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Abstract
Forecasting of electricity consumption for residential and industrial customers is an important task providing intelligence to
the smart grid. Accurate forecasting should allow a utility provider to plan the resources as well as to take control actions to
balance the supply and the demand of electricity. This paper presents two non-seasonal and two seasonal slidingwindow-based
ARIMA (auto regressive integrated moving average) algorithms. These algorithms are developed for short-term forecasting
of hourly electricity load at the district meter level. The algorithms integrate non-seasonal and seasonal ARIMA models with
the OLIN (online information network) methodology. To evaluate our approach, we use a real hourly consumption data stream
recorded by six smart meters during a 16-month period.

Keywords Internet of things · Smart city · Smart grid · Short-term forecasting · Incremental learning ·
Online information network · Sliding window · ARIMA

1 Introduction

Smart grid is becoming an increasingly popular application
of the Internet of things (IoT). The smart grid includes a
variety of operational and energy components connected to
the Internet such as smart switches, smart meters, and smart
appliances. Smart meters are aimed at monitoring and con-
trolling household energy consumption in real time [2]. They
enable two-way communication between the utility company
and the customer. Their sampling rate usually varies from 10
min to 1 h with a maximum latency of 24 h.

The massive amounts of measurement data collected by
smart meters can be used for customers’ load forecasting.
However, power consumption patterns in both residential
and non-residential buildings may change over time due to
multiple reasons including variability of human behavior,
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changes in the number of people populating the buildings
at various times, introduction of new electric appliances,
etc. Hence, short-term load forecasting (STLF) algorithms
should be responsive to these changes by quickly learning
new consumption patterns and modifying the forecasting
models accordingly. The problem of a gradual “drift” in the
target concept is handled by incremental learning systems
via forgetting outdated data and adapting to the most recent
phenomena [3]. However, the traditional ARIMA (auto
regressive integrated moving average) algorithms, which are
commonly used for short-term load forecasting, are lack-
ing such an incremental learning mechanism: they learn the
parameters of a given ARIMAmodel only once using a fixed
training set and then apply that model to all future incoming
data.

In this work, we integrate non-seasonal and seasonal
ARIMA modeling with the OLIN (on line information
network) incremental learning methodology, which was pre-
viously developed by Last [7] for classification tasks in
the presence of a concept drift. The proposed incremen-
tal ARIMA system is aimed at continuously processing an
infinite stream of incoming data such as a series of load
measurements at an hourly or daily resolution. It periodi-
cally rebuilds the predictive model using the sliding window
approach. We implement two non-seasonal and two seasonal
slidingwindow-basedARIMA algorithms and evaluate them
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on a real-world consumption data stream recorded by six
smart meters during a 16-month period.

2 Related work

Penya et al. [9] present short-term load forecasting models
for non-residential buildings. According to the authors, this
special domain presents different characteristics: there is no
consumption at night, or it is negligible, and anyway, there
exists a notable gap between idle and activity times. Another
critical aspect is that usually, there is scarce (if any) historical
data on hourly load and the load profile is sure to vary and
evolve over the time. The forecasting results presented for
the consumption data from a university campus shows that
autoregressive models, being computationally simple, accu-
rate, fast, and not requiring any trial-and-error customization
or external data (e.g., temperature), are sufficient for pro-
viding acceptable prediction accuracy up to six days ahead
(MAPE, mean absolute percentage error, between 5 and
11%).Other evaluatedmodels, including linear andnonlinear
regression, a neural network, a support vector machine, and
a Bayesian network, have provided higher values of MAPE.

The latest studies presented inmost recent articles provide
contradictory results. In Høverstad et al. [6], ARIMA meth-
ods achieve better results than artificial neural networks. On
the other side, Veit et al. [10] claim that a neural network per-
forms slightly better than the ARIMA methods. Gerwig [4]
points out that comparing the results of the different papers
is difficult as the evaluations do vary not only in various con-
sumption data sets but also in the length of the time series
forecasting horizon, granularity, and the choice of error mea-
sures.

Gerwig [5] evaluates five state-of-the-art approaches to
short-term load forecasting on three publicly available data
sets of power consumption in residential buildings. The fol-
lowing forecasting methods are chosen for evaluation: an
autoregressive model (AR), k-nearest neighbor regression
(KNN), decision trees (DT), random forest regression (RF),
and kernel ridge regression (KRR). In addition, two sim-
ple benchmarks are used: a persistent forecast (PER), where
the predicted values are equal to the last observation, and
an averaging method (AVG), where the predicted values are
the average of the training data for the specific time of day.
Compared to other methods, the autoregressive model and
the KNN method achieve the best results (MAPE of about
30% in a 24-h forecast for a single household).

This paper contributes to our conference paper Alberg
and Last [1] in terms of a more detailed explanation of the
proposed algorithms and presentation of new results.
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Fig. 1 Incremental OLIN learning with ARIMA

3 Proposedmethodology

3.1 The incremental ARIMA paradigm

The proposed paradigm, called “Incremental ARIMA”, is
presented in Fig. 1. Our incremental ARIMA system is com-
posed of the following four components:

• Learning module it takes as input a sliding training
window of a given size (in terms of the number of obser-
vations) and calculates the parameters for a given set of
ARIMAmodels (seasonal or non-seasonal) as well as the
trainingMAPE (mean absolute percentage error) of each
induced model.

• Repository of models it serves for storing the ARIMA
models induced from the latest training window.

• Prediction module it takes as input a sliding validation
window of a given size (a “prediction horizon” such as
the next 24 h) and calculates the validationMAPE (mean
absolute percentage error) for eachARIMAmodel stored
in the Repository of Models.

• Meta-learning module it takes as input the training and
the validation MAPE of each [S]ARIMA model and
chooses the most accurate model, which has the low-
est value of validation MAPE. It also computes the start
and the end points of the next training and validation
windows, so that both the end point of a new training
window and the start point of a new validation window
are set to the end point of the previous validationwindow.
To respond to a concept drift, a new [S]ARIMAmodel is
induced from the latest training window every time the
validation error of the current model exceeds its training
error by a pre-defined threshold Th.
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3.2 The incremental ARIMA algorithms

Seasonal autoregressive integrated moving average
(SARIMA) models intend to describe the current behavior
of variables in terms of linear relationships with their past
values. These models are also called Box–Jenkins models
following the Box and Jenkins (1984) pioneering work on
time series forecasting techniques. A SARIMA model can
be decomposed into four parts. First, it has an integrated (I)
component (d), which represents the amount of differenc-
ing to be performed on the series to make it stationary. The
second ARIMA component consists of an ARMA (autore-
gressive moving average) model for the series rendered
stationary through differentiation. The third component is
a seasonal component, and finally, the fourth component is
the seasonality period parameter. The ARMA and SARMA
components are further decomposed into the corresponding
AR (autoregressive) andMA (moving average) non-seasonal
and seasonal components, respectively. TheAR and seasonal
AR components capture the correlation between the current
value of the time series and some of its past non-seasonal
and seasonal adjusted values. For example, AR(1) means
that the current observation is correlated with its immedi-
ate past value at time t − 1. The Moving Average MA and
seasonal MA components represent the duration of the influ-
ence of a random non-seasonal and seasonal adjusted error.
For example, MA(1) means that the error in the value of
the series at time t is correlated with the shock at t − 1.
The last thing to note is that most real-world time series
are non-stationary, whereas ARIMA and SARIMA models
usually refer to a stationary time series. Therefore, it is nec-
essary to have a notational distinction between the original
non-stationary time series and its stationary counterpart after
differencing or logging.

We have used the paradigm described in the previous sec-
tion to evaluate four incremental non-seasonal and seasonal
(S)ARIMAalgorithms: slidingwindowhourlyARIMAalgo-
rithm (SWH2A), sliding window hourly seasonal ARIMA
algorithm (SWHSA), sliding window daily profile ARIMA
algorithm (SWDP2A), and window daily profile seasonal
ARIMA algorithm (SWDPSA). The SWH2A and SWHSA
algorithms utilize hourly consumption records in the train-
ing window for calculating the parameters of hourly ARIMA
and SARIMAmodels. Those models are applied recursively
to each hour in the validation window for predicting the

hourly consumption. On the other hand, the SWDP2A and
SWDPSA utilize daily consumption records in the train-
ing window for calculating the parameters of daily ARIMA
and SARIMA models. In addition, the hourly consumption
records in the training window are used by SWDP2A and
SWDPSA for calculating the 24-h average daily profile of
hourly consumption. The daily ARIMA and SARIMAmod-
els are applied recursively to each day in the validation
window for predicting the overall daily consumption and
then combined with the mean 24-h profile for predicting the
consumption during each hour.

The following flowchart gives an intuitive representation
of the sliding window hourly ARIMA algorithm (SWH2A)
and sliding window hourly seasonal ARIMA algorithm
(SWHSA):

The pseudocode of the sliding window hourly ARIMA
algorithm (SWH2A) and sliding window hourly seasonal
ARIMA algorithm (SWHSA) is as follows:

Input 
Training window size Wtr (in hours)
Prediction (Validation) window size Wval (in hours) 
Starting time of the data stream tstart (in hours) 
ARIMA model type (p, d, q) 
SARIMA model type (p, d, q) with seasonal component is  (0,1,1) 
Seasonality Period for SARIMA models  is 24 hours 
Th – concept drift threshold

Output 
MAPE Tr – the training window MAPE 
MAPE Val – the validation window MAPE 

Algorithm 
Initialize the start point of the training window t1 = tstart

Compute the end point of the training window t2 = t1 + Wtr

MAPE Val  = MAPE Tr

While new data arrives do: 
If (MAPE Val  / MAPE Tr  > Th)  

Induce hourly (S)ARIMA model from the hourly data in the training
window [t1; t2]: 

  (S)ARIMA-H = Model (hourlyData, p, d, q, t1, t2, (0, 1, 1), 24) 
 Calculate MAPE Tr for the training window [t1; t2]:  
 MAPETr = MAPE (hourlyData, (S)ARIMA-H, t1, t2) 
Compute the start point of the validation window t3 = t2

Compute the end point of the validation window t4 = t3 + Wval

Calculate MAPE Val for the validation window [t3; t4] :  
MAPEVal = MAPE (hourlyData, (S)ARIMA-H, t3, t4) 
Compute the start point of the training window t1  = t4 - Wtr

Compute the end point of the training window t2 = t4

Loop 
Return MAPE Tr, MAPE Val 

The following flowchart represents the sliding window
daily profile SWDP2A and SWDPSA algorithms as follows
(Figs. 2, 3):

The pseudocode of the sliding window daily profile
SWDP2A and SWDPSA algorithms is as follows:
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Input 
Training window size Wtr (in days)
Prediction (Validation) window size Wval (in days) 
Starting time of the data stream tstart (in days) 
ARIMA model type (p, d, q)  
SARIMA model type (p, d, q) with seasonal component is  (0,1,1) 
Seasonality Period for SARIMA models is 7 days 
Th – concept drift threshold 

Output 
MAPE Tr – the training window MAPE 
MAPE Val – the validation window MAPE 

Algorithm 
Initialize the start point of the training window t1 = tstart

Compute the end point of the training window t2 = t1 + Wtr

MAPE Val  = MAPE Tr

While new data arrives do: 
If (MAPE Val  / MAPE Tr  > Th)  

Induce daily (S)ARIMA model (S)ARIMA-D from the daily data in
the training  window [t1; t2]: 

 (S)ARIMA-D = Model (dailyData, p, d, q, t1, t2) 
 Calculate the 24-hour load profile hoursProfile from the hourly da-

ta in the training window [t1; t2] 
 Calculate MAPETr for the training window [t1; t2]: 
 MAPETr = MAPE (hourlyData, hoursProfile, (S)ARIMA-D, t1, t2) 

 Compute the start point of the validation window t3 = t2

 Compute the end point of the validation window t4 = t3 + Wval

 Calculate MAPE Val for the validation window [t3; t4] : 
 MAPEVal = MAPE (hourlyData, hoursProfile, (S)ARIMA-D, t3, t4) 
 Compute the start point of the training window t1  = t4 - Wtr

 Compute the end point of the training window t2 = t4

Loop 
Return MAPE Tr, MAPE Val 

The formula of the (S)ARIMA forecastingmodel depends
on the following seven parameters [8]:

• p is the number of non-seasonal autoregressive terms.
• d is the number of non-seasonal differences.
• q is the number of lagged non-seasonal forecast errors in
the prediction equation.

• ps is the number of seasonal autoregressive terms.
• ds is the number of seasonal differences.
• qs is the number of lagged seasonal forecast errors in the
prediction equation.

• P is the seasonal periodicity.

For example, the forecasting equation of ARIMA (1, 1, 1)
for the hourly/daily load during the hour/day t is:

Ŷt = μ + Yt−1 + φ(Yt−1 − Yt−2) − θ · et−1, (1)

where Yt−1 and Yt−2 stand for the actual load during the
hours/days t−1 and t−2, respectively, et−1 is the forecasting
error for the hour/day t−1, and the coefficientsμ, φ, and θ are
estimated from the hourly/daily data in the training window
using a model fitting technique. When the prediction horizon
(validation window) exceeds one time unit (one hour or one
day, respectively), the actual values of Yt−1 and Yt−2 in Eq. 1
above may be replaced with their forecasted values, so that
(S)ARIMA model can be applied recursively to a series of
observations.

3.3 The evaluated algorithms

The training/validation MAPE (mean absolute percentage
error) of a given forecasting model is calculated on N con-
secutive load measurements as follows:

MAPE =
∑N

i=1

∣
∣
∣ Ŷi −Yi

Yi

∣
∣
∣ × 100

N
, (2)

where Ŷi and Yi stand for the predicted and the actual load,
respectively.

The 24-h load profile is calculated from the hourly data in
the training window by applying the following equation to
each hour of the day:

Ph =
∑D

d=1 Ydh

D
, (3)

where Ph is the average hourly load during the hour h(h ∈
[1, 24]), Ydh is the actual load during the hour h of day d, and
D is the number of days in the training window. The average
daily load PD can be found by summing up the values of Ph

over all hours of the day:

PD =
24∑

h=1

Ph . (4)

Fig. 2 SWH[2]SA flowchart
algorithm representation
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Fig. 3 SWDP[2]SA flowchart
algorithm representation

The sliding window daily profile (S)ARIMA SWDP2A and
SWDPSA algorithms use the following equation to predict
the hourly load during the hour h of the day d:

Ŷdh = Ŷd

PD
× Ph, (5)

where Ŷd is the predicted daily load for the day d calculated
by a daily (S)ARIMA models, PD is the average daily load
calculated by Eq. 3 above, and Ph is the average hourly load
for the hour h calculated by Eq. 2 above.

In our experiments, we have also evaluated two “naïve”
models: the “naïve hourly” based on the hourly consumption
during the previous day and “naïve daily profile” based on the
daily consumption during the previous day and the average
daily consumption profile during the training period. The
“naïve hourly” model calculates the forecasted hourly load
during the hour hof the day d by the following equation:

Ŷdh = Yd−1,h, (6)

where Yd−1,h is the actual load measured during the same
hour h on the previous day d − 1. The “naïve daily profile”
model calculates the forecasted load during the day d by the
following equation:

Ŷd = Yd−1. (7)

Then, it estimates the hourly load during each hour of the
day d using Eq. 4 above.

4 Evaluation experiments

4.1 Design of experiments

Our evaluation experiments were based on the electricity
hourly load data recorded by six Powercom (http://www.
powercom.co.il) meters during a 16-month period between
01/12/2012 and 31/03/2014. The meters were installed in
different districts of a major Israeli city. The total number
of recorded hourly observations was 61,646. The experi-
ments with four algorithms (SWH2A, SWHSA, SWDP2A,
and SWDPSA) included nine non-seasonal hourly and nine
non-seasonal daily ARIMA models,1 nine seasonal hourly
SARIMA models2 with the period parameter of 24 h, nine
seasonal daily SARIMA models (see footnote 2) with the
period parameter of 7 days, and two baseline models: the
“naïve hourly” model and the “naïve daily profile” model.
The experiments with the SWH2A, SWHSA, and the “naïve
hourly” models included three sizes of the training window
(24, 48, and 96 days) and four sizes of the validation window
(24, 48, 72, and 96 h). The experiments with the SWDP2A,
SWDPSA, and the “naïve daily profile” models included
three sizes of the training window (24, 48, and 96 days) and
three sizes of the validation window (1, 2, and 3 days). The
total number of models evaluated with each algorithm was
4 × 38 × 3 × 3 = 540.

We have explored the seasonality behavior of all meters
by building the average MW (megawatt) consumption plots
for monthly, daily, and hourly cycles of collected data.

The plots showed in Figs. 4, 5, and 6 exhibit seasonality
patterns in monthly, daily, and hourly profiles, respectively.

1 ARIMA models: (000, 001, 100, 101, 010, 011, 111, 221, 222).
2 SARIMA models: (000, 001, 100, 101, 010, 011, 111, 221, 222)
(0,1,1).
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Fig. 4 Monthly consumption
cycle for all meters

Fig. 5 Daily consumption cycle
for all meters

Fig. 6 Hourly consumption
cycle for all meters
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Figure 2 demonstrates a strong seasonality pattern expressed
by high energy consumption in winter months versus other
months. In addition, the months of June, July, and August
represent relatively high and stable energy consumption. This
fact coincideswith the high temperatures in Israelwhenmany
residents are using air condition in their homes. Figure 5
demonstrates a weak daily data seasonality characterized
by electricity load decrease in the last 3 days of the week
(Thursday, Friday, and Saturday). This result is obvious,
because Friday and Saturday are official weekend days in
Israel and most organizations are closed, and consequently,
they consume less electricity on these days. In contrast, Fig. 6
demonstrates a strong hourly seasonality pattern expressed
by the electricity load increasing from05:00 to11:00 and then
again between 17:00 and 21:00, particularly during thework-
days (Sunday–Thursday). The first pattern may be related to
the start of a business day at many workplaces, whereas the
second onemay be explained bymany people returning home
fromwork and starting to use the electrical appliances at their
homes, while at the same time, many companies are starting
their afternoon shifts. It is also noteworthy that after 21:00,
the load starts decreasing as people are going to sleep and
stop using most of their appliances.

4.2 Results

Table 1 compares the averageperformanceof four (S)ARIMA
and the “naïve” models across all meters and training/
validationwindow sizes. The slidingwindowhourlyARIMA
(SWH2A) models performed significantly worse than the
other models: their average validation MAPE values are
about two times higher than the “naïve hourly” MAPE
(11.804%). Out of the sliding window daily profile ARIMA
models (SWDP2A and SWDPSA), the best result (MAPE
= 10.05%) is obtained with the non-seasonal SWDP2A
ARIMA (101) model. Similarly, out of the sliding window
hourly profile ARIMA models (SWH2A and SWHSA), the

0
1
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4
5
6
7
8
9

10 MAPE %

Model
STDEV[SWDP2A] STDEV[SWHSA]

Fig. 7 Algorithm stability comparison in terms of standard deviation

best result (MAPE = 9.19%) is obtained with the seasonal
SARIMA (001) model. Figure 7 shows that the SWDP2A
algorithm has a more stable MAPE performance in terms of
standard deviation than the SWHSA algorithm.

Table 2 compares the average validation MAPE for each
meter across various models and training/validation window
sizes. In terms of the average MAPE, the daily profile model
SWDP2A strongly outperforms the non-seasonal SWH2A
hourly model (10.409 vs. 21.482%), slightly outperforms
seasonal SWDPSA hourly model (10.409 vs. 11.451%), and
has a similar performance to the SWHSA seasonal hourly
model according to the paired sample t test at the 99% sig-
nificance level.

Table 3 also shows the results of one-way ANOVA test-
ing for statistical significance of the difference between the
meters. The conclusion of one-way ANOVA is that the dif-
ference is not significant, implying that we can safely refer
to consolidated results of all 6 m.

Table 4 compares the average validation MAPE for dif-
ferent sizes of the training window across various models,
meters, and validationwindow sizes. It shows that, in general,
increasing the training window size improves the forecasting
performance (reduces MAPE), which indicates a relatively

Table 1 Comparison of
ARIMA models in terms of
Avg. MAPE

Model SWDP2A SWDPSA SWH2A SWHSA Average

[000] 11.592 11.457 22.826 9.689 16.454

[001] 10.909 11.038 21.870 9.191 15.284

[010] 10.329 16.708 23.631 11.600 14.527

[011] 10.261 11.444 23.715 11.221 14.280

[100] 10.363 10.241 21.640 9.246 14.643

[101] 10.050 10.218 21.790 9.238 14.704

[111] 10.155 15.045 23.864 9.543 13.910

[221] 10.393 15.153 22.795 11.652 13.887

[222] 10.358 11.331 20.999 10.432 13.219

Naïve daily 10.779

Naïve hourly 11.804
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Table 2 Comparison of meters
(h)

Meter SWDP2A SWDPSA SWH2A SWHSA Average

2478 9.627 11.331 20.083 9.740 13.215

4364 7.748 7.613 21.743 8.478 12.891

4429 14.618 15.675 21.231 15.293 16.902

4470 7.877 7.680 16.584 9.139 11.170

4740 11.042 11.643 30.980 11.559 17.260

5521 10.823 11.020 20.217 9.585 13.944

Average 10.409 11.451 21.482 10.622 14.230

Table 3 ANOVA comparison of
meters

Source of Variation SS d f MS F P value F crit

Between groups 134.41 5 26.88 0.73 0.61 2.77

Within groups 658.94 18 36.61

Total 793.34 23

Table 4 Comparison of training
window sizes (h)

Train. window SWDP2A SWDPSA SWH2A SWHSA Average

576 10.729 17.232 22.238 11.642 15.035

1152 10.325 15.136 21.533 11.011 14.573

2304 10.170 11.163 20.688 9.777 13.296

Average 10.409 11.451 21.482 10.622 14.230

Table 5 Comparison of
validation window sizes (h)

Val. window SWDP2A SWDPSA SWH2A SWHSA Average

24 10.009 11.211 20.533 9.532 13.052

48 10.443 11.515 21.334 10.324 13.665

72 10.787 11.642 21.957 11.213 14.177

96 9.047 11.331 22.103 11.428 18.036

Average 10.409 11.451 21.482 10.622 14.230

stable behavior ofmostmeters during the period of at least 96
days (about three months). However, there was 1 m (4429)
with the best trainingwindowsize (providing the lowest value
of MAPE) of 48 days and another meter (5521) with the best
training window size of 576 h (24 days) only. Apparently,
these 2 m were exposed to a faster concept drift than the
other four ones.

Table 5 compares the average validation MAPE for dif-
ferent sizes of the validation window across various models,
meters, and training window sizes. It shows that on average,

extending the prediction horizon reduces the performance of
the forecasting models (increases MAPE). Apparently, the
rate of MAPE increase is going down for the SWH2A algo-
rithm between the window sizes of 72 and 96 h. These results
confirm the common knowledge that it is more difficult to
predict a more distant future.

Finally, Table 6 shows the best configuration of algorithm,
model, and training window size across all 6 m for each
size of the validation window. The conclusion is that the
seasonal SWHSA algorithm works best for the 24- and 48-h

Table 6 Best configuration for
each prediction horizon (h)

Val. window Min. Avg. MAPE Algorithm Model Train. window

24 9.532 SWHSA SARIMA(1,0,1) 2304

48 10.324 SWHSA SARIMA(0,0,1) 2304

72 10.787 SWDP2A ARIMA(1,0,1) 2304

96 9.047 SWDP2A ARIMA(0,1,1) 1152
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validation window sizes. For the two larger windows (48 and
72 h), the non-seasonal SWDPA algorithm induces the most
accurate forecastingmodels. Themaximum training window
size of 96 days (2304 h) is the best one for the first three
configurations. In case of the 96-h validation window (the
fourth configuration), the best size of the training window is
48 days (1152 h).

5 Discussion and conclusions

The main contribution of this paper is the introduction of
sliding window-based forecasting algorithms (SWDP2A,
SWDPSA, SWH2A, SWHSA, and SWHSA) for electricity
load prediction in smart meters. These algorithms integrate
non-seasonal and seasonal time series (S)ARIMA models
with the OLIN (online information network) incremental
learning methodology. The main difference between the pre-
sented algorithms concludes in seasonality adjustment and
the model construction phase. The non-seasonal SWH2A
and seasonal SWHSA algorithms utilize hourly consump-
tion records in the training window, whereas non-seasonal
SWDP2A and seasonal SWDPSA algorithms utilize aggre-
gated daily consumptions and average daily profiles of
hourly consumptions to obtain the parameters of induced
(S)ARIMA models.

The experimental data set was recorded online by state-
of-the-art smart metering technology and, after thorough
preprocessing, was approved for use in the corresponding
research experiments. The conducted experiments showed
that the SWDP2A algorithm outperforms the SW2SA algo-
rithm, performs similarly to the seasonal SWHSA algorithm,
and has more stableMAPE performance in terms of standard
deviation than the SWHSA algorithm. This remarkable find-
ing indicates that the hourly prediction task does not require
collecting massive hourly data in the training phase of model
induction. It is sufficient to use daily consumption data and
aggregated hourly coefficients of daily profiles for obtaining
accurate hourly predictions of electricity load.
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