG
and G2 = (A2,B2) be a PFG such that μA1 ≥ μA2 , νA1 ≤
νA2 and |V2| > 1. Then (tdμ)G1(ui ) = k, (tdν)G1(ui ) =
l, for all ui in V1 and (μA1 · μA2)(u1, v1) = μA1(u1),
(νA1 · νA2)(u1, v1) = νA1(u1) , for all (u1, v1) in V1 × V2.
Now,

(tdμ)G1·G2(u1, v1)

= (dμ)G1·G2(u1, v1) + (μA1 · μA2)(u1, v1)

= (dμ)G1(u1) + μA1(u1)

= (tdμ)G1(u1)

= k,

(tdν)G1·G2(u1, v1)

= (dν)G1·G2(u1, v1) + (νA1 · νA2)(u1, v1)

= (dν)G1(u1) + νA1(u1)

= (tdν)G1(u1)

= l.

This is constant for all vertices in V1 × V2. Hence, G1 · G2 is
a (k, l)-totally regular PFG. ��

Applications to decision-making

In this section, we apply the concept of PFGs to decision-
making problems. Two decision-making problems concern-
ing the ‘evaluation of best company for investment’ and
‘alliance partner selection of a software company’ are solved
to illustrate the applicability of the proposed concept of PFGs
in realistic scenario based on Pythagorean fuzzy preference
relations (PFPRs) [31]. The algorithm for the alliance part-
ner selection of a software company within the framework
of PFPR is outlined in Algorithm 1.

Evaluation of best company for investment

To get the highest possible profit, assume that an investor
wants to invest some money in an enterprise. Initially, he
considers six possible alternatives: x1 is a manufacturing
company, x2 is a fishing company, x3 is a clothing com-
pany, x4 is a feed company, x5 is a seed company and x6 is a
building materials company. To prioritize these six possible

x2

x3

x4

x5

x6

x1

(0
.6
,0
.8
)

(0
.8
,0
.6
)

(0.2, 0.7)(0.7, 0.2)(0.9
, 0.

3)(0.3
, 0.9

)

(0.4
, 0.

8)

(0.8
, 0.

4)

(0.9, 0.4)(0.4, 0.9)
(0.7, 0.6)

(0.6, 0.7)

(0
.8
,0
.1
)

(0
.1
,0
.8
)

(0.5, 0.8)(0.8, 0.5)

(0.3
, 0.9

)

(0.9
, 0.3

)

(0.6, 0.3) (0.8, 0.5)

(0
.8
, 0
.5
)

(0.6, 0.5)

(0
.5
, 0
.7
)

(0.8, 0.6)

(0.5, 0.8)

(0
.5
, 0
.8
)

(0.5, 0.6)

(0.6, 0.8)

(0
.7
, 0
.5
)

(0.3, 0.6)

Fig. 27 Directed network of the Pythagorean fuzzy preference relation

Table 1 PFPR of the decision-maker

R x1 x2 x3 x4 x5 x6

x1 (0.5, 0.5) (0.4, 0.8) (0.3, 0.6) (0.7, 0.2) (0.8, 0.6) (0.1, 0.8)

x2 (0.8, 0.4) (0.5, 0.5) (0.9, 0.4) (0.5, 0.8) (0.6, 0.8) (0.5, 0.7)

x3 (0.6, 0.3) (0.4, 0.9) (0.5, 0.5) (0.7, 0.6) (0.5, 0.8) (0.9, 0.3)

x4 (0.2, 0.7) (0.8, 0.5) (0.6, 0.7) (0.5, 0.5) (0.9, 0.3) (0.5, 0.6)

x5 (0.6, 0.8) (0.8, 0.6) (0.8, 0.5) (0.3, 0.9) (0.5, 0.5) (0.8, 0.5)

x6 (0.8, 0.1) (0.7, 0.5) (0.3, 0.9) (0.6, 0.5) (0.5, 0.8) (0.5, 0.5)

alternatives X = {x1, x1, x3, x4, x5, x6}, a decision-maker
is invited to assess them. The decision-maker compares each
pair of these alternatives and provides the judgements by a
directed network of the PFPR whose vertices represent these
alternatives as shown in Fig. 27 and corresponding PFPRs
[31] are shown in Table 1:

Using Pythagorean fuzzy averaging (PFA) operator [5],

pi = PFA(pi1, pi2, . . . , pin)

=

⎛
⎜⎜⎝

√√√√√1 −
⎛
⎝ n∏

j=1

(
1 − μ2

i j

)⎞
⎠

1/n

,

⎛
⎝ n∏

j=1

νi j

⎞
⎠

1/n
⎞
⎟⎟⎠ , i = 1, 2, 3, . . . , n,

we aggregate all pi j , j = 1, 2, . . . , 6 corresponding to the
company xi , and then get the complex Pythagorean fuzzy
number pi of the company xi , over all the other companies:

p1 = (0.5604, 0.5334), p2 = (0.6970, 0.5742),

p3 = (0.6669, 0.5185),

p4 = (0.6814, 0.5295), p5 = (0.6909, 0.6148),

p6 = (0.6116, 0.4561).
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Table 2 PFPR of the expert from the business process outsourcing
department

R1 x1 x2 x3 x4 x5

x1 (0.5, 0.5) (0.5, 0.7) (0.8, 0.4) (0.7, 0.6) (0.3, 0.6)

x2 (0.7, 0.5) (0.5, 0.5) (0.2, 0.9) (0.7, 0.5) (0.8, 0.3)

x3 (0.4, 0.8) (0.9, 0.2) (0.5, 0.5) (0.2, 0.6) (0.9, 0.2)

x4 (0.6, 0.7) (0.5, 0.7) (0.6, 0.2) (0.5, 0.5) (0.3, 0.7)

x5 (0.6, 0.3) (0.3, 0.8) (0.2, 0.9) (0.7, 0.3) (0.5, 0.5)

Utilize the score function s(pi ) = μ2
i − ν2i [6] in order to

calculate the scores of pi , i = 1, 2, . . . , 6:

s(p1) = 0.0295, s(p2) = 0.1562, s(p3) = 0.1759,

s(p4) = 0.1839, s(p5) = 0.0994, s(p6) = 0.1660.

According to s(pi ), i = 1, 2, . . . , 6, we get the ranking of
the partners xi , i = 1, 2, . . . , 6 as:

x4 � x3 � x6 � x2 � x5 � x1.

Therefore, the best company is x4 to get the highest possible
profit.

Alliance partner selection of a software company

Eastsoft is one of the top five software companies in China
[36]. It offers a rich portfolio of businesses, including product
engineering solutions, industry solutions, and related soft-
ware products and platform and services. It is dedicated
to becoming a globally leading IT solutions and services
provider through continuous improvement of organization
and process, competence development of leadership and
employees, and alliance and open innovation. To improve
the operation and competitiveness capability in the global
market, Eastsoft plans to establish a strategic alliance with
a transnational corporation. After numerous consultations,
five transnational corporations (alternatives) would like to
establish a strategic alliance with Eastsoft; they are HP x1,
PHILIPS x2, EMC x3, SAP x4 and LK x5. To select the
desirable strategic alliance partner, a committee compris-
ing three decision-makers mk(k = 1, 2, 3) (whose weight
vector is w = (0.3, 0.5, 0.7)) is founded, come from
the business process outsourcing department, the operation
management department and the engineering management
department of Eastsoft, respectively. Based on their experi-
ences, the decision-makers compare each pair of alternatives
and give individual judgments using the following PFPRs
Rk = (p(k)

i j )5×5 (k = 1, 2, 3):
The Pythagorean fuzzy digraphs Dk corresponding to

PFPRs Rk (k = 1, 2, 3) given in Tables 2, 3 and 4, are shown
in Fig. 28.

Table 3 PFPRof the expert from theoperationmanagement department

R2 x1 x2 x3 x4 x5

x1 (0.5, 0.5) (0.9, 0.3) (0.7, 0.2) (0.3, 0.8) (0.5, 0.8)

x2 (0.3, 0.9) (0.5, 0.5) (0.6, 0.7) (0.1, 0.5) (0.8, 0.6)

x3 (0.2, 0.7) (0.7, 0.6) (0.5, 0.5) (0.7, 0.5) (0.3, 0.7)

x4 (0.8, 0.3) (0.5, 0.1) (0.5, 0.7) (0.5, 0.5) (0.8, 0.3)

x5 (0.8, 0.5) (0.6, 0.8) (0.7, 0.3) (0.3, 0.8) (0.5, 0.5)

Table 4 PFPR of the expert from the engineering management depart-
ment

R3 x1 x2 x3 x4 x5

x1 (0.5, 0.5) (0.7, 0.6) (0.5, 0.8) (0.3, 0.9) (0.7, 0.6)

x2 (0.6, 0.7) (0.5, 0.5) (0.8, 0.6) (0.1, 0.7) (0.3, 0.8)

x3 (0.8, 0.5) (0.6, 0.8) (0.5, 0.5) (0.4, 0.8) (0.5, 0.7)

x4 (0.9, 0.3) (0.7, 0.1) (0.8, 0.4) (0.5, 0.5) (0.8, 0.4)

x5 (0.6, 0.7) (0.8, 0.3) (0.7, 0.5) (0.4, 0.8) (0.5, 0.5)

Compute the averaged pythagorean fuzzy element (PFE)
p(k)
i of the alternative xi over all the other alternatives for the

experts mk(k = 1, 2, 3) by the Pythagorean fuzzy averaging
(PFA) operator:

p(k)
i = PFA(p(k)

i1 , p(k)
i2 , . . . , p(k)

in )

=

⎛
⎜⎜⎝

√√√√√1 −
⎛
⎝ n∏

j=1

(
1 − μ2

i j

)⎞
⎠

1/n

,

⎛
⎝ n∏

j=1

νi j

⎞
⎠

1/n
⎞
⎟⎟⎠ , i = 1, 2, 3, . . . , n.

The aggregation results of the experts mk (k = 1, 2, 3) are
as follows:

m1 : p(1)
1 = (0.6139, 0.5502), p(1)

2 = (0.6457, 0.5078),

p(1)
3 = (0.7312, 0.3949), p(1)

4 = (0.5180, 0.5094),

p(1)
5 = (0.5152, 0.5036);

m2 : p(2)
1 = (0.6720, 0.4536), p(2)

2 = (0.5574, 0.6239),

p(2)
3 = (0.5459, 0.5933), p(2)

4 = (0.6639, 0.3160),

p(2)
5 = (0.6295, 0.5448);

m3 : p(3)
1 = (0.5761, 0.6645), p(3)

2 = (0.5574, 0.6518),

p(3)
3 = (0.5985, 0.6454), p(3)

4 = (0.7789, 0.2993),

p(3)
5 = (0.6371, 0.5305).

Compute a collective PFE pi (i = 1, 2, . . . , n) of the alter-
native xi over all the other alternatives using the Pythagorean
fuzzy weighted averaging (PFWA) operator [5]:

pi = PFWA(p(1)
i , p(2)

i , . . . , p(s)
i )

=
⎛
⎝

√√√√1 −
s∏

k=1

(
1 − (μ2

k)
)wk

,

s∏
k=1

(νk)
wk

⎞
⎠ .
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Fig. 28 Pythagorean fuzzy
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Table 5 The decision results of the alternatives using the different methods

Methods Score of alternatives Ranking of alternatives

Zhao et al. [40] − 0.6800 −2.1800 − 0.9400 3.8200 − 0.0200 A4 � A5 � A1 � A3 � A2

Our proposed method 0.3367 0.2276 0.3276 0.6067 0.3595 A4 � A5 � A1 � A3 � A2

That is,

p1 = (0.7180, 0.4229), p2 = (0.6751, 0.4777),

p3 = (0.7153, 0.4290),

p4 = (0.8035, 0.1973), p5 = (0.7128, 0.3855).

Compute the score functions s(pi ) = μ2
i − ν2i [6] of pi (i =

1, 2, 3, 4, 5), and rank all the alternatives xi (i = 1, 2, 3, 4, 5)
according to the values of s(pi )(i = 1, 2, 3, 4, 5).

s(p1) = 0.3367, s(p2) = 0.2276, s(p3) = 0.3276,

s(p4) = 0.6067, s(p5) = 0.3595.

Then x4 � x5 � x1 � x3 � x2. Thus, the optimal choice is
SAP x4.

Comparative Analysis: We individually compute and com-
pare the decision results using themethod ofRef. [40] and our
proposed method. They are shown in Table 5. From Table 5,
the decision results of the method of Ref. [40] are consis-
tent with our proposed method. It implies that our proposed
method considers all the Pythagorean fuzzy evaluation infor-
mation.

Conclusions and further work

Graph theory has vast range of applications in solving var-
ious networking problems encountered in different fields
such as signal processing, transportation and error-correcting
codes. For modeling the obscurity and uncertainties in prac-
tical decision-making and graphical networking problems,
Pythagorean fuzzy graphs (PFGs) have better ability due to
the increment of spaces in membership and non-membership

Algorithm 1 The algorithm for selection of alliance partner
of a software company.
INPUT: A discrete set of alternatives X = {x1, x2, . . . , xn}, a
set of experts e = {m1,m2, . . . ,ms} with a weight vector w =
{w1, w1, . . . , ws} and construction of PFPR Rk = (p(k)

i j )n×n for each
expert.
OUTPUT: The selection of optimal alternative.

1. begin
2. Aggregate all p(k)

i j ( j = 1, 2, . . . , n) corresponding to the alterna-

tive xi and get the PFE p(k)
i of the alternative xi over all the other

alternatives for the expert mk by using the PFA operator.

p(k)
i = PFA(p(k)

i1 , p(k)
i2 , . . . , p(k)

in )

=

⎛
⎜⎜⎝

√√√√√1 −
⎛
⎝ n∏

j=1

(
1 − μ2

i j

)⎞
⎠

1/n

,

⎛
⎝ n∏

j=1

νi j

⎞
⎠

1/n
⎞
⎟⎟⎠ ,

i = 1, 2, 3, . . . , n.

3. Aggregate all p(k)
i (k = 1, 2, . . . , s) into a collective PFE pi for the

alternative xi using the PFWA operator.

pi = PFWA(p(1)
i , p(2)

i , . . . , p(s)
i )

=
⎛
⎝

√√√√1 −
s∏

k=1

(
1 − (μ2

k)
)wk

,

s∏
k=1

(νk)
wk

⎞
⎠ .

4. Compute the score functions s(pi ) = μ2
i − ν2i of pi (i =

1, 2, . . . , n).
5. Rank all the alternatives xi (i = 1, 2, . . . , n) according to s(pi )(i =

1, 2, . . . , n).
6. Output the optimal alternative.
7. end

grades. This paper has introduced two new graph products
specifically, maximal product and residue product, for unit-
ing two Pythagorean fuzzy graphs. Using these products,
different types of structural models can be combined to
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produce a better one. They may be useful for the config-
uration processing of space structures. Further, the paper
has explored some crucial properties like strongness, con-
nectedness, completeness and regularity. A special focus on
the regularity has been given as it can be applied widely in
designing reliable communication and computer networks.
Applications of PFGs in decision-making concerning eval-
uation of best company for investment and alliance partner
selection of a software company have been presented.

Further work We are working to extend our study to : (1)
Pythagorean fuzzy soft graphs; (2) Rough Pythagorean fuzzy
graphs; (3) Simplified interval-valued Pythagorean fuzzy
graphs and; (4) Hesitant Pythagorean fuzzy graphs
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