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Abstract
Purpose of Review Recent Atlantic climate prediction studies
are an exciting new contribution to an extensive body of re-
search on Atlantic decadal variability and predictability that
has long emphasized the unique role of the Atlantic Ocean in
modulating the surface climate. We present a survey of the
foundations and frontiers in our understanding of Atlantic
variability mechanisms, the role of the Atlantic Meridional
Overturning Circulation (AMOC), and our present capacity
for putting that understanding into practice in actual climate
prediction systems.
Recent Findings The AMOC—or more precisely, the
buoyancy-forced thermohaline circulation (THC) that encom-
passes both overturning and gyre circulations—appears to un-
derpin decadal timescale prediction skill in the subpolar North
Atlantic in retrospective forecasts. Skill in predicting more
wide-ranging climate variations, including those over land,
is more limited, but there are indications this could improve
with more advanced models.
Summary Preliminary successes in the field of initialized
Atlantic climate prediction confirm the climate relevance of
low-frequency Atlantic Ocean dynamics and suggest that use-
ful decadal climate prediction is a realizable goal.

Keywords Decadal prediction . Climate prediction . Atlantic
multi-decadalvariability .Thermohalinecirculation .AMOC .

Subpolar gyre

Introduction

The Atlantic is a region characterized by pronounced fluctua-
tions in climate from one decade to the next. The termAtlantic
Multi-decadal Oscillation (AMO) was coined to describe the
roughly 70-year swings in a variety of instrumental and proxy
records from the Atlantic region that apparently reflect a mode
of natural variability of the climate system [1–3]. In a seminal
early study, Bjerknes interpreted observed decadal surface
temperature fluctuations in the North Atlantic in terms of a
coupled atmosphere-ocean oscillation with the ocean
(atmosphere) playing a driving (damping) role [4].
Subsequent examination of longer, gridded observational data
sets revealed coherent patterns of decadal sea surface temper-
ature (SST) and sea level pressure (SLP) variability in the
Atlantic that were consistent with Bjerknes’ ideas, bolstering
the hypothesis that low-frequency (i.e., decadal to multi-de-
cadal) Atlantic SST anomalies were proximately caused by
ocean dynamical changes [5, 6].

Analysis of early coupled global circulation models
(CGCMs) revealed that intrinsic, low-frequency SST, surface
air temperature (SAT), and SLP variations in the North
Atlantic and Arctic were consistently associated with varia-
tions in the strength of the Atlantic Meridional Overturning
Circulation (AMOC), and in particular its slow (buoyancy-
forced) thermohaline circulation (THC) component [7–9].
While AMOC/THC is considered the dominant oceanic phe-
nomenon influencing Atlantic climate, the North Atlantic
Oscillation (NAO) is the dominant mode of atmospheric var-
iability in this region [10]. Strong, positive winter NAO
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conditions generate a fast, tripolar North Atlantic SST re-
sponse, with maximum heat loss occurring over the
Labrador Sea [11–13]. NAO forcing also modulates abyssal
water mass properties and induces a delayed response of the
Atlantic Ocean gyre and overturning circulations [14–16] with
the potential for the ocean to feedback onto the atmosphere
and give rise to associated coupled modes of Atlantic variabil-
ity [12]. Recent research has underscored the significance of
persistent NAO buoyancy forcing in giving rise to large, low-
frequency Atlantic THC variations that can influence
extratropical upper ocean heat content, SST, and pan-
Atlantic surface climate [17–19, 20•].

While there are many outstanding questions regarding the
physical mechanisms that contribute to the observed AMO (or
AMV, to reflect the more modern emphasis on broad-
spectrum Bvariability^ over Boscillation^), which we expand
upon below, a number of studies have identified significant
climate impacts associated with North Atlantic SST variability
that have helped to define the targets for Atlantic-focused
climate prediction efforts. The twentieth century AMV has
been linked to observed variability in (see also references
within these recent papers): seasonal climate (SATand precip-
itation) over North America and Europe [21–23]; rainfall over
India, northeast Brazil, and the Sahel [24, 25]; Atlantic hurri-
cane activity [24–26]; North Atlantic atmospheric blocking
frequency [27]; sea level along the east coast of the USA
[28•]; high-latitude heat fluxes [29•]; and the NAO [30•,
31•]. Proxy records are also crucial for characterizing AMV
and its impacts over multiple cycles prior to the instrumental
record. A reconstruction derived from tree rings underscores
the connectivity between low-frequency Atlantic SST and
pan-Atlantic terrestrial climate and suggests significant spec-
tral energy in a wide temporal band between about 40–
128 years [32]. Greenland ice cores also indicate the presence
of a strong 20-year periodicity that has been interpreted as a
signature of AMV [33]. Many of these observed AMV link-
ages have also been found in CGCMs, either in long, unforced
simulations or in sensitivity experiments [24, 34, 35, 36•].
Models have also pointed to other important impacts associ-
ated with AMOC and AMV that cannot be easily discerned
from limited observations, such as the modulation of Arctic
sea ice extent and thickness [37•] and Northern Hemisphere
extratropical SAT and SLP [20•]. An observation-based link
betweenmulti-decadal Arctic sea ice variability and AMV has
recently been established using a combination of historical
records and high-resolution proxy data [38]. Although AMV
has historically connoted a coherent pan-Atlantic mode of
internal variability, there are other noteworthy impacts associ-
ated with potentially predictable regional changes in heat con-
tent and SST in the subpolar North Atlantic. These include
large decadal shifts in ocean ecosystems [39], rates of
Greenland ice melt [40•], and rates of North Atlantic carbon
uptake [41].

The study of the AMV,AMOC/THC, NAO, and their inter-
connections has flourished in recent decades with a diverse set
of observations and modeling tools brought to bear (see [42,
43•] for useful reviews). The mechanistic understanding of
low-frequency Atlantic climate variability has greatly influ-
enced the expectations for, and interpretations of, practical
prediction efforts. A review of the state of Atlantic predictabil-
ity science as of a decade ago emphasized the lagged relation-
ships between the NAO, Labrador Sea Water (LSW) forma-
tion, THC/AMOC, and decadal SST—with some indications
of a feedback of SST onto the atmosphere to close the loop
[44]. This causal chain continues to be a dominant conceptual
paradigm that has guided much of the recent progress in
Atlantic decadal prediction. However, recent studies have
challenged the prevailing view that ocean circulation variabil-
ity plays a fundamental role in Atlantic decadal variability and
predictability [45, 46]. There is now an ongoing debate
concerning the relative importance of local thermodynamical
versus large-scale dynamical ocean physics for explaining
low-frequency variations in Atlantic climate.

The identification of societally relevant climate impacts
associated with North Atlantic ocean variability (and in par-
ticular, the upper ocean heat content and SST variability) has
given impetus and focus to Atlantic decadal climate prediction
work. The first pioneering papers that demonstrated the po-
tential for skillful retrospective prediction of observedAtlantic
decadal climate change using suitably initialized CGCMs ap-
peared less than a decade ago [47–49]. However, as we have
tried to highlight, the intellectual lineage of these results can
be traced through at least a half-century’s worth of observa-
tional and modeling work that has elucidated the nature of
low-frequency Atlantic climate variability. Current Atlantic
climate prediction research continues to tap into, and evolves
alongside, new developments in our fundamental understand-
ing of relevant physical mechanisms and the predictability of
those mechanisms. Thus, this review aims to summarize re-
cent progress made not only in the field of initialized climate
prediction using CGCMs but also in closely related areas such
as potential predictability, mechanisms, and observed
linkages.

Foundations

Mechanisms of Decadal to Multi-decadal Atlantic Climate
Variability

The use of CGCMs to study the physical processes contribut-
ing to AMV is complicated by the large diversity of AMOC
variability mechanisms, timescales, and climate impacts seen
in different models. While some long coupled control simula-
tions with current state-of-the-art CGCMs exhibit strong, reg-
ular multi-decadal AMOC oscillations (e.g., [50]), others
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show more broad-spectrum variability (e.g., [51]) or multiple
distinct variability regimes within a single simulation (e.g.,
[52]). A variety of mechanisms have been invoked to explain
intrinsic AMOC variability at different timescales in different
models, and Buckley andMarshall have recently reviewed the
copious literature on that topic [43•]. They group the low-
frequency mechanisms into two broad categories: (1) those
involving changes in North Atlantic deep convection (e.g.,
[53]) and (2) those involving baroclinic Rossby waves (e.g.,
[54]). Their review emphasizes that, regardless of the genera-
tivemechanism, decadal AMOCvariability can be understood
as essentially reflecting geostrophic dynamics dominated by
western boundary buoyancy in the transition zone between the
subtropical and subpolar gyres [55–57].

Since the early work of Delworth et al. [7], AMOC has
repeatedly been identified as a driver of AMV in a multitude
of CGCMs [3, 51, 58, 59]. The physical mechanism
explaining the evolution of the surface signature of a positive
AMOC anomaly—a warming in the subpolar gyre (SPG) and
a cooling in the Gulf Stream (GS) region—involves south-
ward propagation of AMOC anomalies emanating from high
latitudes [60•]. Recent multi-model analyses bolster the case
for the dominance of convection-related mechanisms, with
consistent links found between high-latitude mixing, SPG
densification, AMOC, and AMV in current-generation long
coupled control simulations [61, 62]. The mean state bias in
the subpolar Atlantic appears to dictate whether temperature
or salinity dominates Labrador Sea density variations, and so
the diversity of mean biases probably contributes to the inter-
model diversity of feedback mechanisms and variability time-
scales [63•].

As with AMOC itself, the characteristics of AMVand the
AMOC-AMV linkage vary from model to model, and exter-
nal forcing complicates the relationship in ways that remain
poorly understood [64–67]. Analysis of Coupled Model
Intercomparison Project phase 5 (CMIP5) historical simula-
tions reveals deficiencies in the amplitude and spatiotemporal
evolution of simulated AMV, together with associated im-
pacts, which raise questions about the fidelity of current
models for studying Atlantic climate variability [68, 69].
Indeed, the precise role of slow, thermohaline ocean dynamics
in generating AMV (and in particular, explaining the observed
AMV) remains a topic of considerable ongoing debate (see
discussion in Buckley and Marshall [43•] and references
therein). For example, Häkkinen and coauthors argue that
wind stress curl-forced changes in gyre strength account for
recent decadal variations in SPG hydrography [27, 70, 71].
Clement et al. have also recently called into question the
AMOC-AMV linkage by highlighting the similarities be-
tween AMV simulated with full CGCMs and configurations
where an active ocean model is replaced with a slab ocean
model [45]. However, an earlier study using the same meth-
odology highlighted large differences in AMV spatial

structure, amplitude, and atmospheric impacts [72].
Furthermore, recent papers [73•, 74, 75] have countered that
low-frequency ocean forcing is critical for simulating realistic
SST/heat flux relationships that underpin observed AMV cli-
mate impacts [29•].

Observations remain too limited to definitively settle the
debate, but dominant patterns of subsurface ocean variability
that appear to be distinctive signatures of AMOC variability
support a role for AMOC in recent Atlantic decadal SST var-
iability [76–79]. The RAPID-Meridional Overturning
Circulation and Heat Flux Array (RAPID-MOCHA) at 26.5°
N has now permitted connections to be established between
interannual variations in AMOC, ocean heat transport, and
near-surface ocean heat content in the subtropical Atlantic
[80, 81•]. On multi-decadal timescales, long tide gauge re-
cords also support a causal relation between Atlantic ocean
circulation change and observed twentieth century AMV
[28•].

Ocean model simulations forced with historical surface
fields from atmospheric reanalyses consistently show a strong
AMOC intensification between the mid-1970s and the mid-
1990s, followed by a weakening in more recent years [82•].
The simulated AMOC variability is in line with that inferred
from observed subsurface temperature variations [77]. This
slow AMOC spinup, that preceded the switch to positive
AMV in the late 1990s [83], has been attributed to increas-
ingly strong and persistent high-latitude buoyancy forcing
associated with the observed positive trend in winter NAO
[19, 79, 84, 85]. Atmospheric conditions over the SPG, and in
particular over the Labrador Sea, exert a strong control on
deep mixing, Labrador Sea Water (LSW) formation, deep
ocean density, and AMOC/THC in realistic model simula-
tions [85, 86]. Curiously, ocean reanalysis products that are
constrained by subsurface observations show less agreement
on the magnitude (or even the sign!) of historical decadal
AMOC trends than corresponding surface-forced simulations
[87•]. A pair of important recent studies by Delworth and
colleagues uses a full CGCM (with more realistic air-sea cou-
pling than in forced ocean simulations) to demonstrate in a
controlled way how NAO heat flux forcing drives AMOC,
AMV, and associated wider climate impacts [20•, 88••]. Their
results imply that much of the observed low-frequency
Atlantic climate variability of the last half-century is consis-
tent with the NAO having a strong, delayed influence on
AMOC and AMV.

The fact that buoyancy forcing accounts for most of the
low-frequency variation in AMOC in the late twentieth cen-
tury in reanalysis-forced ocean experiments [79, 84, 85] ex-
emplifies why it is common to refer to either AMOC or THC
interchangeably in the context of Atlantic decadal to multi-
decadal variability. However, forced experiments reveal that
the THC includes significant low-frequency changes in gyre
strength (particularly, the SPG), and not just AMOC [89]. As
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low-frequency (buoyancy-forced) AMOC and gyre changes
go hand in hand [90], with both circulation components con-
tributing to heat transport variability [91], a conceptual refo-
cus on THC instead of AMOC may be warranted in Atlantic
variability and prediction work.

Recent advances in our understanding of how low-frequen-
cy, THC-related Atlantic Ocean heat content and SST varia-
tions impact other components of the Earth system have im-
portant implications for Atlantic climate prediction. Not only
does AMOC appear to correlate with seasonal mean climate
signals over land but also with (possibly) predictable shifts in
surface climate extremes that have the greatest societal impact
[92, 93]. Furthermore, AMOC-related heat transport through
the Nordic Seas is a key predictor of simulated Arctic sea ice
extent, and it appears to control low-frequency atmospheric
heat transport variability in that region, in line with Bjerknes’
compensation hypothesis [4, 37•, 94, 95, 96•, 97•]. A key area
of ongoing research that bridges mechanisms and impacts is
determining whether AMV arises from a coupled ocean-
atmosphere mode, with THC-driven SST variability driving
NAO variability that potentially feeds back on THC and am-
plifies AMV [98]. Recent analyses of an extended atmospher-
ic reanalysis dataset suggest that this is indeed the case; the
observed AMV is anticorrelated with winter NAO conditions
[30•, 31•, 83]. This observed relationship is also seen in some
CGCMs, although it appears weak, and has been linked to
AMOC-driven SST variability [35, 99, 100]. However, other
studies find that the NAO response to AMVis primarily due to
tropical SST forcing which may be only indirectly related to
AMOC-driven heat convergence [101]. An outstanding re-
search question is the role of stratospheric dynamics in this
AMV-NAO linkage, with some studies suggesting that
stratosphere-resolvingmodels are key [102•] while others find
an NAO response to AMV without using a high-top atmo-
sphere [30•, 31•, 103]. Most current CGCMs do not incorpo-
rate stratosphere-resolving atmospheres, and this may be one
of the factors contributing to an underrepresentation of
coupled dynamics (along with other factors, such as low hor-
izontal resolution, which we discuss below).

Predictability of Decadal to Multi-decadal Atlantic
Climate Variability

Several studies of long timescale climate predictability using
comprehensive CGCMs published in the late 1990s and early
2000s contributed significantly to the advent of practical de-
cadal climate prediction in the North Atlantic. The influential
work of Griffies and Bryan examined ensembles initialized
from different coupled model states to show that North
Atlantic variability is potentially predictable for more than a
decade in advance, with stronger and more regular THC os-
cillations conferring greater predictability [104]. They found
clear decadal predictability for THC-related water mass

variations (reflected in oceanic fields such as dynamic topog-
raphy) but considerably shorter predictable timescales (of
order a few years) for near-surface fields subject to high-
frequency atmospheric noise. Similar Bperfect model^ pre-
dictability studies (both diagnostic and prognostic—see
[105]) performed with a variety of different models consis-
tently showed decadal-scale predictability of Atlantic THC
variations. However, they exhibited much less agreement
regarding surface climate predictability timescales: ranging
from 1 year [106] to multi-decadal [107] (see references
therein). Multi-model analyses highlighted the subpolar
North Atlantic (SPNA) south of Greenland as a region of
high and robust potential predictability, with SST/SAT pre-
dictability related to, but generally less than, MOC predict-
ability [105, 108].

Perfect model predictability is derived from inevitably
flawed representations of the Earth system, and there is sub-
stantial difference from model to model [105, 108–110].
Therefore, multi-model ensemble approaches likely offer the
best prospects for robust conclusions about the real system,
and such studies consistently show that the SPNA is a prom-
ising region for decadal prediction but with low signal-to-
noise over land [105, 111, 112]. However, the assumption that
perfect model predictability reflects an upper limit of real-
world predictability, insofar as there is perfect knowledge of
initial states and no drift, is called into question by recent
initialized prediction results that show higher actual skill than
would be expected from low signal-to-noise ratios [113••,
114•]. Whereas potential predictability studies focus on the
predictable component of model variability (i.e., signal-to-
noise), initialized experiments also permit an estimation of
the predictable component of real-world variability (quanti-
fied as the correlation between observations and the forecast
ensemble mean). A potential implication is that current
models do not properly represent all of the mechanisms that
give rise to real-world predictability in the North Atlantic sec-
tor and, as a result, are too Bnoisy.^ However, more work is
needed to understand why initialized prediction skill some-
times exceeds the potential predictability in real-world
Atlantic prediction systems and to test the hypothesis that
models respond too weakly to North Atlantic SST variability
[115].

We are not aware of any studies showing that models with
higher perfect model potential predictability achieve higher
actual skill in initialized retrospective predictions, and there-
fore, the practical significance of Atlantic climate predictabil-
ity diagnosed from particular CGCMs remains unclear. Boer
et al. [116] do show that, for at least one model, there is a
geographic correspondence between potential skill and actual
skill for both the forced and internal components of SAT var-
iability. Chapter 11 of the IPCCAR5 assessment report shows
that the high potential predictability of internal SAT variations
throughout the Northern Hemisphere extratropics in CMIP5
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models (Fig. 11.1) corresponds to patterns of actual skill im-
provement in the Atlantic, but not in the Pacific (Fig. 11.4)
[112]. Perhaps most importantly, such studies have helped
identify important mechanisms and, in particular, the key role
of ocean circulation change in Atlantic predictability [92,
104]. Recent perfect model studies have bolstered the consen-
sus view that THC-related AMOC variability is predictable on
roughly decadal timescales, that some initial states are signif-
icantly more predictable than others, and that enhanced
AMOC predictability is closely related to enhanced predict-
ability of AMOC-related heat content and surface climate fin-
gerprints [110, 117–120].

Initialized Decadal Climate Prediction

The Subpolar North Atlantic and Nordic Seas

The high retrospective forecast skill in the North Atlantic seen
in early initialized decadal predictions [47–49] helped to in-
spire a coordinated, international effort to advance decadal
climate prediction as part of CMIP5 [121]. Most groups that
participated in the CMIP5 protocol report modest improve-
ment in global mean temperatures relative to uninitialized ex-
periments but substantial improvement in the North Atlantic
for up to a decade ahead [122–129, 130•]. This improvement
appears to be largely insensitive to initialization method
[131–134]. The subpolar North Atlantic (SPNA; comprising
roughly the cyclonic ocean gyre north of about 50° N) is
consistently the region with the largest relative improvement
in surface temperature skill due to initialization, especially
beyond the first few years of predictions [124, 130•, 131,
132, 135]. The improvement in skill is, in part, due to the
initialization, and persistence, of substantial low-frequency
variability of ocean heat content [136, 137]. However, several
studies have shown significant improvements in the skill of
upper ocean heat content and SST beyond persistence, espe-
cially for lead times longer than a few years [131, 136].

The historical time period over which initialized decadal
predictions can be tested is strongly constrained by sparse
observations (needed both for initialization and verification).
In CMIP5, the earliest decadal hindcasts were initialized near
1960. The very limited sampling of observed decadal to multi-
decadal variability makes skill assessment problematic.
Therefore, there has been emphasis on understanding specific
case studies of pronounced decadal change. The rapid
warming of the SPG in the 1990s has been identified as a
good test case for initialized predictions given its magnitude
and occurrence in the relatively well-observed late twentieth
century [138]. This warming has been found to be predictable
in a number of independent systems, and the initialization of
anomalously strong ocean heat transport has been identified as
the key to their success [136–139, 140•]. Crucially, the

initialization of anomalously strong ocean circulation, and in
particular a strong AMOC, was found to play an important
role, at least for the first few years of predictions. Although the
initialization of anomalous upper ocean heat content (and as-
sociated advection of temperature anomalies) also plays a role
[136, 137], the 1990s case study provides compelling evi-
dence that large-scale ocean circulation anomalies are an im-
portant source of skill in decadal predictions of the late twen-
tieth century.

The evolution of hindcasts initialized in the early 1990s is
broadly consistent with the idea of persistent positive NAO
driving THC intensification in the late twentieth century [19,
79, 85, 88••, 139, 141]. The use of historical initial conditions
imprints long-lasting NAO-driven density (and THC) anom-
alies into the coupled predictions [96•, 138, 140•]. However,
although there is some skill in capturing multi-year THC-re-
lated overturning [142•] and gyre [96•] circulations, hindcasts
do not appear able to capture the high-latitude formation of the
deep density anomalies, and hence the onset of THC changes,
in advance. It is important to underline that even if the
hindcasts are not predicting changes in the ocean circulation
per se, they may still reproduce the impact of the initialized
anomalous ocean circulation and heat transport on the wider
climate at decadal lead times [139]. Although the deep water
formation processes in the Labrador Sea are not well-predict-
ed, the southward propagation of pre-formed (i.e., initialized)
water mass anomalies is highly predictable, and this propaga-
tion underpins the long lead time skill at predicting decadal,
buoyancy-driven gyre fluctuations that modulate SPNA tem-
perature [89, 96•] (Fig. 1).

Although there is general agreement that anomalously
dense deep ocean conditions and a strong THC were key
factors in the mid-1990s warming, other mechanisms were
also at play. The negative NAO of 1995/1996 is also thought
to have played a non-trivial role through reduced surface
cooling and changes in surface currents [70, 79, 139].
However, the decadal prediction systems analyzed to date
have not shown skill in predicting year-to-year variations in
the NAO. The lack of skill in the NAO potentially explains
why hindcasts do not generally capture the speed or magni-
tude of the observed warming and also why hindcasts tend to
warm earlier than observed [136, 139]. In one study, ensemble
members initialized in the early 1990s that, by chance, simu-
lated a more realistic NAO did tend to exhibit a more realistic
mid-1990s warming, but to first order a skillful NAO predic-
tion was not necessary to predict the shift [139]. The mid-
1990s warming has also been linked to a shrinking and weak-
ening of the SPG [143–145]. Some systems have shown mod-
est skill at predicting the SPG despite negligible skill at
predicting the atmospheric forcing [146], suggesting the gyre
changes may have been at least partly buoyancy-driven [89].

The propagation of THC-driven SPNA heat content anom-
alies into the Arctic via the Nordic Seas is considered a likely
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mechanism for decadal-scale predictability of Arctic upper
ocean heat content, sea ice, and atmospheric heat flux [20•,
37•, 88••, 97•]. Yeager et al. argue that the mid-1990s

warming of the SPNA (Fig. 1) contributed to the extreme rate
of Atlantic sector winter sea ice loss that was observed be-
tween 1997 and 2007 and that the latter was predictable [96•].

Banks upper-1050m

Banks gyre strength

SST

a

b

c

d

e

f

Fig. 1 Modified from [96•]. a Annual rate of surface formation of North
Atlantic Deep Water (NADW; σ0 > 27.6 kg m−3) over the high-latitude
North Atlantic (60° W–20° E; 50° N–90° N) diagnosed from observed
atmospheric and oceanic surface fields (thick green curve, left axis) and
the observed winter (December–March) NAO index (thin blue curve,
right axis). The remaining panels show 3-year running mean anomalies
from a forced ocean-sea-ice simulation (CORE; black curves), CESM
initialized decadal predictions averaged over the 5–7-year forecast period
(DP; red curves and shading are ensemble mean and minimum/maximum
range, respectively), CESM uninitialized twentieth century simulations
(20C; purple dashed curves show the mean of a 6-member ensemble),

and various observational time series (OBS; blue curves). Apart from the
winter NAO in Fig. 1a, all time series are based on annual mean data. b
Upper 1050 m density anomaly (σ0) in the central Labrador Sea region
(56°W–49°W; 56° N–61° N). cUpper 1050m density anomaly (σ0) in a
region to the east of Grand Banks (50° W–35° W; 40° N–50° N). d
Barotropic gyre streamfunction anomaly averaged over the Grand
Banks region (note inverted axis; more negative values indicate stronger
cyclonic circulation). eOcean poleward heat transport across 50° N in the
Atlantic. f SST in the subpolar North Atlantic (SPNA; 45°W–10°W; 50°
N–60° N). See [96•] for further details
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Analysis of other systems reveals a wide range of skill in
predicting SST in the Nordic and Barents seas, with the most
skillful models showing indications of a heat content propa-
gation mechanism at work [147].

Although much attention has focused on the prediction of
the 1990s warming of the SPG, there are other events that
have been studied. Several groups have shown that hindcasts
can skillfully predict the cooling of the SPG in the 1960s [96•,
140•, 148, 149•] (Fig. 1) and even the warming of the North
Atlantic in the 1920s [149•]. A detailed analysis of the SPG
heat budget showed that skillful predictions of the 1960s
cooling was, again, related to the initialization of ocean circu-
lation and ocean heat transport (in this case anomalously
weak) [148]. Analysis of ocean heat transport in other systems
supports these conclusions [96•, 140•]. More recently, the
SPNA upper ocean has again been cooling, which is also
thought to be related to a slowdown in the THC [150•]. A
continued near-term cooling of the SPNA has been forecast
by a number of prediction systems, with implications for pan-
Atlantic climate [96•, 140•, 151] (Fig. 1). Trying to predict
these ongoing changes is a challenge that will test our under-
standing and modeling capabilities in near real time over the
upcoming years.

The Subtropical North Atlantic

Idealized model experiments suggest that tropical North
Atlantic SST is the primary driver of global AMV
teleconnections [21, 36•, 152, 153], and so skill in this region
would seem to be necessary for foreknowledge of the most
dominant and far-ranging AMV impacts. A handful of studies
have highlighted an improvement of skill due to initialization,
especially when averaging over lead times, in the subtropical
North Atlantic (STNA) [130•, 154]. However, this improve-
ment is often small in comparison to that seen in the SPNA
[122, 125, 130•, 135]. The lower skill in the STNA is gener-
ally consistent with a more important role of the atmosphere in
driving the changes in surface temperature in this region, giv-
en less ocean memory (i.e., shallower mixed layers) and weak
advective heat convergence. In particular, changes in the
strength of tropical winds and associated feedbacks, including
the Wind-Evaporation-SST (WES) feedback and cloud-
related feedbacks, are important drivers of STNA SST [45,
155, 156].

Model analysis suggests that extratropical temperatures can
also drive the changes in the wind, by driving changes in the
winter and summer NAO through increased baroclinicity or
by driving changes in the Hadley cell, but these mechanisms
are thought to be too weak in many models [135, 156, 157].
Finally, although the change in skill due to initialization in the
STNA is relatively small, it is important to stress that overall
skill in this region is positive in most CMIP5 models [125].
Whether the existing skill in this region is largely due to

changes in greenhouse gases or other external forcing factors,
such as anthropogenic or volcanic aerosols [158], remains to
be understood in detail.

Impacts Over Land

Although there is clear evidence of the positive impact of
initialization on the North Atlantic Ocean, there is less
convincing evidence of an impact on skill over land.
Modest multi-year-lead skill improvement for surface tem-
perature over the continents surrounding the Atlantic is
present in some systems, particularly over Western
Europe and North/Central America, but the improvement
varies with season and seems most evident as a reduction
of error rather than enhancement of correlation [123, 125,
127, 130•]. At least one study reports modest but signifi-
cant skill in predicting temperature and precipitation cli-
mate extremes over North America and Europe at decadal
lead times, although most of the skill appears to be due to
external forcing rather than initialization [93]. There is
also emerging evidence that rainfall over Africa can be
predicted. Decadal prediction systems show robust skill
improvement in capturing multi-year anomalies in the
West African monsoon [159] and Sahel rainfall [160],
with the source of the latter skill coming from AMV
[161]. To circumvent poor sampling, some studies have
employed a compositing technique that enhances signal-
to-noise to show that significant changes in surface climate
are simulated by predictions systems when anomalous
temperatures are initialized in the North Atlantic [136,
137, 148, 149•, 162]. The changes identified as skillfully
predicted include shifts in rainfall over North America,
Africa and Northern Europe, and summer circulation over
the North Atlantic, which are consistent with the expected
impacts of anomalous Atlantic temperatures (e.g., [34]).
Although evidence of skillful prediction over land is lim-
ited, the finding that decadal predictability may be
underestimated in current decadal prediction systems is
encouraging, as it implies that larger ensembles and/or
improved models could yield improved skill scores over
North America, Eurasia, and Africa in the future [114•].

Predicting Atlantic hurricane frequency at multi-year lead
times is an exciting prospect with clear and tangible benefits to
society, and several studies have suggested this may be a re-
alizable goal [135, 140•, 163]. Skill improvement for tropical
cyclone count is related to predictable changes in SPNA SST
and, hence, the latitudinal temperature gradient in the North
Atlantic and its impact on the Hadley cell [135, 157]. Most of
the skill is related to the large shifts in the SPNA temperatures
in the 1960s and 1990s, and there is some controversy over
whether the skill is due to persistence of initialized SSTor due
to non-trivial prediction of SST changes [163, 164].
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Outstanding Questions and Future Prospects

Promising recent initialized prediction results (largely spanning
∼1960 to the present) support a strong role for NAO-driven THC
anomalies controlling late twentieth century decadal variability in
the SPNA. Furthermore, this high retrospective forecast skill in
the SPNAwould appear to explain the relatively high skill scores
for SAT over the Western Europe and Scandinavia, and winter
sea ice extent. However, the teleconnections (both oceanic and
atmospheric) responsible for propagating skill from the SPNA to
other regions remain poorly understood and probably poorly
represented in current models. In addition, it is becoming clear
that different regions of the North Atlantic (e.g., SPNA vs.
STNA) are governed by distinct low-frequency mechanisms
and, in turn, give rise to different impacts onto the wider climate
system [36•, 101, 165]. This calls into question the usefulness of
the traditional basin-wide AMV index for the purpose of attrib-
uting climate impacts, developing mechanistic understanding,
and assessing and interpreting predictions.

The significance of other proposed mechanisms of low-
frequency AMOC variability (e.g., baroclinic Rossby waves)
remains to be demonstrated in the context of initialized
Atlantic prediction, and it is an open (and perhaps unanswer-
able) question whether the skill of a prediction system is a
strong function of the CGCM’s preferred AMOCmechanism.
It is possible that, while the late twentieth century Atlantic was
dominated by NAO-driven THC variability, other mecha-
nisms may dominate in other time periods. New paleo-proxy
reconstructions are critical for developing a deeper under-
standing of low-frequency Atlantic climate variability and as-
sociated mechanisms, such as the role of Nordic Seas over-
flows [166]. The extension of atmospheric reanalysis products
backwards in time may permit more tests of initialized predic-
tion over multiple AMV cycles, but there is large uncertainty
in the ocean and sea ice state reconstructions generated from
such products and little data to compare against [149•].

Most CMIP5-era prediction systems used rather simple ini-
tialization techniques, such as nudging to ocean state
reanalyses or using ocean simulations forced with atmospher-
ic reanalyses, and there is undoubtedly considerable room for
improvement. Coupled data assimilation (DA) techniques of-
fer the promise of high fidelity Earth system state estimates for
initializing hindcasts in the modern observational era, and the
same techniques could potentially be used to reconstruct much
earlier ocean states if just SSTs are assimilated [167]. The
potential to evaluate retrospective hindcasts over multiple
AMV cycles makes the latter an appealing initialization strat-
egy, but there is inevitably a trade-off between the length and
quality of ocean state reconstructions. The pros and cons of
alternative initialization methods, and the relative contribu-
tions to skill associated with initializing different Earth system
components, are important topics of ongoing research that will
help guide the development of future prediction systems.

An exciting prospect in Atlantic prediction work is the
inclusion of prognostic biogeochemical models to facilitate
forecasts of marine fields relevant to biology and the carbon
cycle. New studies have appeared showing multi-year skill at
predicting carbon uptake in the North Atlantic [168•] and net
primary productivity in the tropical Pacific [169]. It remains to
be seen whether AMV-related shifts in marine ecosystems
[170] might also become achievable in future prediction
systems.

Towards Improved Model Fidelity

Model bias (used here to denote systematic errors in the rep-
resentation of both the mean climate and its variability) is
perhaps the single greatest impediment to improved decadal
climate prediction. Hindcasts initialized from observed condi-
tions (full-field initialization) drift towards the model’s pre-
ferred climatology, necessitating a drift-adjustment procedure
prior to evaluation [116]. While such a posteriori corrections
have been shown to yield skill scores comparable to anomaly
initialization for select fields [133], key feedbacks between the
ocean and atmosphere (e.g., ENSO development, cyclogene-
sis, or surface water mass formation) can be degraded by the
presence of drift [171, 172]. The misrepresentation of the
North Atlantic Current (NAC) path is a chronic bias in the
non-eddy-resolving oceanmodels commonly used for decadal
prediction, resulting in mean SSTs that are several degrees too
cold in the extratropical North Atlantic. This bias impacts
high-latitude air-sea exchange with important ramifications
for AMV [173]. Model bias is a complex problem that can
involve coupled processes that are notoriously difficult to un-
ravel. While many coupled model biases in the Atlantic are
probably related to poor Gulf Stream representation in coarse
resolution ocean models, others, such as poor upper ocean
thermal structure in the tropical Atlantic, appear to originate
in the atmosphere [174].

Increased model resolution in the ocean and atmosphere is
clearly a future frontier for decadal prediction research that
will improve the physical realism of model systems and allow
them to takemaximum advantage of the modern observational
network. Recent work has highlighted the role of mesoscale
ocean fronts, and in particular Gulf Stream SST gradients, in
driving the atmosphere—a mechanism that is largely absent in
the non-eddy-resolving models that were used for CMIP5
predictions [175, 176]. Furthermore, high-frequency feedback
between mesoscale ocean eddies and the atmospheric bound-
ary layer appears to be key for realistic simulations of the
dynamics and climate impacts of western boundary currents,
requiring high horizontal resolution not only in the ocean but
also in the atmosphere [177, 178]. The use of high-top,
stratosphere-resolving models of the atmosphere is also ex-
pected to improve the realism of atmosphere-ocean coupling
[102•]. While low-resolution prediction studies emerged from
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a rich literature on mechanisms, the nature of low-frequency
Atlantic variability in the ocean-eddy-resolving regime re-
mains largely unstudied given the tremendous resources re-
quired to run (and analyze) long simulations at such high
resolution. Thus, there are many outstanding questions regard-
ing the nature of underlying mechanisms at high resolution,
how much of the knowledge gained through low-resolution
studies will carry over, and whether North Atlantic predict-
ability will be sensitive to resolution. To our knowledge, only
one study has systematically assessed the change in decadal
prediction skill associated with horizontal resolution [130•],
and only one so far has looked at decadal predictability with
an eddying ocean model [179]; more will undoubtedly follow.

Improved fidelity at simulating important North Atlantic
air-sea interactions has recently been reported in the context
of seasonal-to-interannual prediction. Using a relatively high-
resolution model (stratosphere-resolving atmosphere at nom-
inal 60 km resolution, and an ocean model at nominal 0.25°),
the UK Met Office has demonstrated unprecedented skill at
predicting NAO from a few months to a year in advance
[113••, 180•]. These studies are part of an emerging literature
suggesting that current models are systematically
underestimating the potential predictability of the atmosphere
in the North Atlantic and that large ensembles can be used to
overcome excessive noise in the current generation of models.
Which of several model improvements led to the improved
predictions is not well understood, but given the important
role played by the NAO in Atlantic decadal variability, this
advancement could point the way for improved predictions on
multi-annual to decadal timescales.

The Role of External Forcing

There are many outstanding questions regarding the role
that external forcings have played in shaping the real-
world evolution of North Atlantic climate (e.g., [78, 158]),
or that simulated in retrospective predictions (e.g., [122]),
and this uncertainty hangs like a question mark over recent
decadal prediction skill assessments. External forcings (i.e.,
prescribed time-varying radiative forcings associated with
greenhouse gases and anthropogenic and natural aerosols)
are undoubtedly a source of skill in the North Atlantic,
especially in the tropical North Atlantic. This conclusion is
based on potential predictability analyses (e.g., Fig. 11.1 of
[112]) as well as joint analysis of initialized and
uninitialized ensembles that share identical external forcing
[125]. However, the number of ensemble members required
to effectively isolate the forced signal from uninitialized
simulations (in order to quantify the impacts of initializa-
tion) is not well constrained, and larger ensembles than have
been used to date are likely required for robust statistics
[116, 181]. Furthermore, the reasons why the forcings are
a source of skill are not understood in detail. Changes in

forcing could lead to improved predictions of SST by di-
rectly modulating the local surface heat budget, for exam-
ple. Alternatively, the surface response to forcing may in-
volve dynamical changes in the ocean and/or atmosphere.
For example, recent studies suggest a lagged link between
the solar cycle and the NAO [180•, 182]. Changes in vol-
canic and anthropogenic aerosols could also excite lagged
NAO and/or AMOC variations [183, 184•]. It follows that
Atlantic skill scores may be biased high due to the applica-
tion of what would be unforeseeable volcanic aerosol load-
ings in retrospective predictions [185•]. Therefore, improv-
ing our representations of external forcing factors, our pre-
dictions of how they will change over the upcoming decade,
and our understanding of model response to those forcings
is critical for improving predictions and understanding the
origin of skill.

Conclusions

We have reviewed here some key recent developments in
decadal prediction of the North Atlantic, but inevitably have
left out mention of many relevant papers given the breadth
of this topic. Although there have been important advances
over the past decade, Atlantic climate prediction research
has not seen any major paradigm shift away from the basic
conceptual framework laid out in the review by Latif and
coauthors in 2006 [44]. The slow flywheel of the Atlantic
thermohaline circulation, set into motion by multiple con-
secutive winters of anomalous NAO buoyancy forcing,
drives predictable surface temperature change in the North
Atlantic on decadal timescales. A decade worth of new
analysis of observations and models, including a greatly
expanded set of initialized CGCM prediction simulations,
has revealed the following:

& The subpolar North Atlantic (SPNA) consistently stands
out as the most improved region in retrospective decadal
predictions of upper ocean heat content and surface tem-
perature in state-of-the-art initialized climate predictions
(where improvement is assessed relative to externally
forced simulations of the twentieth century that are not
initialized from observed conditions). Many prediction
systems show skill improvement here for up to a decade
ahead, significantly outperforming persistence at long lead
times.

& In some systems, high skill in the SPNA appears to rever-
berate around the Atlantic sector as improved skill in
predicting surface climate over land in Europe, upper
ocean heat content in the Nordic Seas and decadal Arctic
winter sea ice trends, and Atlantic tropical cyclone
frequency.
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& The skillful prediction of late twentieth century and early
twenty-first century SPNAvariability is attributable to the
initialization of (but not necessarily prediction of) NAO-
driven water mass anomalies—and in particular, Labrador
Sea Water anomalies. This sets up an anomalous thermo-
haline circulation (which includes both gyre and
overturning components) with associated anomalous
ocean heat transports. There are indications that the THC
evolves somewhat predictably, due to the persistence and
propagation of initialized, anomalous water masses, but
there is a general lack of skill in predicting NAO and
associated surface forcing.

& Surface temperature skill improvement in the tropical
North Atlantic is less obvious and consistent than in the
SPNA. There is skill overall, which suggests that external
forcings are an important driver of variability in this re-
gion. However, more work is needed to understand the
relative importance of various driving mechanisms, and
related model shortcomings, in the tropical Atlantic.

& Recent work lends new support to the hypothesis that ocean
may have an important influence on the extratropical atmo-
sphere which could affect the magnitude and timescale of
AMV. However, due to the short observational record and
the likely influence of external forcing factors, the extent to
which AMV represents a coupled ocean-atmosphere mode
of variability remains an open question.

Initialized climate predictions of the North Atlantic have
therefore begun to live up to the promise garnered from the
past half-century of research. However, gaps in understanding
continue to limit our confidence in predictions of future (rather
than past) changes. Further progress will require a deeper un-
derstanding of Atlantic climate variability and relevant mech-
anisms, with AMV and its impacts still a primary area of
focus. It is also clear that we need a deeper understanding of
the behavior of initialized coupled prediction systems them-
selves with respect to a host of issues that we have not covered
here in detail, such as drift, initialization shock, optimal en-
semble size, ensemble generation, external forcing, and sensi-
tivity to initial conditions. Systematic exploration of the
sources of skill are illuminating (e.g., [186, 187]), as are
process-oriented studies that help identify the mechanisms
behind North Atlantic variability [36•, 88••] and skill. In ad-
dition to standard hindcasts with next-generation CGCMs, the
Decadal Climate Prediction Project has called for several such
targeted investigations in CMIP6 that should help spur ad-
vances for years to come [188]. Finally, the steady advance-
ments seen in the field of numerical weather prediction over
the last century give us good reason to expect similar progres-
sive improvements in our ability to predict the Atlantic on
interannual to decadal timescales as models and initialization
techniques improve, as the observing system expands, and as
computing power increases [189].
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