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Abstract

We define generalised zeta functions associated with indefinite quadratic forms of
signature (g − 1, 1)—and more generally, to complex symmetric matrices whose
imaginary part has signature (g − 1, 1)—and we investigate their properties. These
indefinite zeta functions are defined as Mellin transforms of indefinite theta functions in
the sense of Zwegers, which are in turn generalised to the Siegel modular setting. We
prove an analytic continuation and functional equation for indefinite zeta functions. We
also show that indefinite zeta functions in dimension 2 specialise to differences of ray
class zeta functions of real quadratic fields, whose leading Taylor coefficients at s = 0
are predicted to be logarithms of algebraic units by the Stark conjectures.

Keywords: Indefinite quadratic form, Indefinite theta function, Siegel modular form,
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1 Introduction
The Dedekind zeta functions of imaginary quadratic fields are specialisations of real ana-
lytic Eisenstein series. For example, for the Gaussian field K = Q(i) and Re(s) > 1,

ζQ(i)(s) :=
∑

a≤Z[i]
a�=0

1
N (a)s

= 1
4

∑

(m,n)∈Z2

(m,n) �=(0,0)

1
(m2 + n2)s

= ζ (s)
2

E(i, s), (1.1)

where E(τ , s) is the real analytic Eisenstein series given for Im(τ ) > 0 and Re(s) > 1 by

E(τ , s) := 1
2

∑

(m,n)∈Z2

gcd(m,n)=1

Im(τ )s

|mτ + n|2s . (1.2)

Placing the discrete set of Dedekind zeta functions into the continuous family of real
analytic Eisenstein series allows us to prove many interesting properties of Dedekind zeta
functions—for instance, the first Kronecker limit formula is seen to relate ζ ′

K (0) to the
value of the Dedekind eta function η(τ ) at a CM point.
In this paper, we find a new continuous family of functions, called indefinite zeta func-

tions, in which ray class zeta functions of real quadratic fields sit as a discrete subset.
Moreover, we construct indefinite zeta functions attached to quadratic forms of signature
(g − 1, 1). In the case g = 2, norm forms of quadratic number fields give the specialisation
of indefinite zeta functions to ray class zeta functions of real quadratic fields.
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Indefinite zeta functions have analytic continuationwith a functional equation about the
line s = g

4 . This is in contrast to many zeta functions defined by a sum over a cone—such
as multiple zeta functions and Shintani zeta functions—which have analytic continuation
but no functional equation. Shintani zeta functions are used to give decompositions of
ray class zeta functions attached to totally real number fields, which are then used to
evaluate those ray class zeta functions (and the closely related Hecke L-functions) at
non-positive integers [21] (see also Neukirch’s treatment in [17], Chapter VII §9). Our
specialisation of indefinite zeta functions to ray class zeta functions of real quadratic fields
is an alternative to Shintani decomposition that gives a different interpolation between
zeta functions attached to real quadratic number fields. Indefinite zeta functions also differ
from archetypical zeta functions in that they are not (generally) expressed as Dirichlet
series.
Indefinite zeta functions are Mellin transforms of indefinite theta functions. Indefinite

theta functions were first described by Marie-France Vignéras, who constructed modular
indefinite theta series with terms weighted by a weight function satisfying a particular
differential equation [22,23]. Sander Zwegers rediscovered indefinite theta functions and
used them to construct harmonic weak Maass forms whose holomorphic parts are essen-
tially the mock theta functions of Ramanujan [27]. Zwegers’s work triggered an explosion
of interest in mock modular forms, with applications to partition identities [4], quantum
modular forms and false theta functions [8], period integrals of the j-invariant [6], spo-
radic groups [7], and quantum black holes [5]. Readers looking for additional exposition
on these topics may also be interested in the book [3] (especially section 8.2) and lecture
notes [20,26].
The indefinite theta functions in this paper are a generalisation of those introduced by

Zwegers to the Siegel modular setting. Our generalised indefinite zeta functions satisfy a
modular transformation law with respect to the Siegel modular group Spn(Z).

1.1 Main theorems

Given a positive definite quadratic form Q(x1, . . . xg ) with real coefficients, it is possible
to associate a “definite zeta function” ζQ(s), sometimes called the Epstein zeta function:

ζQ(s) :=
∑

(n1 ,...,ng )∈Zg\{0}

1
Q(n1, . . . , ng )s

. (1.3)

However, if Q is instead an indefinite quadratic form, the series in Eq. (1.3) does not
converge. One way to fix this issue it to restrict the sum to a closed subcone C of the
double cone of positivity {v ∈ Rg : Q(v) > 0}. This gives rise to a partial indefinite zeta
function

ζC
Q (s) :=

∑

(n1 ,...,ng )∈C∩Zg

1
Q(n1, . . . , ng )s

. (1.4)

However, unlike the Epstein zeta function, this partial zeta function does not satisfy a
functional equation.
Our family of completed indefinite zeta functions do satisfy a functional equation,

although they are not (generally) Dirichlet series. The completed indefinite zeta func-
tion ζ̂

c1 ,c2p,q (�, s) is defined in terms of the following parameters:

• a complex symmetric (not necessarily Hermitian) matrix � = �� = iM + N , with
M = Im(�) having signature (g − 1, 1);
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• “characteristics” p, q ∈ Rg ;
• “cone parameters” c1, c2 ∈ Cg satisfying the inequalities cj�Mcj < 0;
• a complex variable s ∈ C.

Due to invariance properties, ζ̂ c1 ,c2
p,q (�, s) remains well defined with several of the param-

eters taken to be in quotient spaces:

• the characteristics on a torus, p, q ∈ Rg/Zg ;
• the cone parameters in complex projective space, c1, c2 ∈ Pg−1(C).

The functional equation for the completed indefinite zeta function is givenby the following
theorem.

Theorem 1.1 (Analytic continuation and functional equation) The function ζ̂
c1,c2
a,b (�, s)

may be analytically continued to an entire function onC. It satisfies the functional equation

ζ̂ c1 ,c2
p,q

(
�,

g
2

− s
)

= e(p�q)√
det(−i�)

ζ̂
�c1 ,�c2−q,p

(−�−1, s
)
. (1.5)

In the case of real cone parameters, the completed indefinite zeta function has a series
expansion thatmay be viewed as an analogue of the Dirichlet series expansion of a definite
zeta function. It decomposes (up to �-factors) as a sum of an incomplete indefinite zeta
function ζ

c1 ,c2
p,q (�, s), which is a Dirichlet series, and correction terms ξ

cj
p,q(�, s) that depend

only on the cone parameters c1 and c2 separately.

Theorem 1.2 (Series decomposition)For real cone parameters c1, c2 ∈ Rg , andRe(s) > 1,
the completed indefinite zeta function may be written as

ζ̂ c1 ,c2
p,q (�, s) = π−s�(s)ζ c1 ,c2

p,q (�, s) − π−(s+ 1
2 )�

(
s + 1

2

)(
ξ c2p,q(�, s) − ξ c1p,q(�, s)

)
, (1.6)

where M = Im(�),

ζ c1 ,c2
p,q (�, s) = 1

2
∑

n∈Zg+q

(
sgn(c�1 Mn) − sgn(c�2 Mn)

)
e
(
p�n

)
Q−i�(n)−s, (1.7)

and

ξ cp,q(�, s) = 1
2

∑

ν∈Zg+q
sgn(c�Mn)e

(
p�n

)(
(c�Mn)2

QM(c)

)−s

· 2F1
(
s, s + 1

2
, s + 1;

2QM(c)Q−i�(n)
(c�Mn)2

)
. (1.8)

Here, for any complex symmetric matrix 
, Q
(v) = v�
v denotes the associated
quadratic form; also, 2F1 denotes a hypergeometric function (see Eq. (6.1)). The sum-
mand in Eq. (1.7) should always be interpreted as 0 when sgn(c�1 Mn) = sgn(c�2 Mn);
whenever it is nonzero, Re(Q−i�(n)) > 0, and the complex power is interpreted as
Q−i�(n)−s = exp (−s log (Q−i�(n))) where log is the principal branch of the logarithm
with a branch cut along the negative real axis.
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The series defining the incomplete indefinite zeta function ζ
c1 ,c2p,q (�, s) is a variant of the

partial indefinite zeta function 1.4, which may be seen by writing it as

ζ c1 ,c2
p,q (�, s) =

∑∗

n∈C+∩(Zg+q)
e
(
p�n

)
Q−i�(n)−s −

∑∗

n∈C−∩(Zg+q)
e
(
p�n

)
Q−i�(n)−s,

(1.9)

where C+ = {v ∈ Rg : sgn(c�2 Mv) ≤ 0 ≤ sgn(c�1 Mv)} and C− = {v ∈ Rg : sgn(c�1 Mv) ≤
0 ≤ sgn(c�2 Mv)} are subcones of the two components of the double cone of positivity of
QM(v), and the notation

∑∗ means that points on the boundary of the cone are weighted
by 1

2 , except for n = 0, which is excluded.
The indefinite zeta function is defined as a Mellin transform of an indefinite theta

function (literally, an indefinite theta null with real characteristics, see Definition 5.1 and
the definitions in Sect. 3). Indefinite theta functions were introduced by Sander Zwegers
in his PhD thesis [27]. The indefinite theta functions introduced in this paper generalise
Zwegers’s work to the Siegel modular setting.
Our definition of indefinite zeta functions is in part motivated by an application to

the computation of Stark units over real quadratic fields, which will be covered more
thoroughly in a companion paper [13]. In special cases, an important symmetry, which
we call P-stability, causes the ξ c1 and ξ c2 terms in Eq. (1.6) to cancel, leaving a Dirichlet
series ζ

c1,c2
p,q (�, s). In the 2-dimensional case (g = 2), this Dirichlet series is a difference of

two ray class zeta functions of an order in a real quadratic field.

Theorem 1.3 (Specialisation to a ray class zeta function)LetK bea real quadratic number
field, and let Clc∞1∞2 denote the ray class group ofOK modulo c∞1∞2 (see Eq. (7.1)). For
each class A ∈ Clc∞1∞2 and integral ideal b ∈ A−1, there exists a real symmetric matrix
M of signature (1, 1), along with c1, c2, q ∈ C2, such that

(2πN (b))−s�(s)ZA(s) = ζ̂
c1 ,c2
0,q (iM, s). (1.10)

Here, ZA(s) is the differenced ray class zeta function associated with A (see Definition 7.2).

This paper is organised as follows. In Sect. 2, we review the theory of Riemann theta
functions, which we extend to the indefinite case in Sect. 3, generalising Chapter 2 of
Zwegers’s PhD thesis [27]. In Sects. 4 and5,wedefinedefinite and indefinite zeta functions,
respectively, andprove their analytic continuations and functional equations; in particular,
we prove Theorem 1.1. In Sect. 6, we prove a general series expansion for indefinite zeta
functions, which is Theorem 1.2. In Sect. 7, we prove that indefinite zeta functions restrict
to differences of ray class zeta functions of real quadratic fields, which is Theorem 1.3, and
we work through an example computation of a Stark unit using indefinite zeta functions.

1.2 Notation and conventions

We list for reference the notational conventions used in this paper.

• e(z) := exp(2π iz) is the complex exponential, and this notation is used for z ∈ C not
necessarily real.

• H := {τ ∈ C : Im(τ ) > 0} is the complex upper half-plane.
• Non-transposed vectors v ∈ Cg are always column vectors; the transpose v� is a row

vector.
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• If 
 is a g × g matrix, then 
� is its transpose, and (when 
 is invertible) 
−� is a
shorthand for

(

−1)�.

• Q
(v) denotes the quadratic form Q
(v) = 1
2v

�
v, where 
 is a g × g matrix, and v
is a g × 1 column vector.

• f (c)
∣∣c2
c=c1 := f (c2) − f (c1), where f is any function taking values in an additive group.

• If v =
(
v1
v2

)
∈ C2 and f is a function ofC2, we may write f (v) = f

(
v1
v2

)
rather than

f
((

v1
v2

))
.

• Unless otherwise specified, the logarithm log(z) is the standard principal branch with
log(1) = 0 and a branch cut along the negative real axis, and za means exp(a log(z)).

• Throughout the paper, � will be used to denote a g × g complex symmetric matrix.
We will often need to express � = iM +N whereM,N are real symmetric matrices.
Matrices denoted byM and N will always have real entries, even when we do not say
so explicitly.

1.3 Applications and future work

A paper in progress will prove a Kronecker limit formula for indefinite zeta functions in
dimension 2, which specialises to an analytic formula for Stark units [13]. This formula
may be currently be found in the author’s PhD thesis [12].
While one application of indefinite zeta functions (the new analytic formula for Stark

units) is known, we are hopeful that others will be found. We formulate a few research
questions to motivate future work.

• Can one formulate a full modular transformation law for indefinite theta functions
�

c1 ,c2
� [f ](z,�) for some general class of test functions f ?

• (How) can indefinite theta functions of arbitrary signature, as introduced by Alexan-
drov, Banerjee, Manschot, and Pioline [1], Nazaroglu [16], and Westerholt-Raum
[25], be generalised to the Siegel modular setting? What do the Mellin transforms
of indefinite theta functions of arbitrary signature look like? (Note: Since this paper
was posted, a preprint of Roehrig [19] has appeared that answers the first question by
providing a description of modular indefinite Siegel theta series by means of a system
of differential equations, in the manner of Vignéras.)

• The symmetry property we call P-stability is not the only way an indefinite theta
function can degenerate to a holomorphic function of �; there is also the case when
M = i�, the quadratic formQM factors as a product of two linear forms, and the cone
parameters are sent to the boundary of the cone of positivity. How do the associated
indefinite zeta functions degenerate in this case?

• What can be learned by specialising indefinite zeta functions at integer values of s
besides s = 0 and s = 1?

2 Definite theta functions
In this expository section, we discuss some classical results on (definite) theta functions to
provide context for the new results on indefinite theta functions proved in Sect. 3. Most
of the results in this section may be found in [14], [15], or [18]. The expert may skip most
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of this section but will need to refer to back Sect. 2.3 for conventions for square roots of
determinants used in Sect. 3.2.
Definite theta functions in arbitrary dimension were introduced by Riemann, building

on Jacobi’s earlier work in one dimension. The work of many mathematicians, including
Hecke, Siegel, Schoenberg, andMumford, further developed the theory of theta functions
(including their relationship to zeta functions) and contributed ideas and perspectives
used in this exposition.
The definite theta function—or Riemann theta function—of dimension (or genus) g is

a function of an elliptic parameter z and a modular parameter �. The elliptic parameter
z lives in Cg , but may (almost) be treated as an element of a complex torus Cg/
, which
happens to be an abelian variety. The parameter � is written as a complex g × g matrix
and lives in the Siegel upper half-space Hg , whose definition imposes a condition on
M = Im(�).

2.1 Definitions and geometric context

An abelian variety over a field K is a connected projective algebraic group; it follows from
this definition that the group law is abelian. (See [15] as a reference for all resultsmentioned
in this discussion.) A principal polarisation on an abelian variety A is an isomorphism
between A and the dual abelian variety A∨. Over K = C, every principally polarised
abelian variety of dimension g is a complex torus of the form A(C) = Cg/(Zg + �Zg ),
where � is in the Siegel upper half-space (sometimes called the Siegel upper half-plane,
although it is a complex manifold of dimension g(g+1)

2 ).

Definition 2.1 The Siegel upper half-space of genus g is defined to be the following open
subset of the spaceMg (C) of symmetric g × g complex matrices.

H(0)
g := Hg := {� ∈ Mg (C) : � = �� and Im(�) is positive definite}. (2.1)

When g = 1, we recover the usual upper half-planeH1 = H = {τ ∈ C : Im(τ ) > 0}.

Definition 2.2 The definite (Riemann) theta function is, for z ∈ Cg and � ∈ Hg ,

�(z;�) :=
∑

n∈Zg
e
(
1
2
n��n + n�z

)
. (2.2)

Definition 2.3 When g = 1, the definite theta function is called a Jacobi theta function
and is denoted by ϑ(z, τ ) := �([z]; [τ ]) for z ∈ C and τ ∈ H.

The complex structure on A(C) determines the algebraic structure on A over C; indeed,
the map A �→ A(C) defines an equivalence of categories from the category of abelian
varieties over C to the category of polarisable tori (see Theorem 2.9 in [15]). Concretely,
theta functions realise the algebraic structure from the analytic. The functions�(z+ t;�)
for representatives t ∈ Cg of 2-torsion points of A(C) may be used to define an explicit
holomorphic embedding of A as an algebraic locus in complex projective space. These
shifts t are called characteristics. More details may be found in Chapter VI of [14], in
particular pages 104–108.
The positive integer g is sometimes called the “genus” because the Jacobian Jac(C)

of an algebraic curve of genus g is a principally polarised abelian variety of dimension
g . Not all principally polarised abelian varieties are Jacobians of curves; the question of
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characterising the locus of Jacobians of curves inside the moduli space of all principally
polarised abelian varieties is known as the Schottky problem.

2.2 The modular parameter and the symplectic group action

The Siegel upper half-space has a natural action of the real symplectic group. This group,
and an important discrete subgroup, are defined as follows.

Definition 2.4 The real symplectic group is defined as the set of 2g × 2g real matrices
preserving a standard symplectic form.

Sp2g (R) :=
{
G ∈ GL2g (R) : G�

(
0 −I
I 0

)
G =

(
0 −I
I 0

)}
, (2.3)

where I is the g × g identity matrix. The integer symplectic group is defined by Sp2g (Z) :=
Sp2g (R) ∩ GL2g (Z).

The real symplectic group acts on the Siegel upper half-space by the fractional linear
transformation action

(
A B
C D

)
· � := (A� + B)(C� + D)−1 for

(
A B
C D

)
∈ Spg (R). (2.4)

We will show in Proposition 3.3 (specifically, by the case k = 0) that Hg is closed under
this action.

2.3 A canonical square root

On the Siegel upper half-spaceHg , det(−i�) has a canonical square root.

Lemma 2.5 Let � ∈ Hg . Then
(∫

x∈Rg
e
(
1
2
x��x

)
dx

)2
= 1

det(−i�)
. (2.5)

Proof Equation (2.5) holds for � diagonal and purely imaginary by reduction to the
one-dimensional case

∫ ∞
−∞ e−πax2 dx = 1√

a . Consequently, Eq. (2.5) holds for any purely
imaginary � by a change of basis, using spectral decomposition.
Consider the two sides of Eq. (2.5) as holomorphic functions in g(g+1)

2 complex variables
(the entries of �); they agree whenever those g(g+1)

2 variables are real. Because they are
holomorphic, it follows by analytic continuation that they agree everywhere. ��
Definition 2.6 Lemma 2.5 provides a canonical square root of det(−i�):

√
det(−i�) :=

(∫

x∈Rg
e
(
1
2
x��x

)
dx

)−1
. (2.6)

Whenever we write “
√
det(−i�)” for � ∈ Hg , we will be referring to this square root.

We will later need to use this square root to evaluate a shifted version of the integral
that defines it.

Corollary 2.7 Let � ∈ Hg and c ∈ Cg . Then,
∫

x∈Rg
e
(
1
2
(x + c)��(x + c)

)
dx = 1√

det(−i�)
. (2.7)
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Proof Fix�. The left-hand side of Eq. (2.7) is constant for c ∈ Rg , by Lemma 2.5. Because
the left-hand side is holomorphic in c, it is in fact constant for all c ∈ Cg . ��

Note that, if � ∈ Hg , then � is invertible and −�−1 ∈ Hg . The latter is true because

−�−1 =
(
0 −I
I 0

)
· �, where “·” is the fractional linear transformation action of Sp2g (R)

onHg defined by Eq. (2.4).
The behaviour of our canonical square root under the modular transformation � �→

−�−1 is given by the following proposition.

Proposition 2.8 If � ∈ Hg , then
√
det(−i�)

√
det(i�−1) = 1.

Proof This follows from Definition 2.6 by plugging in � = iI , because the function
given by � �→ √

det(−i�)
√
det(i�−1) is continuous and takes values in {±1}, and Hg is

connected. ��

2.4 Transformation laws of definite theta functions

Proposition 2.9 The definite theta function for z ∈ Cg and� ∈ Hg satisfies the following
transformation law with respect to the z variable, for a + �b ∈ Zg + �Zg :

�(z + a + �b;�) = e
(

−1
2
b��b − b�z

)
�(z;�). (2.8)

Proof The proof is a straightforward calculation. It may be found (using slightly different
notation) as Theorem 4 on pages 8–9 of [18]. ��

Theorem 2.10 The definite theta function for z ∈ Cg and � ∈ Hg satisfies the following
transformation lawswith respect to the� variable,whereA ∈ GLg (Z), B ∈ Mg (Z), B = B�:

(1) �(z;A��A) = �(A−�z;�).
(2) �(z;� + 2B) = �(z;�).

(3) �(z;−�−1) = e
(
1
2 z

��z
)

√
det(i�−1)

�(�z;�).

Proof The proof of (1) and (2) is a straightforward calculation. A more powerful version
of this theorem, combining (1)–(3) into a single transformation law, appears as Theorem
A on pages 86–87 of [18].
To prove (3), we apply the Poisson summation formula directly to the theta series. The

Fourier transforms of the terms are given as follows.

∫

Rg
e
(
Q�(n) + n�z

)
e
(
−n�ν

)
dn

=
∫

Rg
e
(
Q�(n) + n�(z − ν)

)
dn (2.9)

= e
(−Q−�−1 (z − ν)

) ∫

Rg
e
(
Q�

(
n + �−1(z − ν)

))
dn (2.10)

= e
(−Q−�−1 (z − ν)

)
√
det(−i�)

. (2.11)
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In the last line, we used Lemma 2.5 and Definition 2.6. Now, by the Poisson summation
formula,

�(z;�) =
∑

ν∈Zg

e
(−Q−�−1 (z − ν)

)
√
det(−i�)

(2.12)

= e
(
Q−�−1 (z)

)
√
det(−i�)

∑

ν∈Zg
e
(
Q−�−1 (ν) + ν��−1z

)
(2.13)

= e
(
Q−�−1 (z)

)
√
det(−i�)

∑

ν∈Zg
e
(
Q−�−1 (ν) − ν��−1z

)
(sending ν �→ −ν) (2.14)

= e
(− 1

2z
��−1z

)
√
det(−i�)

�
(−�−1z,−�−1) . (2.15)

If � is replaced by −�−1, we obtain (3). ��
As was mentioned, it is possible to combine all of the modular transformations into a

single theorem describing the transformation of � under the action of Sp2g (Z),
(
A B
C D

)
· � = (A� + B)(C� + D)−1. (2.16)

This rule is already fairly complicated in dimension g = 1, where the transformation law
involves Dedekind sums. The general case is done in Chapter III of [18], with the main
theorems stated on pages 86–90.

2.5 Definite theta functions with characteristics

There is another notation for theta functions, using “characteristics,” and it will be nec-
essary to state the transformation laws using this notation as well. We replace z with
z = p + �q for real variables p, q ∈ Rg . The reader is cautioned that the literature on
theta functions contains conflicting conventions, and some authors may use notation
identical to this one to mean something slightly different.

Definition 2.11 Define the definite theta null with real characteristics p, q ∈ Rg , for
� ∈ Hg :

�p,q(�) := e
(
1
2
q��q + p�q

)
� (p + �q;�) . (2.17)

The transformation laws for �p,q(�) follow directly from those for �(z;�).

Proposition 2.12 Let � ∈ Hg and p, q ∈ Rg . The elliptic transformation law for the
definite theta null with real characteristics is given by

�p+a,q+b(�) = e
(
a�(q + b)

)
�p,q(�). (2.18)

for a, b ∈ Zg .

Proposition 2.13 Let � ∈ Hg and p, q ∈ Rg . The modular transformation laws for
the definite theta null with real characteristics are given as follows, where A ∈ GLg (Z),
B ∈ Mg (Z), and B = B�.

(1) �p,q(A��A) = �A−�p,Aq(�).
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(2) �p,q(� + 2B) = e(−q�Bq)�p+2Bq,q(�).
(3) �p,q

(−�−1) = e(p�q)√
det(i�−1)

�−q,p(�).

3 Indefinite theta functions
If we allow Im(�) to be indefinite, the series expansion in Eq. (2.2) no longer converges
anywhere. We want to remedy this problem by inserting a variable coefficient into each
term of the sum. In Chapter 2 of his PhD thesis [27], Sander Zwegers found—in the case
when � is purely imaginary—a choice of coefficients that preserves the transformation
properties of the theta function.
The results of this section generalise Zwegers’s work by replacing Zwegers’s indefinite

theta function ϑ
c1 ,c2
M (z, τ ) by the indefinite theta function�c1 ,c2 [f ](z;�). The function has

been generalised in the following ways.

• Replacing τM for τ ∈ H andM ∈ Mg (R) real symmetric in of signature (g − 1, 1) by
� ∈ H(1)

g . (Adds g(g+1)
2 − 1 real dimensions.)

• Allowing c1, c2 to be complex. (Adds 2g − 2 real dimensions.)
• Allowing a test function f (u), whichmust be specialised to f (u) = 1 for all themodular

transformation laws to hold.

One motivation for introducing a test function f is to find transformation laws for a more
general class of test functions (e.g. polynomials). Wemay investigate the behaviour of test
functions under modular transformations in future work. However, for the purpose of
this paper, only the cases u �→ |u|r will be relevant.

3.1 The Siegel intermediate half-space

Definition 3.1 If M ∈ GLg (R) and M = M�, the signature of M (or of the quadratic
form QM) is a pair (j, k), where j is the number of positive eigenvalues of M, and k is the
number of negative eigenvalues (so j + k = g).

Definition 3.2 For 0 ≤ k ≤ g , we define the Siegel intermediate half-space of genus g
and index k to be

H(k)
g := {� ∈ Mg (C) : � = �� and Im(�) has signature (g − k, k)}. (3.1)

We call a complex torus of the form T� := Cg/(Zg + �Zg ) for � ∈ H(k)
g , k �= 0, g , an

intermediate torus.

Intermediate tori are usually not algebraic varieties. An example of intermediate tori in
the literature are the intermediate Jacobians of Griffiths [9–11]. Intermediate Jacobians
generalise Jacobians of curves, which are abelian varieties, but those defined by Griffiths
are usually not algebraic. (In contrast, the intermediate Jacobians defined byWeil [24] are
algebraic.)
The symplectic group Sp2g (R) acts on the set of g × g complex symmetric matrices by

the fractional linear transformation action,
(
A B
C D

)
· � = (A� + B)(C� + D)−1. (3.2)
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Proposition 3.3 If � ∈ H(k)
g and

(
A B
C D

)
∈ Sp2g (R), then (A� + B)(C� +D)−1 ∈ H(k)

g .

Moreover, the H(k)
g are the open orbits of the Sp2g (R)-action on the set of g × g complex

symmetric matrices.

Proof Trivial for
(
I B
0 I

)
. For

(
A� 0
0 A−1

)
, this is Sylvester’s law of inertia. For

(
0 −I
I 0

)
,

we have Im(−�−1) = 1
2i (−�−1 + �

−1) = 1
2i�

−1(−� + �)�−1 = �
−1 Im(�)�−1 =

(
�

−1)�
Im(�)�−1, so Im(−�−1) and Im(�) have the same signature. These three types

of matrices generate Sp2g (R).
Now suppose�1,�2 ∈ H(k)

g . There exists amatrixA ∈ GLg (R) such thatA� Im(�1)A =
Im(�2). For an appropriate choice of real symmetric B ∈ Mg (R), we thus have A��1A +
B = �2. That is,

(
I B
0 I

)
·
(
A� 0
0 A−1

)
· �1 = �2, (3.3)

so �1 and �2 are in the same Sp2g (R)-orbit.
Thus, theH(k)

g are the open orbits of the Sp2g (R)-action on the set of g × g symmetric
complex matrices. ��

3.2 More canonical square roots

From now on, we will focus on the case of index k = 1, which is signature (g − 1, 1).
The construction of modular theta series for k ≥ 2 utilises higher-order error functions
arising in string theory [1]. More research is needed to develop the higher index theory in
the Siegel modular setting.

Lemma 3.4 Let M be a real symmetric matrix of signature (g − 1, 1). On the region
RM = {z ∈ Cg : z�Mz < 0}, there is a canonical choice of holomorphic function g(z) such
that g(z)2 = −z�Mz.

Proof By Sylvester’s law of inertia, there is some P ∈ GL+
g (R) (i.e. with det(P) > 0) such

thatM = P�JP, where

J :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...
. . .

...
0 0 0 . . . 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (3.4)

The region S := {(z2, . . . , zg ) ∈ Cg−1 : |z2|2 + · · · |zg |2 < 1} is simply connected (as it
is a solid ball) and does not intersect {(z2, . . . , zg ) ∈ Cg−1 : z22 + · · · + z2g = 1} (because,
if it did, we’d have 1 =

∣∣∣z22 + · · · + z2g
∣∣∣ ≤ |z2|2 + · · · |zg |2 < 1, a contradiction). Thus,

there exists a unique continuous branch of the function
√
1 − z22 − · · · − z2g on S sending

(0, . . . , 0) �→ 1; this function is also holomorphic. For z ∈ RJ , define

gJ (z) := z1

√

1 −
(
z2
z1

)2
− · · · −

(zg
z1

)2
. (3.5)
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This gJ is holomorphic and satisfies gJ (z)2 = −z�Jz, gJ (αz) = αgJ (z), and gJ (e1) = 1where

e1 :=

⎛

⎜⎜⎜⎜⎝

1
0
...
0

⎞

⎟⎟⎟⎟⎠
. (3.6)

Conversely, if we have a continuous function g(z) satisfying g(z)2 = −z�Jz and g(e1) = 1,
it follows that g(αz) = αg(z), and thus g(z) = gJ (z).
Now, we’d like to define gM(z) := gJ (Pz), so that we have gM(z)2 = −z�Mz. We need

to check that this definition does not depend on the choice of P. SupposeM = P�
1 JP1 =

P�
2 JP2 for P1, P2 ∈ GL+

g (R). So J =
(
P2P−1

1

)�
J
(
P2P−1

1

)
, that is, P2P−1

1 ∈ O(g − 1, 1).
But det(P2P−1

1 ) = det(P2)det(P1)−1 > 0, so, in fact, P2P−1
1 ∈ SO(g − 1, 1).

For any Q ∈ SO(g − 1, 1), we have gJ (Qe1)2 = 1. The function Q �→ gJ (Qe1) must
be either the constant 1 or the constant −1, because SO(g − 1, 1) is connected. Since
gJ (e1) = 1 (Q = I), we have gJ (Qe1) = 1 for allQ ∈ SO(1, g −1). The function z �→ gJ (Qz)
is a continuous square root of−z�Jz sending e1 to 1, so gJ (Qz) = gJ (z). TakingQ = P2P−1

1
and replacing z with P1z, we have gJ (P2z) = gJ (P1z), as desired. ��

Definition 3.5 If M is a real symmetric matrix of signature (g − 1, 1), we will write√−z�Mz for the function gM(z) in Lemma 3.4. We may also use similar notation, such
as

√
− 1

2z�Mz := 1√
2

√−z�Mz.

Lemma 3.6 SupposeM is a real symmetric matrix of signature (g −1, 1), and c ∈ Cg such
that c�Mc < 0. Then,M+M Re

((− 1
2c

�Mc
)−1 cc�

)
M iswell defined (that is, c�Mc �= 0)

and positive definite.

Proof BecauseM has signature (g − 1, 1) and c�Mc < 0,

(
c�Mc

)2 −
∣∣∣c�Mc

∣∣∣
2 = det

(
c�Mc c�Mc
c�Mc c�Mc

)
< 0. (3.7)

Thus,
∣∣c�Mc

∣∣ >
(
c�Mc

)2
> 0, so c�Mc �= 0 and M + M Re

((− 1
2c

�Mc
)−1 cc�

)
M is

well defined. Let

A : = M + M Re
((

−1
2
c�Mc

)−1
cc�

)
M (3.8)

= M − M
(
c�Mc

)−1
cc�M − M

(
c�Mc

)−1
cc�M. (3.9)

On the (g − 1)-dimensional subspaceW = {w ∈ Cg : c�Mw = 0}, the sesquilinear form
w �→ w�Mw is positive definite; this follows from the fact that c�Mc < 0, becauseM has
signature (g − 1, 1). For nonzero w ∈ W ,

w�Aw = w�Mw − (c�Mc)−1(w�Mc)(c�Mw) − (c�Mc)−1(w�Mc)(c�Mw) (3.10)

= w�Mw − (c�Mc)−1(0)(c�Mw) − (c�Mc)−1(w�Mc)(0) (3.11)

= w�Mw > 0. (3.12)
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Moreover,

c�Aw = c�Mw − (c�Mc)−1(c�Mc)(c�Mw) − (c�Mc)−1(c�Mc)(c�Mw) (3.13)

= c�Mw − c�Mw − (c�Mc)−1(c�Mc)(0) (3.14)

= 0, (3.15)

and

c�Ac = c�Mc − (c�Mc)−1(c�Mc)(c�Mc) − (c�Mc)−1(c�Mc)(c�Mc) (3.16)

= c�Mc − c�Mc − c�Mc (3.17)

= −c�Mc (3.18)

= −c�Mc > 0. (3.19)

We have now shown that A is positive definite, as it is positive definite on subspaces W
and Cc, and these subspaces span Cg and are perpendicular with respect to A. ��

Lemma 3.7 Let � = N + iM be an invertible complex symmetric g × g matrix. Consider
c ∈ Cg such that c�Mc < 0. The following identities hold:

(1) M�−1 = � Im
(−�−1).

(2) M − 2iM�−1M = � Im
(−�−1)�.

(3) det
(
−i

(
� − 2i

c�McMcc�M
))

= det(−i�) c
�� Im(−�−1)�c

c�Mc .

Proof Proof of (1):

M�−1 = 1
2i
(� − �)�−1 = 1

2i
(I − ��−1) (3.20)

= �
1
2i
(�−1 − �−1) = � Im

(−�−1) . (3.21)

Proof of (2):

M − 2iM�−1M = M�−1 (� − 2iM) (3.22)

= � Im
(−�−1) (

� − (� − �)
)
using (1) (3.23)

= � Im
(−�−1)�. (3.24)

Proof of (3): Note that det(I + A) = 1 + Tr(A) for any rank 1 matrix A. Thus,

det
(

−i
(

� − 2i
c�Mc

Mcc�M
))

= det(−i�)det
(
I + 2i

c�Mc
(�Mc)(Mc)�

)
(3.25)

= det(−i�)
(
1 + Tr

(
2i

c�Mc
(�Mc)(Mc)�

))
(3.26)

= det(−i�)
(
1 +

(
2i

c�Mc
c�M�−1Mc

))
(3.27)

= det(−i�)
−c�

(
M − 2iM�−1M

)
c

−c�Mc
(3.28)
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= det(−i�)
−(�c)� Im

(−�−1) (�c)
−c�Mc

, (3.29)

using (2) in the last step. ��

Definition 3.8 (Canonical square root) If� ∈ H(1)
g , thenwe define

√
det(−i�) as follows.

Write � = N + iM for N,M ∈ Mg (R), and choose any c such that c�Mc < 0. By Lemma
3.6, the matrixM +M Re

((− 1
2c

�Mc
)−1 cc�

)
M is positive definite. We can also rewrite

this matrix as M + M Re
((− 1

2c
�Mc

)−1 cc�
)
M = Im

(
� − 2i

c�McMcc�M
)
. By part (3)

of Lemma 3.7,

det
(

−i
(

� − 2i
c�Mc

Mcc�M
))

= det(−i�)
−(�c)� Im

(−�−1) (�c)
−c�Mc

. (3.30)

We can thus define
√
det(−i�) as follows:

√
det(−i�) :=

√−c�Mc
√
det

(
−i

(
� − 2i

c�McMcc�M
))

√
−(�c)� Im

(−�−1) (�c)
, (3.31)

where the square roots on the right-hand side are as defined in Definitions 2.6 and 3.5.
This definition does not depend on the choice of c, because {c ∈ Cg : c�Mc < 0} is
connected.

3.3 Definition of indefinite theta functions

Definition 3.9 For any complex number α and any entire test function f , define the
incomplete Gaussian transform

Ef (α) :=
∫ α

0
f (u)e−πu2 du, (3.32)

where the integral may be taken along any contour from 0 to α. In particular, for the
constant functions 1(u) = 1, set

E(α) := E1(α) =
∫ α

0
e−πu2 du = α

2|α|
∫ |α|2

0
t−1/2e−π (α/|α|)2t dt. (3.33)

When α is real, define Ef (α) for an arbitrary continuous test function f :

Ef (α) :=
∫ α

0
f (u)e−πu2 du. (3.34)

Definition 3.10 Define the indefinite theta function attached to the test function f to be

�c1 ,c2 [f ](z;�) :=
∑

n∈Zg
Ef

⎛

⎝ c� Im(�n + z)√
− 1

2 c� Im(�)c

⎞

⎠

∣∣∣∣∣∣

c2

c=c1

e
(
1
2
n��n + n�z

)
, (3.35)

where � ∈ H(1)
g , z ∈ Cg , c1, c2 ∈ Cg , c1�Mc1 < 0, c2�Mc2 < 0, and f (ξ ) is a continuous

function of one variable satisfying the growth condition log
∣∣f (ξ )

∣∣ = o
(|ξ |2). If the cj are

not both real, also assume that f is entire.
Also define the indefinite theta function �c1 ,c2 (z;�) := �c1 ,c2 [1](z;�).
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The function �c1 ,c2 (z;�) = �c1 ,c2 [1](z;�) is the function we are most interested in,
because it will turn out to satisfy a symmetry in � �→ −�−1. We will also show that the
functions �c1 ,c2 [u �→ |u|r](z;�) are equal (up to a constant) for certain special values of
the parameters.
Before we can prove the transformation laws of our theta functions, we must show that

the series defining them converges.

Proposition 3.11 The indefinite theta series attached to f (Eq. (3.35)) converges absolutely
and uniformly for z ∈ Rg + iK , where K is a compact subset of Rg (and for fixed �, c1, c2,
and f ).

Proof Let M = Im�. We may multiply c1 and c2 by any complex scalar without chang-
ing the terms of the series Eq. (3.35), so we assume without loss of generality that
Re(c1�Mc2) < 0.
For λ ∈ [0, 1], define the vector c(λ) = (1 − λ)c1 + λc2 and the real symmetric matrix

A(λ) := M + M Re
((− 1

2 c(λ)
�Mc(λ)

)−1 c(λ)c(λ)�
)
M. Note that c(λ)�Mc(λ) = (1 −

λ)2c1�Mc1 + 2λ(1 − λ) Re(c1�Mc2) + λ2c2�Mc2 < 0 because each term is negative
(except when λ = 0 or 1, in which case one term is negative and the others are zero). By
Lemma 3.6, A(λ) is well defined and positive definite for each λ ∈ [0, 1].
Consider (x, λ) �→ x�A(λ)x as apositive real-valued continuous functionon the compact

set that is the product of the unit ball {x�x = 1} and the interval [0, 1]. It has a global
minimum ε > 0.
The parameterisation γ : [0, 1] → C, γ (λ) := c(λ)�(Mn+y)√

− 1
2 c(λ)�Mc(λ)

, defines a contour from

c�1 (Mn+y)√
− 1

2 c
�
1 Mc1

to c�2 (Mn+y)√
− 1

2 c
�
2 Mc2

, so that

Ef
(
c�(Mn + y)
− 1

2c�Mc

)∣∣∣∣∣

c2

c=c1

=
∫

γ

f (u)e−πu2 du. (3.36)

We give an upper bound for

max
λ∈[0,1]

∣∣∣∣e
−πγ (λ)2e

(
1
2
n��n + n�z

)∣∣∣∣

= eπy
�M−1y max

λ∈[0,1]
e

−π

− 1
2 c(λ)

�Mc(λ)
(c(λ)�M(n+M−1y))2

e−π(n+M−1y)�M(n+M−1y) (3.37)

= eπy
�M−1y max

λ∈[0,1]
e−π(n+M−1y)�A(λ)(n+M−1y) (3.38)

≤ eπy
�M−1ye−πε

∥∥n+M−1y
∥∥2 , (3.39)

where the vector norm is ‖v‖ := v�v for v ∈ Rg . Thus,

∣∣∣∣∣Ef
(
c�(Mn + y)
− 1

2c�Mc

)∣∣∣∣∣

c2

c=c1

e
(
1
2
n��n + n�z

)∣∣∣∣∣

≤
∫

γ

∣∣f (u)
∣∣ eπy�M−1ye−πε

∥∥n+M−1y
∥∥2 du (3.40)

≤ p(n)e−πε
∥∥n+M−1y

∥∥2 , (3.41)
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where log p(n) = o
(‖n‖2). Thus, the terms of the series are o

(
e− πε

2 (‖n‖2+‖M−1y‖)
)
, and so

the series converges absolutely and uniformly for x ∈ Rg and y ∈ K . ��

3.4 Transformation laws of indefinite theta functions

We will now prove the elliptic and modular transformation laws for indefinite theta
functions. In all of these results, we assume that z ∈ Cg , � ∈ H(1)

g , cj ∈ Cg satisfying
cj� Im(�)cj , and f is a function of one variable satisfying the conditions specified in
Definition 3.10.

Proposition 3.12 The indefinite theta function attached to f satisfies the following trans-
formation law with respect to the z variable, for a + �b ∈ Zg + �Zg :

�c1 ,c2 [f ](z + a + �b;�) = e
(

−1
2
b��b − b�z

)
�c1 ,c2 [f ](z;�). (3.42)

Proof By definition,

�c1 ,c2 [f ](z + a + �b;�)

=
∑

n∈Zg
Ef

(
c� Im(�n + (z + a + �b))

− 1
2 c� Im(�)c

)∣∣∣∣∣

c2

c=c1

e
(
Q�(n) + n�(z + a + �b)

)
.

(3.43)

Because a ∈ Zg , Im(a) is zero and e(n�a) = 1, so

�c1 ,c2 [f ](z + a + �b;�)

=
∑

n∈Zg
Ef

(
c� Im(�(n + b) + z)

− 1
2 c� Im(�)c

)∣∣∣∣∣

c2

c=c1

e
(
Q�(n) + n�(z + �b)

)
(3.44)

= e
(

−1
2
b��b

) ∑

n∈Zg
Ef

(
c� Im(�(n + b) + z)

− 1
2 c� Im(�)c

)∣∣∣∣∣

c2

c=c1

e
(
Q�(n + b) + n�z

)

(3.45)

= e
(

−1
2
b��b

) ∑

n∈Zg
Ef

(
c� Im(�n + z)
− 1

2c� Im(�)c

)∣∣∣∣∣

c2

c=c1

e
(
Q�(n) + (n − b)�z

)
(3.46)

= e
(

−1
2
b��b − b�z

)
�[f ]c1 ,c2 (z;�). (3.47)

The identity is proved. ��

Proposition 3.13 The indefinite theta function satisfies the following condition with
respect to the c variable:

�c1 ,c3 [f ](z;�) = �c1 ,c2 [f ](z;�) + �c2 ,c3 [f ](z;�). (3.48)

Proof Add the series termwise. ��

Theorem 3.14 The indefinite theta function satisfies the following transformation laws
with respect to the � variable, where A ∈ GLg (Z), B ∈ Mg (Z), B = B�:

(1) �c1 ,c2 [f ](z;A��A) = �Ac1 ,Ac2 [f ](A−�z;�).
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(2) �c1 ,c2 [f ](z;� + 2B) = �c1 ,c2 [f ](z;�).
(3) In the case where f (u) = 1(u) = 1, we have

�c1 ,c2 (z;−�−1) = eπ iz��z
√
det(i�−1)

�−�
−1c1 ,−�

−1c2 (�z;�). (3.49)

Proof The proof of (1) is a direct calculation.

�c1 ,c2 [f ](z;A��A)

=
∑

n∈Zg
Ef

⎛

⎝c� Im(A��An + z)√
− 1

2 c� Im(�)c

⎞

⎠

∣∣∣∣∣∣

c2

c=c1

e
(
1
2
n�A��An + n�z

)
(3.50)

=
∑

m∈Zg
Ef

⎛

⎝c� Im(A��m + z)√
− 1

2 c� Im(�)c

⎞

⎠

∣∣∣∣∣∣

c2

c=c1

e
(
1
2
m��m + (

A−1m
)� z

)
(3.51)

by the change of basism = An, so

�c1 ,c2 [f ](z;A��A)

=
∑

m∈Zg
Ef

⎛

⎝ (Ac)� Im(�m + A−�z)√
− 1

2c� Im(�)c

⎞

⎠

∣∣∣∣∣∣

c2

c=c1

e
(
1
2
m��m + m�A−�z

)
(3.52)

= �Ac1 ,Ac2 [f ](A−�z;�). (3.53)

The proof of (2) is also a direct calculation.

�c1 ,c2 [f ](z;� + 2B)

=
∑

n∈Zg
Ef

⎛

⎝c� Im((� + 2B)n + z)√
− 1

2 c� Im(�)c

⎞

⎠

∣∣∣∣∣∣

c2

c=c1

e
(
1
2
n�(� + 2B)n + n�z

)
(3.54)

=
∑

n∈Zg
Ef

⎛

⎝c�(Im((�)n + z)) + 2 Im(B)n√
− 1

2 c� Im(�)c

⎞

⎠

∣∣∣∣∣∣

c2

c=c1

e
(
Q�(n) + n�Bn + n�z

)

(3.55)

=
∑

n∈Zg
Ef

⎛

⎝c� Im((�)n + z)√
− 1

2c� Im(�)c

⎞

⎠

∣∣∣∣∣∣

c2

c=c1

e
(
Q�(n) + n�z

)
(3.56)

= �c1 ,c2 [f ](z;�); (3.57)

where e
(
n�Bn

) = 1 because the n�Bn are integers, and Im(B) = 0 because B is a real
matrix.
The proof of (3) is more complicated, and, like the proof of the analogous property for

definite (Jacobi and Riemann) theta functions, uses Poisson summation. The argument
that follows is a modification of the argument that appears in the proof of Lemma 2.8 of
Zwegers’s thesis [27].
We will find a formula for the Fourier transform of the terms of our theta series. Most

of the work is done in the calculation of the integral that follows. In this calculation,
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M = Im�, and z = x + iy for x, y ∈ Cg . The differential operator �x is a row vector with
entries ∂

∂xj , and similarly for �n.

�x

⎛

⎜⎝
∫

n∈Rg
E

⎛

⎝c�Mn + c�y√
− 1

2 c�Mc

⎞

⎠

∣∣∣∣∣∣

c2

c=c1

e
(
Q�

(
n + �−1z

))
dn

⎞

⎟⎠

=
∫

n∈Rg
E

⎛

⎝c�Mn + c�y√
− 1

2 c�Mc

⎞

⎠

∣∣∣∣∣∣

c2

c=c1

�x
(
e
(
Q�

(
n + �−1z

)))
dn (3.58)

=
⎛

⎜⎝
∫

n∈Rg
E

⎛

⎝c�Mn + c�y√
− 1

2 c�Mc

⎞

⎠

∣∣∣∣∣∣

c2

c=c1

�n
(
e
(
Q�

(
n + �−1z

)))
dn

⎞

⎟⎠�−1 (3.59)

=
⎛

⎜⎝−
∫

n∈Rg
�n

⎛

⎝E
⎛

⎝c�Mn + c�y√
− 1

2 c�Mc

⎞

⎠

⎞

⎠

∣∣∣∣∣∣

c2

c=c1

e
(
Q�

(
n + �−1z

))
dn

⎞

⎟⎠ �−1 (3.60)

=
(
k

∫

n∈Rg
e
(

i
−c�Mc

(
c� Im(�)n

)2)
e (Q�(n + az)) dn

)
c�M�−1

∣∣∣∣
c2

c=c1
,

(3.61)

where k := −2√
− 1

2 c�Mc
∈ C, az := �−1z − M−1y ∈ Cg , and integration by parts was used

in Eq. (3.60). Continuing the calculation,

�x

⎛

⎜⎝
∫

n∈Rg
E

⎛

⎝c�Mn + c�y√
− 1

2 c�Mc

⎞

⎠

∣∣∣∣∣∣

c2

c=c1

e
(
Q�

(
n + �−1z

))
dn

⎞

⎟⎠

= k
(∫

n∈Rg
e
(
Q

�− 2i
c�Mc

Mcc�M(n) + a��n + 1
2
a��a

)
dn

)
c�M�−1

∣∣∣∣
c2

c=c1
(3.62)

= ke
(

−1
2
a��

(
� − 2i

c�Mc
Mcc�M

)−1
�a + 1

2
a��a

)
I (c)c�M�−1

∣∣∣∣∣

c2

c=c1

,

(3.63)

where

I (c) :=
∫

n∈Rg
e
(
Q

�− 2i
c�Mc

Mcc�M

(
n +

(
� − 2i

c�Mc
Mcc�M

)−1
�a

))
dn (3.64)

= 1

det
√

−i
(
� − 2i

c�McMcc�M
) (3.65)

by Lemma 2.5.
We can check (by multiplication) that

(
� − 2i

c�Mc
Mcc�M

)−1
= �−1 − 2i

c�Mc − 2ic�M�−1Mc
�−1Mcc�M�−1. (3.66)

Thus,

� − �

(
� − 2i

c�Mc
Mcc�M

)−1
� = 2i

c�Mc − 2ic�M�−1Mc
Mcc�M. (3.67)
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Now compute, using Lemma 3.7,

Ma = M�−1z − y = � Im
(−�−1) z − y = �

(
Im

(−�−1) z − �
−1y

)
(3.68)

= 1
2i

�
((

−�−1 + �
−1) z − �

−1(z − z)
)

= 1
2i

�
(
−�−1z + �

−1z
)

(3.69)

= � Im
(−�−1z

)
. (3.70)

Also by Lemma 3.7,M − 2iM�−1M = � Im
(−�−1)�, and

√

det
(

−i
(

� − 2i
c�Mc

Mcc�M
))

=
√
det(−i�)

√
−c�� Im

(−�−1)�c
√−c�Mc

. (3.71)

We have now shown that

�x

⎛

⎜⎝
∫

n∈Rg
E

⎛

⎝c� Im (�n + z)√
− 1

2c�Mc

⎞

⎠

∣∣∣∣∣∣

c2

c=c1

e
(
Q�

(
n + �−1z

))
dn

⎞

⎟⎠

=
−2e

(
i

(�c) Im(−�−1)(�c) (c
�Ma)2

)

√
det(−i�)

√
− 1

2 (�c) Im(−�−1)(�c)
c�M�−1

∣∣∣∣∣∣

c2

c=c1

(3.72)

=
−2e

(
i

(�c) Im(−�−1)(�c) (c
�Ma)2

)

√
det(−i�)

√
− 1

2 (�c) Im(−�−1)(�c)
(�c)� Im(�−1)

∣∣∣∣∣∣

c2

c=c1

(3.73)

= 1√
det(−i�)

�xE
⎛

⎝ (�c)�
(
Im(−�−1)n + Im(−�−1z)

)
√

− 1
2 (�c) Im(−�−1)(�c)

⎞

⎠

∣∣∣∣∣∣

c2

c=c1

. (3.74)

Define the following function on Cg ,

C(z) : =
∫

n∈Rg
E

⎛

⎝c� Im (�n + z)√
− 1

2 c��c

⎞

⎠

∣∣∣∣∣∣

c2

c=c1

e
(
Q�

(
n + �−1z

))
dn

− 1√
det(i�)

E
⎛

⎝ (�c)� Im(−�−1z)√
− 1

2 (�c) Im(−�−1)(�c)

⎞

⎠

∣∣∣∣∣∣

c2

c=c1

, (3.75)

suppressing the dependence of C(z) on � and c. We have just shown that �xC(z) = 0,
so C(z + a) = C(z) for any a ∈ Rg . By inspection, C(z + �−1b) = C(z) for any b ∈ Rg .
It follow from both of these properties that C(z) is constant. Moreover, by inspection,
C(−z) = −C(z); therefore, C(z) = 0. In other words,

∫

n∈Rg
E

⎛

⎝c� Im (�n + z)√
− 1

2 c��c

⎞

⎠

∣∣∣∣∣∣

c2

c=c1

e
(
Q�

(
n + �−1z

))
dn

= 1√
det(−i�)

E
⎛

⎝ (�c)� Im(−�−1z)√
− 1

2 (�c) Im(−�−1)(�c)

⎞

⎠

∣∣∣∣∣∣

c2

c=c1

. (3.76)
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Now set g(z) := �c1 ,c2 (z;�), which has Fourier coefficients

cn(g)(z) = E
⎛

⎝c� Im (�n + z)√
− 1

2 c��c

⎞

⎠

∣∣∣∣∣∣

c2

c=c1

e
(
1
2
n��n + n�z

)
. (3.77)

By plugging in z−ν for z in Eq. (3.76) andmultiplying both sides by e
(− 1

2 (z−ν)��−1(z−
ν)

)
, we obtain the following expression for the Fourier coefficients of ĝ :

cν (̂g) (z) =
∫

n∈Rg
E

⎛

⎝c� Im (�n + z)√
− 1

2c��c

⎞

⎠

∣∣∣∣∣∣

c2

c=c1

e
(
1
2
n��n + n�z

)
e(−n�ν) dn (3.78)

= e
(− 1

2 (z − ν)��−1(z − ν)
)

√
det(−i�)

E
⎛

⎝ (�c)� Im(−�−1ν − �−1z)√
− 1

2 (�c) Im(−�−1)(�c)

⎞

⎠

∣∣∣∣∣∣

c2

c=c1

(3.79)

= e
(− 1

2z
��−1z

)
√
det(−i�)

E
⎛

⎝ (�c)� Im(−�−1(−ν) − �−1z)√
− 1

2 (�c) Im(−�−1)(�c)

⎞

⎠

∣∣∣∣∣∣

c2

c=c1

(3.80)

· e
(
1
2
ν�(−�−1)ν + (−ν)�(−�−1z)

)
. (3.81)

It follows by Poisson summation that

�c1 ,c2 (z;�) =
∑

ν∈Zg
cν (̂g) (z) (3.82)

= e
(− 1

2z
��−1z

)
√
det(−i�)

��c1 ,�c2 (−�−1z;−�−1) . (3.83)

We obtain (3) by replacing � with −�−1. ��

3.5 Indefinite theta functions with characteristics

Now we restate the transformation laws using “characteristics” notation, which will be
used when we define indefinite zeta functions in Sect. 5.

Definition 3.15 Define the indefinite theta null with characteristics p, q ∈ Rg :

�c1 ,c2
p,q [f ](�) := e2π i

(
1
2 q

��q+p�q
)

�c1 ,c2 [f ] (p + �q;�) ; (3.84)

�c1 ,c2
p,q (�) := e2π i

(
1
2 q

��q+p�q
)

�c1 ,c2 (p + �q;�) . (3.85)

The transformation laws for �
c1 ,c2
p,q [f ](�) follow from the transformation laws for

�c1 ,c2 [f ](z;�).

Proposition 3.16 The elliptic transformation law for the indefinite theta null with char-
acteristics is:

�
c1 ,c2
p+a,q+b[f ](�) = e(a�(q + b))�c1 ,c2

p,q [f ](�). (3.86)

Proposition 3.17 The modular transformation laws for the indefinite theta null with
characteristics are as follows.
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(1) �
c1 ,c2p,q [f ](A��A) = �

Ac1 ,Ac2
A−�p,Aq[f ](�).

(2) �
c1 ,c2
p,q [f ](� + 2B) = e(−q�Bq)�c1 ,c2

p+2Bq,q[f ](�).

(3) �
c1 ,c2p,q (−�−1) = e(p�q)√

det(i�−1)
�

−�
−1c1 ,−�

−1c2−q,p (�).

3.6 P-stable indefinite theta functions

Wenow introduce a special symmetry that may be enjoyed by the parameters (c1, c2, z,�),
which we call P-stability. In this section, c1, c2 will always be real vectors.

Definition 3.18 Let P ∈ GLg (Z) be fixed. Let z ∈ Cg , � ∈ H(1)
g , c1, c2 ∈ Rg satisfying

c�j Im(�)cj < 0. The quadruple (c1, c2, z,�) is called P-stable if P��P = �, Pc1 = c2, and
P�z ≡ z

(
mod Z2).

Remarkably, P-stable indefinite theta functions attached to f (u) = |u|r turn out to be
independent of r (up to a constant factor).

Theorem 3.19 (P-Stability Theorem) Set �
c1 ,c2
r (z;�) := π

r+1
2

�
(
r+1
2

)�c1 ,c2 [f ](z;�) when

f (u) = |u|r for Re(r) > −1. If (c1, c2, z,�) is P-stable, then �
c1 ,c2r (z;�) is independent

of r.

Proof LetM = Im(�) and y = Im(z). If α ∈ R and Re(r) > 1, then

Er(α) =
∫ α

0
|u|re−πu2 du (3.87)

= sgn(α)
∫ |α|

0
ure−πu2 du (3.88)

= − sgn(α)
2π

∫ |α|

0
ur−1 d

(
e−πu2

)
(3.89)

= − sgn(α)
2π

(
ur−1e−πu2

∣∣∣
|α|
u=0

−
∫ |α|

0
e−πu2 d

(
ur−1)

)
(3.90)

= − sgn(α)
2π

(
|α|r−1 e−πα2 − (r − 1)

∫ |α|

0
ur−2e−πu2 du

)
(3.91)

= 1
2π

(
− sgn(α) |α|r−1 e−πα2 + (r − 1)Er−2(α)

)
. (3.92)

Let αc
n = c� Im(�n+z)√−QM (c)

. Set Ac := M + M Re
(
(−QM(c))−1 cc�

)
M, so that Ac1 and Ac2 are

positive definite, as in the proof of Proposition 3.11. Thus,

�c1 ,c2
r (z;�) = − π r/2

�
( r+1

2
)S + �

c1 ,c2
r−2 (z;�), (3.93)

where

S =
∑

n∈Zg
sgn

(
αc
n
) ∣∣αc

n
∣∣r−1 exp

(
−π

(
αc
n
)2)∣∣∣

c2

c=c1
e
(
1
2
n��n + n�z

)
. (3.94)

The c1 and c2 terms in this sum decay exponentially, because
∣∣∣∣exp

(
−π

(
αc
n
)2) e

(
1
2
n��n + n�z

)∣∣∣∣ = exp
(−2πQAc

(
n + M−1y)

))
. (3.95)
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Thus, the series may be split as a sum of two series:

S =
∑

n∈Zg
sgn

(
αc2
n

) ∣∣αc2
n

∣∣r−1 exp
(
−π

(
αc2
n

)2) e
(
1
2
n��n + n�z

)

−
∑

n∈Zg
sgn

(
αc1
n

) ∣∣αc1
n

∣∣r−1 exp
(
−π

(
αc1
n

)2) e
(
1
2
n��n + n�z

)
. (3.96)

Now we use the P-symmetry to show that these two series are, in fact, equal. Note that
Im(P�z) = Im(z) because P�z ≡ z

(
mod Z2), so

αPn(c2) = (Pc1)� Im(�Pn + z)√−QM(Pc1)
(3.97)

= c�1 Im(P��Pn + P�z)
√−QP�MP(c1)

(3.98)

= c�1 Im(�n + z)
√−QM(c1)

(3.99)

= αn(c1). (3.100)

Moreover,

1
2
(Pn)��(Pn) + (Pn)�z = 1

2
n�(P��P)n + n�(P�z) (3.101)

≡ 1
2
n��n + n�z

(
mod Z2) . (3.102)

Thus, we may substitute Pn for n in the first series (involving c2) to obtain the second
(involving c1).
We’ve now shown the periodicity relation

�c1 ,c2
r (z;�) = �

c1 ,c2
r−2 (z;�). (3.103)

Note that this identity provides an analytic continuation of �
c1 ,c2r (z,�) to the entire r-

plane. To show that it is constant in r, we will show that it is bounded on vertical strips in
the r-plane. As in the proof of Proposition 3.11, bound (x, λ) �→ x�A(λ)x, considered as
a positive real-valued continuous function on the product of the unit ball {x�x = 1} and
the interval [0, 1], from below by its global minimum ε > 0. Thus,

∣∣∣∣∣∣∣
Er

⎛

⎝c�(Mn + y)√
− 1

2c�Mc

⎞

⎠

∣∣∣∣∣∣

c2

c=c1

e
(
1
2
n��n + n�z

)
∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣

∫ c�2 Im(�n+z)√
− 1
2 c

�
2 Im(�)c2

c�1 Im(�n+z)√
− 1
2 c

�
1 Im(�)c1

|u|Re(r) du

∣∣∣∣∣∣∣
eπy

�M−1ye−πε
∥∥n+M−1y

∥∥2 (3.104)

≤ pRe(r)(n)e−πε
∥∥n+M−1y

∥∥2 , (3.105)

where pRe(r)(n) is a polynomial independent of Im(r). Hence, �c1 ,c2
r (z,�) is bounded on

the line Re(r) = σ by
∑

n∈Zg pσ (n)e−πε
∥∥n+M−1y

∥∥2 . It follows that it is bounded on any
vertical strip. Along with periodicity, this implies that �

c1 ,c2
r (z,�) as a function of r is

bounded and entire, thus constant. ��
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4 Definite zeta functions and real analytic Eisenstein series
We will now consider definite zeta functions—the Mellin transforms of definite theta
functions—in preparation for studying theMellin transforms of indefinite theta functions
in the next section. In dimension 2, definite zeta functions specialise to real analytic
Eisenstein series for the congruence subgroup �1(N ) (which specialise further to ray class
zeta functions of imaginary quadratic ideal classes).

4.1 Definition and Dirichlet series expansion

We define the definite zeta function as aMellin transform of the indefinite theta null with
real characteristics.

Definition 4.1 Let � ∈ H(0)
g and p, q ∈ Rg . The definite zeta function is

ζ̂p,q(�, s) :=
{∫ ∞

0 �p,q(t�)ts dtt if q /∈ Zg ,∫ ∞
0

(
�p,q(t�) − 1

)
ts dtt if q ∈ Zg .

(4.1)

By direct calculation, ζ̂p,q(�, s) has a Dirichlet series expansion.

ζ̂p,q(�, s) = (2π )−s�(s)
∑

n∈Zg
n �=−q

e(p�(n + q))Q−i�(n + q)−s, (4.2)

whereQ−i�(n+q)−s is defined using the standard branch of the logarithm (with a branch
cut on the negative real axis).

4.2 Specialisation to real analytic Eisenstein series

Now, suppose g = 2, � = iM for some real symmetric, positive definite matrix M,

p =
(
0
0

)
, and q /∈ Z2. Then the definite zeta function may be written as follows.

ζ̂0,q(�, s) = (2π )−s�(s)
∑

n∈Z2

QM(n + q)−s (4.3)

= (2π )−s�(s)
∑

n∈Z2+q

QM(n)−s. (4.4)

Up to scaling,M is of the formM = 1
Im(τ )

(
1 Re(τ )

Re(τ ) ττ

)
for some τ ∈ H; scalingM by

λ ∈ R simply scales ζ̂p,q(�, s) by λ−s, so we assumeM is of this form. Write

QM

(
n1
n2

)
= 1

2 Im(τ )
(
n21 + 2Re τn1n2 + ττn22

)
(4.5)

= 1
2 Im(τ )

|n1 + n2τ |2 . (4.6)

Thus,

ζ̂0,q(�, s) = π−s�(s) Im(τ )s
∑

(
n1
n2

)
∈Z2+q

|n1τ + n2|−2s . (4.7)
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If q ∈ Q2 and the gcd of the denominators of the entries of q is N , this is essen-
tially an Eisenstein series of associated with �1(N ). Choose k, � ∈ Z such that q ≡(
k/N
�/N

)
(mod 1) and gcd(k, �) = 1. Then, we have

ζ̂0,q(�, s) = (πN )−s�(s) Im(τ )s
∑

c≡k (mod N )
d≡� (mod N )

∣∣cτ + d
∣∣−2s . (4.8)

The Eisenstein series associated with the cusp ∞ of �1(N ) is

E∞
�1(N )(τ , s) =

∑

γ∈�∞
1 (N )\�1(N )

Im(γ · τ )s (4.9)

= Im(τ )s
∑

c≡0 (mod N )
d≡1 (mod N )
gcd(c,d)=1

∣∣cτ + d
∣∣−2s (4.10)

= Im(τ )s
∏

p|N (1 − p−s)
ζ (s)

∑

c≡0 (mod N )
d≡1 (mod N )

∣∣cτ + d
∣∣−2s . (4.11)

Here, �∞
1 (N ) is the stabiliser of ∞ under the fractional linear transformation action; that

is, �∞
1 (N ) =

{
±

(
1 n
0 1

)
: n ∈ Z

}
.

Choose u, v ∈ Z such that det
(
u v
k �

)
= 1. We have

ζ (s)∏
p|N (1 − p−s)

E∞
�1(N )

(
uτ + v
kτ + �

, s
)

= Im
(
uτ + v
kτ + �

)s ∑

c≡0 (mod N )
d≡1 (mod N )

∣∣∣∣c
(
uτ + v
kτ + �

)
+ d

∣∣∣∣
−2s

(4.12)

= Im (τ )s
∑

c≡0 (mod N )
d≡1 (mod N )

∣∣(cu + dk)τ + (cv + d�)
∣∣−2s (4.13)

= Im (τ )s
∑

c′≡k (mod N )
d′≡� (mod N )

∣∣c′τ + d′∣∣−2s . (4.14)

Combining Eqs. (4.8) and (4.12), we see that

ζ̂0,q(�, s) = (πN )−s�(s)ζ (s)∏
p|N (1 − p−s)

E∞
�1(N )

(
uτ + v
kτ + �

, s
)
. (4.15)

5 Indefinite zeta functions: definition, analytic continuation, and functional
equation
We now turn our attention to the primary objects of interest, (completed) indefinite zeta
functions—theMellin transforms of indefinite theta functions. We will generally omit the
word “completed” when discussing these functions.
As usual, let � ∈ H(1)

g , p, q ∈ Rg , c1, c2 ∈ Cg , c1�Mc1 < 0, c2�Mc2 < 0.
We define the indefinite zeta function using a Mellin transform of the indefinite theta

function with characteristics.
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Definition 5.1 The (completed) indefinite zeta function is

ζ̂ c1 ,c2
p,q (�, s) :=

∫ ∞

0
�c1 ,c2

p,q (t�)ts
dt
t
. (5.1)

The terminology “zeta function” here should not be taken to mean that ζ̂
c1 ,c2p,q (�, s) has a

Dirichlet series—it (usually) doesn’t (although it does have an analogous series expansion
involving hypergeometric functions, as we’ll see in Sect. 6). Rather, we think of it as a
zeta function by analogy with the definite case, and (as we’ll see) because is sometimes
specialises to certain classical zeta functions.
By defining the zeta function as a Mellin transform, we’ve set things up so that a proof

of the functional equation Theorem 1.1 is a natural first step. Analytic continuation and a
functional equation will follow from Theorem 3.14 by standard techniques. Our analytic
continuation also gives an expression that converges quickly everywhere and is therefore
useful for numerical computation, unlike Eq. (5.1) or the series expansion in Sect. 6.

Theorem 1.1 The function ζ̂
c1 ,c2p,q (�, s)may be analytically continued to an entire function

on C. It satisfies the functional equation

ζ̂ c1 ,c2
p,q

(
�,

g
2

− s
)

= e(p�q)√
det(−i�)

ζ̂
�c1 ,�c2−q,p

(−�−1, s
)
. (5.2)

Proof Fix r > 0, and split up the Mellin transform integral into two pieces,

ζ̂ c1 ,c2
p,q (�, s) =

∫ ∞

0
�c1 ,c2

p,q (t�)ts
dt
t

(5.3)

=
∫ ∞

r
�c1 ,c2

p,q (t�)ts
dt
t

+
∫ r

0
�c1 ,c2

p,q (t�)ts
dt
t
. (5.4)

Replacing t by t−1, and then using part (3) of Theorem 3.14, the second integral is

∫ r

0
�c1 ,c2

p,q (t�)ts
dt
t

=
∫ ∞

r−1
�c1 ,c2

p,q (t−1�)t−s dt
t

(5.5)

=
∫ ∞

r−1

e(p�q)√
det(−it�)

�
t�c1 ,t�c2−q,p (−(t−1�)−1)t−s dt

t
(5.6)

= e(p�q)√
det(−i�)

∫ ∞

r−1
�

�c1 ,�c2−q,p (t(−�−1))t
g
2−s dt

t
. (5.7)

(Recall that scaling the cj does not affect the value of �c1 ,c2
p,q (�).) Putting it all together, we

have

ζ̂ c1 ,c2
p,q (�, s) =

∫ ∞

r
�c1 ,c2

p,q (t�)ts
dt
t

+ e(p�q)√
det(−i�)

∫ ∞

r−1
�

�c1 ,�c2−q,p (t(−�−1))t
g
2−s dt

t
. (5.8)

As we showed in the proof of Proposition 3.11, the �-functions in both integrals decay
exponentially as t → ∞, so the right-hand side converges for all s ∈ C. The right-hand
side is obviously analytic for all s ∈ C, so we’ve analytically continued ζ̂

c1 ,c2
p,q (�, s) to an

entire function of s. Finally, we must prove the functional equation. If we plug g
2 − s for s
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in Eq. (5.8), factor out the coefficient of the second term, and switch the order of the two
terms, we obtain

ζ̂ c1 ,c2
p,q

(
�,

g
2

− s
)

= e(p�q)√
det(−i�)

(∫ ∞

r−1
�

�c1 ,�c2−q,p (t(−�−1))ts
dt
t

− e(−p�q)√
det(i�−1)

∫ ∞

r
�c1 ,c2

p,q (t�)t
g
2−s dt

t

)
. (5.9)

Reusing Eq. (5.8) on ζ̂
�c1 ,�c2−q,p

(−�−1, s
)
, and appealing to the fact that �

c1 ,c2p,q (�) =
−�

c1 ,c2−p,−q(�), we have

ζ̂
�c1 ,�c2−q,p

(−�−1, s
) =

∫ ∞

r−1
�

�c1 ,�c2−q,p (t(−�−1))ts
dt
t

− e(−p�q)√
det(i�−1)

∫ ∞

r
�c1 ,c2

p,q (t�)t
g
2−s dt

t
. (5.10)

The functional equation now follows from Eqs. (5.9) and (5.10). ��

The formula for the analytic continuation is useful in itself. In particular, we have used
this formula for computer calculations, as it may be used to compute the indefinite zeta
function to arbitrary precision in polynomial time.

Corollary 5.2 The following expression is valid on the entire s-plane.

ζ̂ c1 ,c2
p,q (�, s) =

∫ ∞

r
�c1 ,c2

p,q (t�)ts
dt
t

+ e(p�q)√
det(−i�)

∫ ∞

r−1
�

�c1 ,�c2−q,p (t(−�−1))t
g
2−s dt

t
. (5.11)

Proof This is Eq. (5.8). ��

6 Series expansion of indefinite zeta function
In this section, we give a series expansion for indefinite zeta functions, under the assump-
tion that c1 and c2 are real. Specifically, wewrite ζ̂

c1 ,c2
p,q (�, s) as a sumof three series, the first

of which is a Dirichlet series and the others of which involve hypergeometric functions.
This expansion is related to the decomposition of a weak harmonic Maass form into its
holomorphic “mock” piece and a non-holomorphic piece obtained from a “shadow” form
in another weight.
To proceed, we will need to introduce some special functions and review some of their

properties.

6.1 Hypergeometric functions andmodified beta functions

Let a, b, c be complex numbers, c not a negative integer or zero. If z ∈ C with |z| < 1, the
power series

2F1(a, b; c; z) :=
∞∑

n=0

(a)n(b)n
(c)n

· z
n

n!
(6.1)

converges. Here we are using the Pochhammer symbol (w)n := w(w + 1) · · · (w + n− 1).
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Proposition 6.1 There is an identity

2F1(a, b; c; z) = (1 − z)−b
2F1

(
b, c − a; c;

z
z − 1

)
, (6.2)

valid about z = 0 and using the principal branch for (1 − z)−b.

Proof This is part of Theorem 2.2.5 of [2]. ��

Using this identity, we extend the domain of definition of 2F1(a, b; c; x) from the unit disc
{|z| < 1} to the union of the unit disc and a half-plane {|z| < 1} ∪ {Re(z) < 1

2 }. We
interpret (1 − z)−b = exp(−b log(1 − z)) with the logarithm having a branch cut along
the negative real axis. At the boundary point z = 1, the hypergeometric series converges
when Re(c) > Re(a + b), and its evaluation is a classical theorem of Gauss.

Proposition 6.2 If Re(c) > Re(a + b), then

2F1(a, b; c; 1) = �(c)�(c − a − b)
�(c − a)�(c − b)

. (6.3)

Proof This is Theorem 2.2.2 of [2]. ��

Of particular interest to us will be a special hypergeometric function which is amodified
version of the beta function.

Definition 6.3 Let x > 0 and a, b ∈ C. The beta function is

B(x; a, b) :=
∫ x

0
ta−1(1 − t)b−1 dt, (6.4)

and themodified beta function is

B̃(x; a, b) :=
∫ x

0
ta−1(1 + t)b−1 dt. (6.5)

The following proposition enumerates some properties of the modified beta function.

Proposition 6.4 Let x > 0, and let a, b be complex numbers with Re(a),Re(b) > 0 and
Re(a + b) < 1. Then,

(1) B̃(x; a, b) = B
(

x
x + 1

; a, 1 − a − b
)
,

(2) B̃(x; a, b) = 1
a
xa2F1(a, 1 − b; a + 1;−x),

(3) B̃
(
1
x
; a, b

)
= �(a)�(1 − a − b)

�(1 − b)
− B̃(x; 1 − a − b, b), and

(4) B̃(+∞; a, b) = B(1; a, 1 − a − b) = �(a)�(1 − a − b)
�(1 − b)

.

Proof To prove (1), we use the substitution t = u
1−u .

B̃(x; a, b) =
∫ x

0
ta−1(1 + t)b−1 dt (6.6)

=
∫ x

x+1

0

(
u

1 − u

)a−1 (
1 + u

1 − u

)b−1 du
(1 − u)2

(6.7)

=
∫ x

x+1

0
ua−1(1 − u)−a−b du (6.8)
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= B
(

x
x + 1

; a, 1 − a − b
)
. (6.9)

To prove (2), expand G(x; a, b) as a power series in x (up to a non-integral power).

B̃(x; a, b) =
∫ x

0
ta−1(1 + t)b−1 dt (6.10)

=
∫ x

0

∞∑

n=0

(
b − 1
n

)
tn+a−1 dt (6.11)

=
∞∑

n=0

(
b − 1
n

)
1

n + a
xn+a (6.12)

=
∞∑

n=0

(b − n) · (b − n + 1) · · · (b − 1)
n!

· 1
n + a

xn+a (6.13)

= xa
∞∑

n=0

(−1)n(1 − b) · (2 − b) · · · (n − b)
n + a

· x
n

n!
(6.14)

= xa
∞∑

n=0

(a)n(1 − b)n
a(a + 1)n

· (−x)n

n!
(6.15)

= 1
a
xa2F1(a, 1 − b; a + 1;−x). (6.16)

To prove (3), use the substitution t = 1
u .

B̃
(
1
x
; a, b

)
=

∫ 1/x

0
ta−1(1 + t)b−1 dt (6.17)

=
∫ x

∞
u−a+1

(
1 + 1

u

)b−1 (
−du
u2

)
(6.18)

=
∫ ∞

x
u−a−b(1 + u)b−1 du (6.19)

= G(+∞, 1 − a − b, b) − G(x, 1 − a − b, b). (6.20)

To complete the proof of (3), we need to prove (4). Note that it follows from (4) that
B̃(+∞, 1−a−b, b) = �(a)�(1−a−b)

�(1−b) . The first equality of (4) follows from (1)with x → +∞;
we will now derive the second. By (2),

B̃(x; a, b) = 1
a
xa2F1(a, 1 − b; a + 1;−x) (6.21)

= 1
a
xa2F1(1 − b, a; a + 1;−x) (6.22)

= 1
a
xa · (1 − (−x))−a

2F1
(
a, (a + 1) − (1 − b); a + 1;

−x
(−x) − 1

)
(6.23)

= 1
a

(
x

1 + x

)a

2F1
(
a, a + b; a + 1;

x
x + 1

)
. (6.24)

Proposition 6.1 was used in Eq. (6.23). Sending x → +∞ and applying Proposition 6.2
yields the second equality of (4). ��
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Lemma 6.5 Let λ,μ > 0, and Re(s) > 0. Then
∫ ∞

0
E(

√
λt) exp(−μt)ts

dt
t

= 1
2
π−1/2μ−s�

(
s + 1

2

)
B̃

(
πλ

μ
;
1
2
,
1
2

− s
)
. (6.25)

Proof First of all, note that the left-hand side of Equation (6.25) converges: The integrand
is exp(−O(t)) as t → ∞ and O

(
tRe s− 1

2
)
as t → 0. Write E(√λt) = 1

2
∫ λt
0 u−1/2e−πudu.

The left-hand side of Equation (6.25) may be rewritten, using the substitution u = μtv
π

in
the inner integral, as

∫ ∞

0
E(

√
λt) exp(−μt)ts

dt
t

= 1
2

∫ ∞

0

∫ λt

0
u−1/2e−(πu+μt)ts du

dt
t

(6.26)

= 1
2

∫ ∞

0

∫ πλ
μ

0

(
μtv
π

)−1/2
e−(μtv+μt)ts

μt
π

dv
dt
t
. (6.27)

The double integral is absolutely convergent (indeed, the integrand is nonnegative, and
we already showed convergence), so we may swap the integrals. We compute

∫ ∞

0
E(

√
λt) exp(−μt)ts

dt
t

= 1
2

(μ

π

)1/2 ∫ πλ
μ

0
v−1/2

(∫ ∞

0
e−μt(v+1)ts+

1
2
dt
t

)
dv

(6.28)

= 1
2

(μ

π

)1/2 ∫ πλ
μ

0
v−1/2

(
�

(
s + 1

2

)
(μ(v + 1))−(s+ 1

2 )
)

dv

(6.29)

= 1
2
π−1/2μ−s�

(
s + 1

2

)∫ πλ
μ

0
v−1/2(v + 1)−(s+ 1

2 ) dv

(6.30)

= 1
2
π−1/2μ−s�

(
s + 1

2

)
B̃

(
πλ

μ
;
1
2
,
1
2

− s
)
. (6.31)

This proves Equation (6.25). ��

Lemma 6.6 Let ν1, ν2 ∈ R and μ ∈ C satisfying Re(μ) > −π max{ν21 , ν22 } if sgn(ν1) =
sgn(ν2) and Re(μ) > 0 otherwise. Then,

∫ ∞

0
E (

νt1/2
)∣∣ν2

ν=ν1
exp(−μt)ts

dt
t

= 1
2
(sgn(ν2) − sgn(ν1))�(s)μ−s

− sgn(ν2)
2s

π
−

(
s+ 1

2

)

�

(
s + 1

2

)
|ν2|−2s

2F1

(
s, s + 1

2
, s + 1;− μ

πν22

)

+ sgn(ν1)
2s

π
−

(
s+ 1

2

)

�

(
s + 1

2

)
|ν1|−2s

2F1

(
s, s + 1

2
, s + 1;− μ

πν21

)
. (6.32)

Proof Initially, consider λ,μ > 0, as in Lemma 6.5. We have

∫ ∞

0
E

(√
λt

)
exp(−μt)ts

dt
t
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= 1
2
π− 1

2 μ−s�

(
s + 1

2

)
B̃

(
πλ

μ
;
1
2
,
1
2

− s
)

(6.33)

= 1
2
π− 1

2 μ−s�

(
s + 1

2

)(
�( 12 )�(s)
�(s + 1

2 )
− B̃

( μ

πλ
; s, 1 − s

))
(6.34)

= 1
2
�(s)μ−s − 1

2
π− 1

2 μ−s�

(
s + 1

2

)
B̃

( μ

πλ
; s, 1 − s

)
(6.35)

= 1
2
�(s)μ−s − 1

2s
π−(s+ 1

2 )�

(
s + 1

2

)
λ−s

2F1
(
s, s + 1

2
, s + 1;− μ

πλ

)
, (6.36)

using parts (2) and (3) of Proposition 6.4. Equation (6.32) follows for positive real μ. But
the integral on the left-hand side of Eq. (6.32) converges for Re(μ) > −π max{ν21 , ν22 } if
sgn(ν1) = sgn(ν2) and Re(μ) > 0 otherwise, and both sides are analytic functions in μ on
this domain. Thus, Eq. (6.32) holds in general by analytic continuation. ��

6.2 The series expansion

We are now ready to prove Theorem 1.2, which we first restate here for convenience.

Theorem 1.2 If c1, c2 ∈ Rg , and Re(s) > 1, then the indefinite zeta function may be
written as

ζ̂ c1 ,c2
p,q (�, s) = π−s�(s)ζ c1 ,c2

p,q (�, s) − π−(s+ 1
2 )�

(
s + 1

2

)(
ξ c2p,q(�, s) − ξ c1p,q(�, s)

)
,(6.37)

where M = Im(�),

ζ c1 ,c2
p,q (�, s) = 1

2
∑

n∈Zg+q

(
sgn(c�1 Mn) − sgn(c�2 Mn)

)
e
(
p�n

)
Q−i�(n)−s, (6.38)

and

ξ cp,q(�, s) = 1
2

∑

ν∈Zg+q

(
sgn(c�Mn)e

(
p�n

) (
(c�Mn)2

QM(c)

)−s

× 2F1
(
s, s + 1

2
, s + 1;

2QM(c)Q−i�(n)
(c�Mn)2

))
. (6.39)

Proof Take the Mellin transform of the theta series term-by-term, and apply Lemma 6.6.
Note that the series for ξ cp,q(�, s) converges absolutely, so the series may be split up like
this. ��
The function ζ

c1,c2
p,q (�, s) here is a Dirichlet series summed over a double cone, with any

lattice points on the boundary of the cone weighted by 1
2 . The coefficients of the terms

are ±e
(
p�n

)
, where the sign is determined by whether one is in the positive or negative

part of the double cone.

Theorem 6.7 Suppose (c1, c2, p + �q,�) is P-stable. Then, ξ
c1p,q(�, s) = ξ

c2p,q(�, s) and
ζ̂
c1 ,c2
p,q (�, s) = π−s�(s)ζ c1,c2

p,q (�, s).

Proof The equality of the ξ
cj
p,q(�, s) follows by the substitution n �→ Pn and the definition

of P-stability. The equation

ζ̂ c1 ,c2
p,q (�, s) = π−s�(s)ζ c1 ,c2

p,q (�, s) (6.40)

then follows from Theorem 1.2. ��
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7 Zeta functions of ray ideal classes in real quadratic fields
In this section, we will specialise indefinite zeta functions to obtain certain zeta functions
to obtain certain zeta functions attached to real quadratic fields. We define two Dirichlet
series, ζ (s, A) and ZA(s), attached to a ray ideal class A of the ring of integers of a number
field.

Definition 7.1 (Ray class zeta function) Let K be any number field and c an ideal of the
maximal orderOK . Let S be a subset of the real places of K (i.e. the embeddings K ↪→ R).
Let A be a ray ideal class modulo cS, that is, an element of the group

ClcS := ClcS(OK ) := {nonzero fractional ideals ofOK coprime to c}
{aOK : a ≡ 1 (mod c) and a is positive at each place in S} .

(7.1)

Define the zeta function of A to be

ζ (s, A) :=
∑

a∈A
N (a)−s. (7.2)

This function has a simple pole at s = 1 with residue independent of A. The pole may be
eliminated by considering the function ZA(s), defined as follows.

Definition 7.2 (Differenced ray class zeta function) Let R be the element of ClcS defined
by

R := {aOK : a ≡ −1 (mod c) and a is positive at each place in S}. (7.3)

Define the differenced zeta function of A to be

ZA(s) := ζ (s, A) − ζ (s, RA). (7.4)

The function ZA(s) is holomorphic at s = 1.
Now, specialise to the case where K = Q(

√
D) be a real quadratic field of discriminant

D. Let OK be the maximal order of K , and let c be an ideal of OK . Let A be a narrow
ray ideal class modulo c, that is, an element of the group Clc∞1∞2 (OK ). We show, as
promised in the introduction, that the indefinite zeta function specialises to the L-series
ZA(s) attached to a ray class of an order in a real quadratic field.

Theorem 1.3 For each A ∈ Clc∞1∞2 and integral ideal b ∈ A−1, there exists a real
symmetric 2 × 2matrix M, vectors c1, c2 ∈ R2, and q ∈ Q2 such that

(2πN (b))−s�(s)ZA(s) = ζ̂
c1 ,c2
0,q (iM, s). (7.5)

Proof The differenced zeta function ZA(s) is

ZA(s) =
∑

a∈A
N (a)−s −

∑

a∈RA
N (a)−s. (7.6)

We have

N (b)−sZA(s) =
∑

a∈A
N (ba)−s −

∑

a∈RA
N (ba)−s (7.7)

=
∑

b∈b
(b)∈I

up to units

N (b)−s −
∑

b∈b
(b)∈R

up to units

N (b)−s. (7.8)
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Write bc = γ1Z + γ2Z. The norm form N (n1γ1 + n2γ2) = QM

(
n1
n2

)
for some real

symmetric matrix M with integer coefficients. The signature of M is (1, 1), just like the
norm form for K . Since b and c are relatively prime (meaning b + c = OK ), there exists
by the Chinese remainder theorem some b0 ∈ OK such that b ≡ b0 (mod bc) if and only
if b ≡ 0 (mod b) and b ≡ 1 (mod c). Express b0 = p1γ1 + p2γ2 for rational numbers

p1, p2, and set p =
(
p1
p2

)
.

Let ε0 be the fundamental unit ofOK , and let ε (= εk0 for some k) be the smallest totally
positive unit ofOK greater than 1 such that ε ≡ 1 (mod c).
Choose any c1 ∈ R2 such that QM(c1) < 0. Let P be the matrix describing the linear

action of ε on b by multiplication, i.e. ε(β�n) = β�(Pn). Set c2 = Pc1.
Thus, we have

N (β)−sZA(s) = 1
2

∑

n∈Z2+q

(
sgn(c�2 Mn) − sgn(c�1 Mn)

)
QM(n). (7.9)

Moreover, (c1, c2, p,�) is P-stable. So, by Theorem 6.7, Eq. (7.9) may be rewritten as

(2πN (b))−s�(s)ZA(s) = ζ̂
c1 ,c2
0,q (iM, s), (7.10)

completing the proof. ��

7.1 Example

Let K = Q(
√
3), so OK = Z[

√
3], and let c = 5OK . The ray class group Clc∞2

∼= Z/8Z.
The fundamental unit ε = 2 + √

3 is totally positive: εε′ = 1. It has order 3 modulo 5:
ε3 = 26+ 15

√
3 ≡ 1 (mod 5). In this section, we use the analytic continuation Eq. (5.11)

for indefinite zeta functions to compute Z′
I (0), where I is the principal ray class of Clc∞2 .

By definition, ZI = ζ (s, I) − ζ (s, R) where

R = {aOK : a ≡ −1 (mod c) and ais positive at ∞2} (7.11)

= {aOK : a ≡ 1 (mod c) and ais negative at ∞2}. (7.12)

Write I = I+ � I− and R = R+ � R−, where I± and R± are the following ray ideal classes
in Clc∞1∞2 :

I± := {aOK : a ≡ 1 (mod c) and ahas sign ± at ∞1and + at ∞2}, (7.13)

R± := {aOK : a ≡ 1 (mod c) and ahas sign ± at∞1and − at ∞2}. (7.14)

Thus, ZI (s) = ζ (s, I+) + ζ (s, I−) − ζ (s, R+) − ζ (s, R−). The Galois automorphism (a1 +
a2

√
3)σ = (a1 − a2

√
3) defines a norm-preserving bijection between I− and R+, so the

middle terms cancel and

ZI (s) = ζ (s, I+) − ζ (s, R−) = ZI+ (s). (7.15)

To the principal ray class I+ of Clc∞1∞2 , we associate� = iM whereM =
(
2 0
0 −6

)
and

q =
(
1/5
0

)
. We may choose c1 ∈ R2 arbitrarily so long as c�1 Mc1 < 0; take c1 =

(
0
1

)
.
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The left action of ε on Z + √
3Z is given by the matrix P =

(
2 3
1 2

)
. By Theorem 1.3,

(2π )−s�(s)ZI+ (s) = ζ̂
c1 ,P3c1
0,q (iM, s). (7.16)

Taking a limit as s → 0, and using Eqs. (7.15), (7.16) becomes

Z′
I (0) = Z′

I+ (s) = ζ̂
c1 ,P3c1
0,q (iM, 0). (7.17)

For the purpose of making the numerical computation more efficient, we split up the
right-hand side as

Z′
I (0) = ζ̂

c1 ,Pc1
0,q (iM, 0) + ζ̂

Pc1,P2c1
0,q (iM, 0) + ζ̂

P2c1 ,P3c1
0,q (iM, 0) (7.18)

= ζ̂
c1 ,Pc1
0,q0 (iM, 0) + ζ̂

c1 ,Pc1
0,q1 (iM, 0) + ζ̂

c1 ,Pc1
0,q2 (iM, 0), (7.19)

where q0 = q = 1
5

(
1
0

)
, q1 = q = 1

5

(
2
1

)
, and q2 = q = 1

5

(
2
4

)
are obtained from the

residues of ε0, ε1, ε2 modulo 5.
Using Eq. (5.11), we computed Z′

I (0) to 100 decimal digits. The decimal begins

Z′
I (0) = 1.35863065339220816259511308230 . . . . (7.20)

The conjectural Stark unit is exp(Z′
I (0)) = 3.89086171394307925533764395962 . . .. We

used theRootApproximant[] function inMathematica,whichuses lattice basis reduc-
tion internally, to find a degree 16 integer polynomial having this number as a root, and
we factored that polynomial overQ(

√
3). To 100 digits, exp(Z′

I (0)) is equal to a root of the
polynomial

x8 − (8 + 5
√
3)x7 + (53 + 30

√
3)x6 − (156 + 90

√
3)x5 + (225 + 130

√
3)x4

− (156 + 90
√
3)x3 + (53 + 30

√
3)x2 − (8 + 5

√
3)x + 1. (7.21)

We have verified that this root generates the expected class field H2.
We have also computed Z′

I (0) a different way in PARI/GP, using its internal algorithms
for computing Hecke L-values. We obtained the same numerical answer this way.
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