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Abstract
We propose aggregative context-aware fitness functions based on feature selection for evolutionary learning of characteristic
graph patterns. The proposed fitness functions estimate the fitness of a set of correlated individuals rather than the sum of
fitness of the individuals, and specify the fitness of an individual as its contribution degree in the context of the set. We
apply the proposed fitness functions to our evolutionary learning, based on Genetic Programming, for obtaining characteristic
block-preserving outerplanar graph patterns and characteristic TTSP graph patterns from positive and negative graph data.
We report some experimental results on our evolutionary learning of characteristic graph patterns, using the context-aware
fitness functions.

Keywords Context-aware fitness functions · Feature selection · Genetic Programming · Graph patterns

1 Introduction

Genetic Algorithm (GA) and Genetic Programming (GP) [8,
16] are representative evolutionary learning methods and
widely used as probabilistic methods for solving compu-
tationally hard learning problems. The evaluation value of
individuals, called the fitness, plays a central role in control-
ling the process of evolutionary learning. In usual setting,
fitness of individuals depends on the performance of individ-
uals only.

In this paper, fitness functions aware of context are con-
sidered in the sense that the fitness of an individual depends
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on a set of individuals relevant to it, instead of the individual
only. Three new aggregative context-aware fitness functions
based on a feature selection method [19] are proposed for
evolutionary learning of characteristic graph patterns. Using
the proposed fitness functions, we estimate the fitness of a
set of correlated individuals rather than the sum of fitness
of the individuals, and define the fitness of an individual as
its contribution degree in the context of the set of correlated
individuals.

We address the problem of finding a general pattern that
covers positive examples as much as possible and does not
cover negative examples as much as possible. Therefore, it
is desirable to diversify patterns to cover all the positive
examples as much as possible, in the course of evolution-
ary computation. We introduce a consistency-based feature
selection algorithm, super-CWC [19] to ensure this diversity
with a small number of individuals. This algorithmconstructs
aminimal set of features bywhich positive examples are con-
sistently discriminated from negative examples as much as
possible.

Graph classification [17] is an important task of clas-
sifying graphs with class labels in a graph database into
two or more classes and has received wide attention as
the amount of graph-structured data has increased. Thus,
we incorporate the context-aware fitness function to our
Genetic Programming-based evolutionary learning method
that obtains characteristic graph patterns that classify given
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positive and negative graph data. To model many chemical
compounds, outerplanar graphs are known to be used [3].
Block-preserving outerplanar graph patterns (bpo-graph pat-
terns) [18,24] are graph-structured patterns with structured
variables and can represent characteristic graph structures
of outerplanar graphs. TTSP (Two-Terminal Series Parallel)
graphs are used as data models for electric networks and
scheduling. TTSP graph patterns [21] are graph-structured
patterns with structured variables and can represent charac-
teristic graph structures of TTSP graphs.

We have proposed Genetic Programming-based evolu-
tionary learning methods that incorporate a fitness function
ignoring context for acquiring characteristic bpo-graph pat-
terns from positive and negative outerplanar graphs [14,23]
and acquiring characteristic TTSP graph patterns from posi-
tive and negative TTSP graphs [11]. Then we have proposed
a context-aware fitness function using Matthews Correlation
Coefficient (MCC) as a correlation measure [22], for our
evolutionary learning of characteristic bpo-graph patterns.

Feature selection using evolutionary methods such as
genetic algorithm has been widely studied [1,2,5,15,25]. In
this paper, we consider using a feature selection method
in Genetic Programming. In different setting from ours,
using context awareness in Genetic Programming is con-
sidered and context-aware crossover operator is proposed
[9]. As evolutionary learning methods from graph-structured
data, Genetic Network Programming (GNP) [6] and Graph
Structured Program Evolution (GRAPE) [20] are proposed.
We proposed Genetic Programming-based learning of char-
acteristic tree patterns from both positive and negative
tree-structured data [10,12,13]. Mining frequent subgraphs
in outerplanar graphs [3], findingminimally generalized bpo-
graph patterns and enumerating frequent bpo-graph patterns
from positive outerplanar graphs [18,24], and finding mini-
mally generalized TTSP patterns and enumerating frequent
TTSP graph patterns from positive TTSP graphs [7,21] are
known. These approaches [3,7,18,21,24] are different from
our evolutionary learning method in that our method learns
from positive and negative graph-structured data.

This paper is an extended version of the conference
paper [22]. In the previous work [22], we proposed a
Genetic Programming-based evolutionary learning method
that incorporates a context-aware fitness function using
Matthews Correlation Coefficient (MCC) as a correlation
measure for acquiring characteristic bpo-graph patterns from
positive and negative outerplanar graphs and reported some
experimental results. In this paper, we report three-way
extended results as follows. We propose three new aggrega-
tive context-aware fitness functions using Mutual Informa-
tion (MI), Symmetric Uncertainty (SU) and Inconsistency
Rate (ICR) as correlation measures, based on feature selec-
tion for evolutionary learning of characteristic graph patterns.
We report new experimental experiments on large data set by

our evolutionary learning for obtaining characteristic block-
preserving outerplanar patterns from positive and negative
graph data.We report new application of the proposed fitness
functions to our Genetic Programming-based evolutionary
learning for obtaining characteristic TTSP graph patterns
from positive and negative graph data.

This paper is organized as follows. In Sect. 2, we sum-
marize our evolutionary learning framework for acquiring
characteristic graph patterns. In Sect. 3, we propose Genetic
Programming-based learning methods for acquiring charac-
teristic bpo-graph patterns and characteristic TTSP graph
patterns from positive and negative outerplanar graph data,
by incorporating context-aware fitness functions based on
the feature selection method [19]. In Sect. 4, we report some
experimental results on our evolutionary learning of charac-
teristic bpo-graph patterns and TTSP graph patterns. Finally,
in Sect. 5, we present the conclusion and future work.

2 Preliminaries

In this paper, a graph means a connected graph with labeled
or unlabeled vertices and labeled edges. A graph pattern
is defined as a graph-structured pattern having structured
variables (variables), which is a graph representation of
characteristic common features of graph-structured data. A
variable of a graph pattern is a list of one or two distinct
vertices of the graph pattern. A variable has a label, called a
variable label. We assume that all variables in a graph pat-
tern have mutually distinct variable labels. In this section, we
review block-preserving outerplanar graph patterns.

2.1 Acquisition of characteristic outerplanar graph
patterns using genetic programming

We review a block-preserving outerplanar graph pattern as
a graph pattern having outerplanar graph structure, and a
block tree pattern, which is a tree representation of a block-
preserving outerplanar graph pattern, according to [14,18,
23,24]. An outerplanar graph is a planar graph which can be
drawn in the plane such that all vertices belong to the outer
boundary. By an outerplanar graph, we mean a connected
outerplanar graph with labeled vertices and labeled edges.

A vertex of a graph is called a cut-vertex if the removal
of the vertex makes the graph disconnected. An edge of an
outerplanar graph is called a bridge if the removal of the
edge makes the graph disconnected. We remark that both
endpoints of a bridge are cut-vertices. A graph is said to be
biconnected if the graph has no cut-vertex. A block of an out-
erplanar graph is a maximal biconnected subgraph which has
at least three vertices.We consider two types of variables, (1)
a terminal variable, which is a list of just one vertex, and (2)
a bridge variable, which is a list of two distinct vertices. A
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block-preserving outerplanar graph pattern (bpo-graph pat-
tern) is a graph pattern which is obtained from an outerplanar
graph by replacing some bridges with bridge variables and
adding terminal variables to vertices.

A variable in a bpo-graph pattern can be replaced with
an arbitrary outerplanar graph. Let p be a bpo-graph pattern
and q an outerplanar graph. Let us consider a terminal vari-
able (v1) of p, or a bridge variable (v1, v2) of p. Let (u1) or
(u1, u2) be a list of distinct vertices in q such that the vertex
label of vi is equal to the vertex label of ui for any i ∈ {1, 2}.
A new bpo-graph pattern is obtained by replacing the vari-
able (v1) or (v1, v2)with q in the following way.We attach q
to p by removing the variable (v1) or (v1, v2) and identifying
the vertices v1 or v1, v2 with the vertices u1 or u1, u2 of q,
respectively. We say that a bpo-graph pattern p matches an
outerplanar graph G if G is obtained from p by replacing
all the variables of p with certain outerplanar graphs. For a
bpo-graph pattern p, a block tree pattern t(p) [18,24] is a
tree representation of the bpo-graph pattern p. A block tree
pattern is an unrooted and unordered tree with block vertices
which have block labels having coded information of blocks
of the bpo-graph pattern. We use block tree patterns as indi-
viduals in Genetic Programming, which is an evolutionary
learning method dealing with tree structures.

Let us consider examples in Fig. 1. Let p be a bpo-graph
pattern and g1, g2, g3 and G outerplanar graphs. t(p) is
the block tree pattern of p. The bpo-graph pattern p has
two bridge variables, (v1, v2) labeled with X and (v5, v7)

labeled with Y, and one terminal variable (v4) labeled with
Z. The outerplanar graph G is obtained from p by replac-
ing the variables (v1, v2), (v5, v7) and (v4) with g1, g2 and
g3, respectively, as follows. First, we remove the variables
(v1, v2), (v5, v7) and (v4). Next, we identify the vertices
v1, v2 in p with the vertices u1, u2 in g1 and v5, v7 in p
with u5, u7 in g2, respectively. We also identify the vertex
v4 with the vertex u10 in g3. Thus we see that the bpo-graph
pattern p matches the outerplanar graph G.

We explain a Genetic Programming-based learning
method [23] for acquiring characteristic bpo-graph patterns
from positive and negative outerplanar graph data. In this
paper we consider the following problem [14].

Problem of acquisition of characteristic block-preserving
outerplanar graph patterns

Input: A finite set D of positive and negative outerplanar
graph data.

Problem: Find a bpo-graph pattern having high fitness
w.r.t. D.

A bpo-graph pattern as an individual is considered a binary
classifier of outerplanar graph data. We define the fitness of a
bpo-graph pattern p w.r.t. D, denoted by f i tnessD(p), to be
a kind of accuracy of classifying positive and negative graph
data w.r.t. D. We consider a bpo-graph pattern having high

Fig. 1 A bpo-graph pattern p and the block tree pattern t(p) of p.
Outerplanar graphs g1, g2, g3 and G. A box with lines to its elements
represents a variable. A variable label is inside a box. A block vertex
is drawn by a filled black circle. The bpo-graph pattern p matches the
outerplanar graph G

fitness to be a characteristic bpo-graph pattern. We present a
context-aware fitness function, which is defined by an indi-
vidual ranking method based on feature selection in Sect. 3,
for our evolutionary learning method.

When we apply a GP operator to a block tree pattern, we
fix a root in the block tree pattern to designate the affected
portion of the block tree pattern by the GP operator. Figure 2
shows an example of applying crossover operator to block
tree patterns. Using label information of connecting vertices
and edges from positive examples of outerplanar graphs, our
learning method [23] generates block tree patterns such that
the corresponding bpo-graph patterns satisfy valence rela-
tions.

2.2 Acquisition of characteristic TTSP graph patterns
using genetic programming

We review TTSP graph patterns as a graph pattern having
TTSP graph structure and a parse tree of a TTSP graph pat-
tern, according to [11,21].

A multidag is a directed connected graph which allows
multiple edges and does not contain any cycle. A multidag is
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Fig. 2 A genetic operator
crossover applied to block tree
patterns t(p1) and t(p2)

Fig. 3 A TTSP graph pattern p
and the parse tree t(p) of p.
TTSP graphs g1, g2 and G. A
variable label is inside a box.
The TTSP graph pattern p
matches the TTSP graph G

said to be two-terminal if it has exactly one source and one
sink. A TTSP graph is a two-terminal edge-labeled multidag
recursively defined as follows. (1) A multidag consisting of
two vertices u and v, and a single edge from u to v is a
TTSP graph. The vertices u and v are its source and its sink,
respectively. (2) For i = 1, 2, let Gi be a TTSP graph which
has ui as its source and vi as its sink. Then the graph obtained
by performing either of the following two operations is a
TTSP graph. (a) Parallel operation: Identify u1 with u2, and
identify v1 with v2. The resulting graph has u1(= u2) as its
source and v1(= v2) as its sink. (b) Series operation: Identify
u2 with v1. The source and the sink of the resulting graph are
u1 and v2, respectively.

TTSPgraphpatterns are graphpatternswhich are obtained
by replacing some edges of TTSP graphs with variables,
where variables are lists of two vertices. We can replace a
variable in a TTSP graph pattern with any TTSP graph, in
a manner similar to a bridge variable in a bpo-graph pattern
without checking vertex labels of identified vertices. All vari-
ables in a TTSP graph pattern are assumed to have unique
labels. ATTSP graph pattern p is said tomatch a TTSP graph
G if G is obtained from p by replacing all the variables with
certain TTSP graphs. We use parse trees t(p) [21], which
are tree representations of TTSP graph patterns p and have
the structure of rooted trees with ordered or unordered chil-
dren, as individuals in Genetic Programming, which is an
evolutionary learning method dealing with tree structures.

Let us consider examples in Fig. 3. We give a TTSP graph
pattern p and the parse tree t(p) of p, and TTSP graphs g1, g2
and G. The TTSP graph pattern p has two variables, (v1, v2)
labeled with X and (v3, v4) labeled with Y. The TTSP graph
G is obtained from the TTSP graph pattern p by replacing

the variables (v1, v2) and (v3, v4) with TTSP graphs g1 and
g2, respectively. Thus we see that the TTSP graph pattern p
matches the TTSP graph G.

We explain a Genetic Programming-based learning
method [11] for obtaining characteristic TTSP graph patterns
frompositive and negative TTSP graph data. The problemwe
address is the following [11].

Problem of acquisition of characteristic TTSP graph pat-
terns

Input: A finite set D of positive and negative TTSP graph
data.

Problem: Find aTTSPgraphpattern havinghighfitnessw.r.t.
D.

A TTSP graph pattern as an individual is considered a
binary classifier of TTSP graph data. We define the fitness of
a TTSP graph pattern p w.r.t. D, denoted by f i tnessD(p),
to be a kind of accuracy of classifying positive and negative
graph dataw.r.t. D.We consider a TTSP graph pattern having
high fitness to be a characteristic TTSP graph pattern, which
matches many positive and few negative data represented as
TTSP graphs. We present a context-aware fitness function,
which is defined by an individual ranking method based on
feature selection in Sect. 3, for our evolutionary learning
method. For example, applying crossover operator to parse
trees is illustrated in Fig. 4.

3 New fitness functions based on feature
selection

Wepropose newcontext-awarefitness functions andgiveGP-
based learningmethods incorporating the proposed functions
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Fig. 4 A genetic operator
crossover applied to parse trees
t(p1) and t(p2)

Table 1 Examples of a dataset for feature selection and the values of
correlation measures

ID F1 F2 F3 F4 C

d1 1 0 0 1 1

d2 1 0 1 0 1

d3 1 0 0 0 0

d4 0 1 1 1 0

I (Fi ;C) 0.31 0.31 0.00 0.00

SU(Fi ,C) 0.34 0.34 0.00 0.00

1 − ICR(Fi ,C) 0.75 0.75 0.50 0.50

MCC(Fi ,C) 0.58 −0.58 0.00 0.00

for acquiring characteristic bpo-graph patterns and TTSP
graph patterns. The proposed context-aware fitness functions
employ super-CWC [19] (CWC, for short), which is a state-
of-the-art feature selection algorithm. Context-aware fitness
functions evaluate each individual based on its importance in
a group, while conventional fitness functions evaluate each
individual independently in population. Since the fitness of
an individual is evaluated within a group (i.e. context), if the
group including the individual is changed, the fitness of this
individual may be also changed. This aspect is very impor-
tant to find a general pattern to cover the whole set of positive
examples because even if each selected pattern has relatively
high coverage of positive examples, each coverage does not
necessarily imply the high coverage of the whole positive
examples by the selected individuals.

3.1 Consistency-based feature selection CWC

The problem of finding a small set of features for discrim-
inating class labels is called supervised feature selection. A
very fast and accurate consistency-based feature selection
algorithm CWC of filter approach is proposed by Shin et al.
[19]. We show the algorithm CWC in Algorithm 1. A feature
set is said to be consistent, if it can completely determine all
the class labels.

CWC successfully overcomes a few problems inherent in
conventional algorithms: (1) the redundancy problem, (2) the
feature interaction problem. To explain these problems, let
us consider the feature selection of the data consisting of four

Algorithm 1 CWC algorithm
Input: dataset with a feature set F
Output: minimal subset of features F ′ ⊆ F such that F ′ uniquely

determines
the class labels on the denoised dataset

1: Denoise the input dataset so that it is consistent.
2: S ← 〈F1, . . . , FN 〉
3: /* the sequence 〈F1, . . . , FN 〉 is sorted
4: in the descending order of a correlation measure between Fi

and C for Fi ∈ F */
5: F ′ ← ∅
6: loop
7: Find the shortest leftmost subsequence S′ =

〈F1, F2, . . . , Fk−1, Fk〉 of S such that S′ is consistent
8: exit loop if Fk ∈ F ′
9: F ′ ← F ′ ∪ {Fk}
10: S ← 〈Fk , F1, F2, . . . , Fk−1〉 /* move the last feature Fk to

the first */
11: end loop
12: output selected feature set F ′

instances {d1, d2, d3, d4} shown in Table 1. Each feature is
denoted by Fi ∈ {F1, F2, F3, F4}, and the variable of class
labels is denoted by C .

We consider a correlation measure between the values
of a single feature and class labels, for example, mutual
information. The mutual information between Fi and C is
denoted by I (Fi ;C). If we select features according to the
correlation measure by setting a cut-off point, for example,
I (Fi ;C) ≥ 0.3, then F1 and F2 are selected. However, even
if F2 is selected in addition to F1, it does not add any informa-
tion to determine class labels since I (F1;C) = I (F2;C) =
I ({F1, F2};C) ≈ 0.31 (the redundancy problem). On the
other hand, we have I (F3;C) = 0.0 and I (F4;C) = 0.0.
Hence, F3 and F4 are useless to determine the class label
C at all if F3 or F4 is used alone. However, the set of
features {F3, F4} can uniquely determine class labels since
I ({F3, F4};C) = 1.0 (the interaction problem).

This example suggests that not only a single feature but a
group of features should be also considered to evaluate the
effect of selected features relevant to class labels. In general,
if the interaction among features are considered, it causes
a combinatorial explosion in computation. CWC effectively
computes the interaction among features while it avoids such
a combinatorial problem by a greedy-style algorithm.
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CWC is a consistency-based feature selection method.
Consistency is the property of a feature set by which all the
class labels are uniquely determined. CWC starts its proce-
dure with a consistency data set. Therefore, if the initial data
set is not consistent, minor rows are deleted (the denoising
process at the first line in Algorithm 1). After that, CWC
sorts features by a correlation measure between Fi and C .
Let H(X) denote the (empirical) entropy of the random vari-
able X , and H(X ,Y ) denote the joint entropy of X andY . Let
P(X) denote the empirical probability of X , and cov(X, Y)
denote the covariance between X and Y . In the CWC imple-
mentation, one of the following measures is selected as an
option.

• Mutual information (MI):MI (Fi ,C) = H(Fi )+H(C)−
H(Fi ,C)

• Symmetric uncertainty (SU):

SU(Fi ,C) = 2
I (Fi ;C)

H(Fi ) + H(C)

• Inconsistency rate (ICR) [26]:

ICR(Fi ,C)=
∑

C

(
P(C=c)−max

v
P(C=c, Fi =v)

)

• Matthews correlation coefficient (MCC) (only for binary
class):

MCC(Fi ,C) = cov(Fi ,C)√
cov(Fi , Fi ) · cov(C,C)

CWC explores a minimal consistent subset of given features
based on a backward-deletion strategy with very high accu-
racy.

3.2 Fitness function based on CWC-ranking

We propose fitness functions based on CWC-ranking. Let p
be a graph pattern and D a finite set of positive and nega-
tive graph-structured data w.r.t. a specific phenomenon. In
this paper, the setting for a graph pattern p and a finite
set D of positive and negative graph-structured data is (1)
p is a bpo-graph pattern and D is a finite set of positive
and negative outerplanar graph data, or (2) p is a TTSP
graph pattern and D is a finite set of positive and negative
TTSP graph data. If a graph pattern p matches an exam-
ple graph G, then we classify G as positive according to p.
Otherwise we classify G as negative according to p. Let TP
denote the number of true positive examples in D accord-
ing to p, TN the number of true negative examples, FP the
number of false positive examples and FN the number of
false negative examples. The balanced accuracy of p w.r.t.
D, denoted by balanced_accuracy(p), is a basic measure

used in our previous work [10,23] and defined as follows.

balanced_accuracy(p) = 1
2 × ( TP

TP+FN + TN
TN+FP ).

Using ranked patterns obtained from a CWC output, we
define a context-aware fitness function. The input of CWC is
a dataset described by a set of features {F1, . . . , FN } with a
variable C for class labels. The output of CWC is a minimal
subset S ⊆ {F1, . . . , FN } such that S has the binary con-
sistency, that is, S uniquely determines class labels, where
each feature Fi ∈ S is assigned an evaluation value. We call
such the set S of features the selected minimal feature set by
CWC.

We consider, in this paper, a graph pattern p to be a feature,
a set of graph patterns in a generation to be a set of features,
and a positive or negative of an example to be a class label
C = 1 or 0, respectively. If a pattern p matches an example,
then we set the value of feature p as 1, otherwise 0. Table 2
shows an input table to CWC, obtained by the matching rela-
tion between bpo-graph patterns and outerplanar graphs. For
feature Fi which corresponds to a graph pattern p and a vari-
able C for class labels which corresponds to a finite set D of
positive and negative graph data, we use the correlation mea-
sures: Mutual Information MI(Fi ,C) (denoted by MI(p)),
Symmetric Uncertainty SU(Fi ,C) (denoted by SU(p)),
Inconsistency Rate ICR(Fi ,C) (denoted by ICR(p)), and
Matthews Correlation Coefficient MCC(Fi ,C) (which coin-
cideswithMCC(p).We define ICR∗(p) = 1−ICR(p).Also
we define MCC∗(p) = (MCC(p)+ 1)/2, according to [10].
For binary classification by a graph pattern p, the values of
MI(p),SU(p), ICR∗(p) and MCC∗(p) are between 0 and
1. The value MI(p),SU(p), ICR∗(p),MCC∗(p) of 1 means
that the correlation of a graph pattern p and a variable C for
class labels is maximum.

As the correlation measure between two patterns p and q,
we use the phi coefficient φ(p, q). We also introduce two
parameters � and u which determine the scope of graph
patterns affected by the selected minimal feature set by
CWC. Let (�, u) be (∗, ∗) or a pair of real numbers �

and u with 0 ≤ � ≤ u ≤ 1. We define the predicate
CWCrank(p, (�, u)) for a graph pattern p and parameters
� and u as follows. As the correlation measure between a
pattern p and C used in the line 4 of the CWC algorithm,
we use MI(p), SU(p), ICR∗(p) and |MCC(p)| for a cor-
relation measure of CWC-fitness MI, SU, ICR∗, MCC∗,
respectively. Let S be the selected minimal feature set by
CWC. The predicate CWCrank(p, (∗, ∗)) is true if p is in
S, and false otherwise. The predicate CWCrank(p, (�, u))

is true if (1) p is in S, or (2) p is not in S, and there exists a
pattern q in S such that � ≤ φ(p, q) ≤ u holds. Otherwise,
the predicate CWCrank(p, (�, u)) is false.

The CWC-fitness using a correlation measure M (= MI,
SU, ICR∗, MCC∗) of a graph pattern p and parameters �

and u w.r.t. D, denoted by CWCfitness(M, p, (�, u)), is
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Table 2 An example of an input
table to CWC, obtained by the
matching relation between
bpo-graph patterns and
outerplanar graphs
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defined as follows. CWC-fitness using MCC∗ is given in our
previous work [22]. In this paper, we propose context-aware
fitness functions CWC-fitness using MI,SU and ICR∗.

CWCfitness(MI, p, (�, u))

=
{
MI(p) if CWCrank(p, (�, u)) is true
0 otherwise

CWCfitness(SU, p, (�, u))

=
{
SU(p) if CWCrank(p, (�, u)) is true
0 otherwise

CWCfitness(ICR∗, p, (�, u))

=
{
ICR∗(p) if CWCrank(p, (�, u)) is true
0 otherwise

CWCfitness(MCC∗, p, (�, u))

=
{
MCC∗(p) if CWCrank(p, (�, u)) is true
0 otherwise

The value of the above-defined fitness functions
balanced_accuracy(p) andCWCfitness(M, p, (�, u)) for
all M =MI, SU, ICR∗, MCC∗ of a graph pattern p is between
0 and 1, and a graph pattern having high fitness is a good clas-
sifier of graph-structured data.

We explain the reason for introducing the proposedCWC-
fitness functions. In computing CWCfitness(M, p, (�, u)),
by setting u = 1, we can define the fitness of a graph pattern
not selected by CWC to be the same fitness as a graph pat-
tern selected by CWC, and avoid giving different values of
fitness to isomorphic graph patterns. Also we can give posi-
tive fitness to a graph pattern which is not selected by CWC
nor isomorphic to a graph pattern selected by CWC. Then
we can keep diversity of populations of graph patterns.

Example 1 We give an example to illustrate the mean-
ing of the proposed CWC-fitness functions. Let D =
{G1,G2,G3,G4} be a finite set of positive and negative
graph data,F = {p1, p2, p3, p4, p5, p6} a finite set of graph
patterns, and C the variable for class labels in Table 2.

First, we explain the calculation of CWCfitness(MI, p,
(∗, ∗)). The selectedminimal feature set byCWCusingMI is
F ′ = {p3, p4}.WehaveMI (p3,C) = MI (p4,C) ≈ 0.311.
Then we have CWCfitness(MI, p, (∗, ∗)) = 0.0 for p =
p1, p2, p5, p6 and CWCfitness(MI, p, (∗, ∗)) ≈ 0.311 for
p = p3, p4.

Next, we explain the calculation of CWCfitness(MI, p,
(0.8, 1.0)). The value of phi coefficient φ(p, q) for p =
p1, p2, p5, p6 and q = p3, p4 is as follows. φ(p1, p3) ≈
− 0.333, φ(p2, p3) ≈ − 0.577, φ(p5, p3) ≈ −0.577,
φ(p6, p3) ≈ − 0.333, φ(p1, p4) ≈ − 0.333, φ(p2, p4) ≈
0.577, φ(p5, p4) ≈ 0.577, φ(p6, p4) = 1.0. We have
CWCrank(p6, (0.8, 1.0)) = true and CWCrank(p, (0.8,
1.0)) = false for p = p1, p2, p5. ThenwehaveCWCfitness
(MI, p, (0.8, 1.0)) = 0.0 for p = p1, p2, p5 and
CWCfitness(MI, p, (0.8, 1.0)) ≈ 0.311 for p = p3,
p4, p6.

Similarly,we calculateCWC-fitnessof p3 usingSU, ICR∗,
MCC∗ as follows. The selected minimal feature set by
CWC using SU, ICR∗,MCC∗ is F ′ = {p3, p4}. We
have SU (p3,C) ≈ 0.344, IC R∗(p3,C) = 0.75, and
MCC∗(p3,C) ≈ 0.211. Then we have, CWCfitness(SU ,

p3, (∗, ∗)) = CWCfitness(SU , p3, (0.8, 1.0)) ≈ 0.344,
CWCfitness(ICR∗, p3, (∗, ∗)) = CWCfitness(ICR∗, p3,
(0.8, 1.0)) = 0.75, and CWCfitness(MCC∗, p3, (∗, ∗)) =
CWCfitness(MCC∗, p3, (0.8, 1.0)) ≈ 0.211.

We discuss the applicability of our proposed CWC-fitness
functions. Our method is based on the framework of consid-
ering bpo-graph patterns or TTSP graph patterns as features
and the matching relation as the binary class label. Thus we
can apply the proposed CWC-fitness functions to evolution-
ary learning of characteristic graph or tree patterns of other
types than bpo-graph patterns or TTSP graph patterns, from
positive and negative graph or tree data. We can also apply
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Table 3 The average fitness of
best individuals, the average
number of vertices, the average
specificness of individuals of
final populations and the average
run-time for the context-aware
and context-ignoring methods
over ten GP runs, using the first
data set

Parameters (�, u) Context-aware method

MI

(∗, ∗) (0.8, 1.0)

AVG SD AVG SD

Fitness of best individuals 0.223 0.047 0.192 0.036

Number of vertices 4.83 1.08 4.74 1.14

Specificness 0.228 0.163 0.260 0.185

Run-time (s) 365 64 247 123

Context-aware method

SU ICR∗

(∗, ∗) (0.8, 1.0) (∗, ∗) (0.8, 1.0)

AVG SD AVG SD AVG SD AVG SD

0.261 0.014 0.228 0.016 0.744 0.009 0.730 0.021

4.95 1.19 5.21 1.43 5.26 0.86 5.32 1.80

0.206 0.056 0.320 0.161 0.208 0.068 0.165 0.093

377 46 307 128 452 47 251 59

Context-aware method Context-ignoring method

MCC∗

(∗, ∗) (0.8, 1.0)

AVG SD AVG SD AVG SD

0.765 0.012 0.747 0.020 0.734 0.014

4.81 0.61 4.60 1.05 4.71 1.50

0.170 0.058 0.254 0.135 0.133 0.039

420 36 297 102 339 68

AVG average value, SD standard deviation

the proposed CWC-fitness functions to evolutionary learning
of characteristic binary classifiers from positive and negative
data. But we cannot apply the idea of CWC-fitness function
to symbolic regression or function learning problems.

4 Experimental results

We report experimental results on acquiring characteristic
bpo-graph patterns and TTSP graph patterns by our evo-
lutionary learning method using the context-aware fitness
functions proposed in Sect. 3. We also report comparative
experimental results on our evolutionary learning method
using the context-ignoring fitness function.

By a context-aware method we mean our evolutionary
learning method for obtaining characteristic graph patterns
from positive and negative graph data, using the context-
aware fitness function CWCfitness(M, p, (�, u)) for M
= MI, SU, ICR∗, MCC∗. We proposed three context-
aware fitness functions CWCfitness(M, p, (�, u)) for M
= MI, SU, ICR∗ in Sect. 3 of this paper. The context-
aware fitness function CWCfitness(MCC∗, p, (�, u)) was
given in our previous work [22]. By a context-ignoring

method we mean our evolutionary learning method for
obtaining characteristic graph patterns frompositive and neg-
ative graph data, using the context-ignoring fitness function
balanced_accuracy(p) representing the balanced accu-
racy, which is a widely used measure of accuracy for binary
classification in related work including our previous work
[23].

The experimental results inTable 3 on acquiring character-
istic bpo-graph patterns by the context-aware method using
the fitness function CWCfitness(MCC∗, p, (�, u)) and the
context-ignoring method were reported in [23]. The other
experimental results in this section are newly reported in this
paper. The implementation of our methods is in Java and
Scala on Windows 10 (64-bit).

4.1 Experimental results on acquiring bpo-graph
patterns

We report experimental results on acquiring characteristic
bpo-graph patterns from positive and negative outerplanar
graph data, using the context-aware and context-ignoring
methods. Using canonical representations as keys and fitness
values as values in a HashMap table [23], our method records
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Table 4 The average fitness of
best individuals, the average
number of vertices, the average
specificness of individuals of
final populations and the average
run-time for the context-aware
and context-ignoring methods
over ten GP runs, using the
second data set

Parameters (�, u) Context-aware method Context-ignoring method

MCC∗
(∗, ∗) (0.8, 1.0)

AVG SD AVG SD AVG SD

Fitness of best individuals 0.619 0.000 0.613 0.017 0.614 0.001

Number of vertices 5.11 0.67 3.79 0.60 4.21 1.05

Specificness 0.151 0.027 0.320 0.130 0.163 0.054

Run-time (s) 2236 396 846 276 1436 265

AVG average value, SD standard deviation

canonical representations of block tree patterns and their fit-
ness. Using the matching algorithm [18,24] for bpo-graph
patterns and outerplanar graphs, we calculate the fitness of
bpo-graph patterns represented by block tree patterns as indi-
viduals. GP parameters we use in the experiments are as
follows: population size: 50, reproduction probability: 0.05,
crossover probability: 0.50,mutation probability: 0.45, selec-
tion method: roulette wheel selection, tournament selection
(size 2), elite selection (size 3), maximum number of gen-
erations: 200. The experimental data are extracted from the
file “CAD2DA99.sdz" in the NCI database [4].

We consider five experimental settings which use the
context-aware method using CWCfitness(M, p, (�, u)) for
M = MI, SU, ICR∗, MCC∗ or the context-ignoring method
using balanced_accuracy(p). For each of the five settings,
we performed ten GP runs for acquiring characteristic bpo-
graph patterns from positive and negative outerplanar graph
data, using the same GP parameters and experimental data
mentioned above. For the context-aware method, we set two
parameters � and u as (�, u) = (∗, ∗), (0.8, 1.0).

The best individuals by the context-aware method mean
the best individuals over all generations, and the best indi-
viduals by the context-ignoring method mean the best
individuals at the final generation. We report the average val-
ues of four evaluation indexes over ten GP runs with their
standard deviation.

In Table 3, we report the experimental results using the
first experimental data set consisting of 88 positive data and
88 negative data. Table 3 shows the average fitness of best
individuals of the context-aware and context-ignoring meth-
ods. It is meaningless to compare the values of fitness itself
of the different settings of the above five experimental set-
tings, since values of fitness are based on the values of the
corresponding different correlation measures. Table 3 shows
the average number of vertices and the average specificness
of individuals of final populations for the both methods.
The specificness of a bpo-graph pattern p is defined as
EN/(EN + VN), where EN and VN denote the number
of edges and the number of variables of the correspond-
ing block tree pattern t(p) of p. A bpo-graph pattern which
has many vertices or high specificness is considered to be a
specific graph pattern. Table 3 shows average run-time for

the both methods. Table 4 shows the experimental results
using the second experimental data set consisting of 434
positive data and 434 negative data for the context-aware
method using the correlationmeasureMCC∗ and the context-
ignoring method.

The experimental results in the previous work [22] in
Table 3 show that many values of the number of vertices
and the specificness of bpo-graph patterns obtained by the
context-aware method using the correlation measure MCC∗
are higher than those of the context-ignoring method. In this
paper, we show that these good properties of the context-
aware method are extended and hold for the context-aware
method using three new correlation measures MI, SU, ICR∗
in almost all values in Table 3 and for the large data set
of outerplanar graphs in Table 4. From these experimental
results, we can say that the context-aware methods obtained
characteristic bpo-graph patterns which are more specific
than the bpo-graph patterns obtained by the context-ignoring
method.

4.2 Experimental results on acquiring TTSP graph
patterns

We report experimental results, in a manner similar to the
results on bpo-graph patterns, on our evolutionary learning of
characteristic TTSP graph patterns, using the context-aware
fitness function proposed in Sect. 3 and a previous fitness
function balanced_accuracy(p) ignoring context which is
used in [23]. Using the matching algorithm [21] for TTSP
graph patterns and TTSP graphs, we calculate the fitness of
TTSP graph patterns represented by parse trees as individ-
uals. We implemented our GP-based learning method for
acquiring characteristic TTSP graph patterns from positive
and negative TTSP graph data, using aCWC-rankingmethod
in Sect. 3.

GP parameters we use in the experiments are as follows:
population size: 50, reproduction probability: 0.05, inver-
sion probability: 0.05, crossover probability: 0.45, mutation
probability: 0.45, selection method: roulette wheel selection,
tournament selection (size 4), elite selection (size 3), maxi-
mum number of generations: 200. As the experimental data
weuse 500 positive data and 500negative datawhich have the
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Table 5 The average fitness of
best individuals, the average
number of vertices, the average
specificness of individuals of
final populations and the average
run-time for the context-aware
and context-ignoring methods
over ten GP runs

Parameters (�, u) Context-aware method

MI

(∗, ∗) (0.8, 1.0)

AVG SD AVG SD

Fitness of best individuals 0.304 0.036 0.298 0.034

Number of vertices 10.73 0.58 11.14 0.53

Specificness 0.481 0.092 0.508 0.096

Run-time (s) 174 26 155 27

Context-aware method

SU ICR∗

(∗, ∗) (0.8, 1.0) (∗, ∗) (0.8, 1.0)

AVG SD AVG SD AVG SD AVG SD

0.315 0.022 0.319 0.060 0.819 0.018 0.820 0.023

11.27 0.56 11.26 0.64 11.76 0.78 11.09 0.46

0.524 0.048 0.509 0.042 0.290 0.062 0.353 0.100

143 44 119 34 152 30 159 31

Context-aware method Context-ignoring method

MCC∗

(∗, ∗) (0.8, 1.0)

AVG SD AVG SD AVG SD

0.808 0.025 0.800 0.023 0.849 0.029

11.74 0.45 11.58 1.04 11.06 0.60

0.392 0.134 0.405 0.093 0.184 0.070

194 22 189 16 61 2

AVG average value, SD standard deviation

structure of TTSP graph. The experimental data are synthetic
data. Table 5 shows the average fitness of best individuals,
the average number of vertices, the average specificness of
individuals of final populations and the average run-time for
the context-aware and context-ignoring methods over ten GP
runs. Figure 5 shows the average values of the fitness of the
individuals with the highest fitness in each generation for
context-aware methods using the correlation measures and
parameters and the context-ignoring method.

In Table 3, many values of the number of vertices
and the specificness of bpo-graph patterns obtained by
the context-aware method using the correlation measure
MCC∗ in the previous work [22] are shown to be higher
than those of the context-ignoring method. In this paper,
we show that these good properties of the context-aware
method are extended and hold for the context-aware method
using four correlation measures MI, SU, ICR∗, MCC∗
in almost all values and for the large data set of TTSP
graphs in Table 5. From these experimental results, we
can say that the context-aware methods obtained charac-
teristic TTSP graph patterns which are more specific than
the TTSP graph patterns obtained by the context-ignoring
method.

Fig. 5 Fitness of best individuals as TTSP graph patterns over genera-
tions by the context-aware and context-ignoring methods

5 Conclusion

In this paper, we have proposed aggregative context-aware
fitness functions based on feature selection for evolutionary
learning of characteristic block-preserving outerplanar graph
patterns and characteristic TTSP graph patterns frompositive
and negative graph data. We have reported some experi-
mental results on our evolutionary learning of characteristic
graph patterns, using the context-aware fitness functions. The
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proposed methods obtained characteristic block-preserving
outerplanar graph patterns and characteristic TTSP graph
patterns which are more specific than the graph patterns
obtained by the previous method.We plan to apply our meth-
ods to a large data set of other types of graph data modeled
as outerplanar graphs or TTSP graphs.
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