Vietnam J Comput Sci (2017) 4:3—-12
DOI 10.1007/s40595-015-0052-y

@ CrossMark

REGULAR PAPER

Inferring the cause of errors for a scalable, accurate, and complete

constraint-based data cleansing

Ayako Hoshino!

Kenshi Nishimura?

- Hiroki Nakayama! . Chihiro Ito?> - Kyota Kanno! -

Received: 20 October 2015 / Accepted: 28 October 2015 / Published online: 26 November 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract In real-world dirty data, errors are often not ran-
domly distributed. Rather, they tend to occur only under
certain conditions, such as when the transaction is handled
by a certain operator, or the weather is rainy. Leveraging such
common conditions, or “cause conditions”, the proposed
data-cleansing algorithm resolves multi-tuple conflicts with
high speed, achieves higher completeness, and runs with high
accuracy in realistic settings. We first present complexity
analyses of the problem, pointing out two subproblems that
are NP-complete. We then introduce, for each subproblem,
heuristics that work in sub-polynomial time. We also raise the
issue that some previous studies overlook the notion of repair-
completeness, which means, having less number of unsolved
conflicts in the resulting repairs. The proposed method is
capable of obtaining a complete repair if we are allowed
to preprocess the input set of constraints. The algorithms are
tested with three sets of data and rules. The experiments show
that, compared to the state-of-the-art methods for conditional
functional dependencies-based and FD-based data cleansing,

B Ayako Hoshino
ayako.hoshino @ gmail.com; a-hoshino@cj.jp.nec.com

Hiroki Nakayama
h-nakayama@cj.jp.nec.com

Chihiro Ito
c-ito@az.jp.nec.com

Kyota Kanno
k-kanno@ah.jp.nec.com

Kenshi Nishimura
k-nishimura@az.jp.nec.com

NEC Knowledge Discovery Research Laboratories, 1753,
Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa
211-8666, Japan

NEC System Integration, Services & Engineering Operations
Unit, 5-7-1 Shiba, Minato-ku, Tokyo, 108-8001, Japan

the proposed algorithm scales better with respect to the data
size, is the only method that outputs complete repairs, and
is more accurate especially when the error distribution is
skewed.

Keywords Data cleansing - Conditional functional
dependencies - Cause of errors - Multi-tuple violations

1 Introduction

Data cleansing is a crucial step in data integration. As more
data are made available, this task has gained a consider-
able attention both in business and research. One promising
approach is constraint-based data cleansing, which is based
on traditional functional dependencies (FDs) or recently
proposed conditional functional dependencies (CFDs) [1].
Below are examples of an FD, a variable CFD and a constant
CFD.

¢1 : companyID, employeelD — personname
¢> : companylD, deskaddress — employeelD, (001, _ || _)
¢3 : companylD, personname — deskaddress,

(001, “AliceB.” || “F12 — S — 123")

Each constraint expresses regularity in the data. The first
constraint ¢ is an example of FD, indicating “the com-
pany ID and employee ID determine individual names”.
The second constraint ¢, is an example of CFD, indicat-
ing “when company ID is 001, desk address determines
employee ID”. The third constraint designates “when the
company ID is 001 and the person name is Alice B., the
desk address is F12-S-123”. Such constraints can be used to
detect errors in the data, as well as to determine the correct
values.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s40595-015-0052-y&domain=pdf
http://orcid.org/0000-0002-8830-6404

Vietnam J Comput Sci (2017) 4:3—-12

Data can have multi-tuple conflicts with an FD or a vari-
able CFD. For example, an erroneous tuple #;: (company ID,
employee ID, person name) = (001, A123, “John”) will cause
a conflict, when there is another tuple #: (001, A123, “Paul”)
and thus, the two tuples violate constraint ¢. Also, an erro-
neous tuple #;: (company ID, desk address, employee ID) =
(001, F12-North345, A123) will cause a conflict, when there
is another tuple ,: (001, F12-North345, A456) and thus, the
two tuples violate constraint ¢».

We propose a data-cleansing method that addresses the
problem of discovering a common cause of errors. By dis-
covering such a condition, we can both cut down the search
space and obtain a more accurate repair. While CFD is an
addition to FD in that it specifies the subset of data where
a constraint holds, our proposed “cause condition” spec-
ifies the subset of the data that contains conflict-causing
errors. The discovery of cause condition is much more
difficult as we will prove, but often needed in real-world
data-cleansing.

This paper is organized as follows. Section 2 summarizes
the previous research on constraint-based data cleansing.
Section 3 describes our method for discovering error con-
ditions and generating a repair. Section 4 presents our
experimental evaluation. Finally, Sect. 5 concludes our

paper.

2 Related work

With the recent appearance of conditional functional depen-
dencies (CFD) [1], constraint-based data cleansing is expe-
riencing a revival. Numerous methods have already been
proposed on CFD-based data cleansing [2-8]. Prior to CFD,
there had been data cleansing with FDs [9-12], and Associa-
tion Rules (ARs) [13], but here we focus on the methods that
have been applied to CFD.

The cleansing algorithm of Cong et al.’s BatchRepair and
IncRepair is, just like their predecessor [14], a cost-based
algorithm where the optimal repair is chosen based on the
editing cost from the original data [2], measured in Lev-
enstein’s edit distance [15], or measured by the number of
tuples to be removed [16]. Note that all cost-based meth-
ods follow “majority policy”. Beskales et al. proposed a
sampling-based method that generates repairs from among
repairs with minimal changes [7], which can also be catego-
rized as a cost-based method.

Chiang and Miller [3] proposed a method for deriving
CFDs that almost hold (i.e., X — A holds on D, allowing
some exception tuples), filtering these approximate CFDs
using an interest measure, and then detecting dirty data val-
ues. In their definition, dirty values are infrequent right hand
side (RHS) values within the set of left hand side (LHS)
matched tuples, which makes them also follow the “majority

@ Springer

policy”. Notably, only values on RHS are the target of error
detection.

Fan et al. [4,5] proposed a highly accurate method that
uses hand-crafted editing rules and a human-validated certain
region of the table. The correction may not always follow
the majority policy, but preparing editing rules and a certain
region requires human input, which is often not available in
reality.

In our study, we develop a method called CondRepair
that identifies erroneous tuples when there are conflicts with
FD or CFD rules. It relies on neither the majority RHS nor
edit distance-based cost metrics, which do not work when
the differences (in frequency or in cost) among candidate
fixes are not significant. It determines the wrong values
based on the common cause of errors. Although the idea
of leveraging the patterns among errors has been explored
for other types of data cleansing [17], to the best of our
knowledge, the idea has never been applied with (C)FDs
or ARs. In the experimental evaluation, we use error injec-
tion with both uniform and skewed error distribution whose
design is based on our observation on the real errors. In this
work, we also raise the issue that some previous studies
overlook the notion of repair-completeness, which means,
having less number of unsolved conflicts in the resulting
repairs. The proposed method is capable of obtaining a com-
plete repair if we are allowed to preprocess the input set of
constraints.

3 Data cleansing based on error conditions

In this section, we first introduce the problem of CFD-based
data cleansing, and highlight some of its difficulties by show-
ing the class of problems its subproblems belong to. We
then describe our proposed method, which consists of two
steps: (1) finding the cause conditions and (2) generating a
repair.

3.1 Problem description

The problem of CFD-based data cleansing is defined as fol-
lows. Let D be the input relation and ¥ be a set of CFD
rules. We assume D consists of one table. Let Dyepr be an
output relation of the cleansing process. It is required that
Dyepr = X, which is, there is no violation in D w.r.t. any
rules in X. Let A, B, and C denote attributes, and X, Y and
Z denote sets of attributes. Each tuple in D has a tuple ID
sothat D = {t{, t», ..., ty}, where N is the total number of
tuples in D. We refer to a cell in a tuple as c. Figure 1 shows
an illustrative example of an input rule set (consisting of one
rule), data with conflicts and possible outputs of previous
methods and ours.

Vietnam J Comput Sci (2017) 4:3-12 5
Fig. 1 Example constraint, Input:
data, and outputs of cleansing Constraint : Category, Price -> Tax, (_, _|| _) Output of Inconsistency Detection:

algorithms. Arrows on the right Category |Operator |Product |Price |Tax t2, t3, t4, tN
side of the table show t1: [CD Operator A |my songs 15| 3
conflicting tuples t2: |CD Operator A |... 20| 2 :l Output of Previous Work's Data Cleansing:
t3: |CD Operator B |... 20 O (t2, Tax) = 0, (t4, Category) = <OTHER>
t4: [Book Operator B |... 15 1
Operator B |... . :| Output of This Work's Data Cleansing:
tN: [Book Operator B |... 15 0 possible cause of errors: Operator="Operator B"

We now examine two subproblems that belong to the class
of problems that are known to be difficult to solve.

Theorem 1 Selecting the tuples to be corrected among the
ones in conflicts includes an NP-complete problem.

Proof Here, we try to solve the conflicts that involve more
tuples first, i.e., we do not take a naive approach such as
modifying all tuples that are involved in a conflict. Let the
set of tuples that are involved in multi-tuple conflicts be
Ddoubt, and the set of conflicts between tuples #;, 1; € Dgoubt
be fij. The problem of finding tuples to be corrected is
selecting the subset Déloubt of Dgoubt at least one of whose
members have conflict with all the remaining tuples in set
Ddoubt\Déoub[. There is a polynomial time projection from
the set Dyoupe to the set of vertices V and from conflicts f;;
to the set of edges E of a graph (V, E). Hence, the prob-
lem can be reduced to the dominating set problem of a graph
(V, E), which is known to be NP-complete. A naive solu-
tion for this problem takes computation order of O(2"n)
and will be intractable as the number of tuples in Dgoubt
increases. O

Note that there are some exceptional cases where conflicts
between two tuples remain. These conflicts should be solved
after resolving the ones with more tuples. Also note that we
have not yet mentioned which cells of the tuples to be cor-
rected. Still, the problem of selecting tuples to be corrected
is already NP-hard.

Secondly, we show that, even after we select Déoubt, the
problem of finding a common condition among those tuples
is difficult.

Theorem 2 The problem of discovering a common condition
among the tuples in D}, is NP-complete.

Proof As pointed out by Zaki and Ogihara, the problem of
finding a common itemset among the tuples is NP-complete,
since it can be reduced to the problem of clique discovery
in a bipartite graph [18]. Similarly, the problem of finding
a common set of attribute values among a set of tuples can
be reduced to a bipartite clique problem as follows. Assume
we have a graph G = (U, V, E), where G is a bipartite
graph consisting of parts U and V, and edges E. A set of

(t3, Tax) = 2, (t4, Category) = <OTHER>

tuples can be projected to U and a set of attribute values to
V, and the existence of a tuple containing a set of attribute
values to an edge in E. A clique in a bipartite graph is equiv-
alent of a set of attribute values that is common in a set
of tuples. Then, the problem of finding a common attribute
values is reduced to the problem of finding a clique in a bipar-
tite graph G. This problem is known to be NP-complete and,
for instance, finding the largest clique requires computation
O(UIIVD. o

Definition 1 An LHS value sets {S4 1, S¢,2,..., 5S¢k} is
defined for a CFD rule ¢ € X, which is a set of tuple
sets Sp = {{t1,1. 12, ..., ti,N1 b {21, 22, .., 2,82 -
where each tuple within each set (or, LHS value set) matches
the condition of the rule ¢, and all tuples within LHS
value set have the same values on the LHS of the rule
¢, namely #; ;[¢.LHS] = f; ;j[¢.LHS] holds for all i, j €
{1,2,..., N} for all k tuple sets. (We denote the LHS
attribute set as ¢.LHS, and the values of attribute set A as
t[A])

Definition 2 A doubt tuple is a tuple in conflict w.r.t. a rule
in X, namely {r | 3t € D At,' € Sy A t[¢.RHS] #
t'[¢.RHS]}. We call a set of doubt tuples Diisagree, ¢,k » Which
is the kth tuple set in Sy where any pair of the member tuples
disagree on the RHS of ¢.

Definition 3 Cause attribute (Z, v) is defined as a set of
attribute values that is common to the tuples to be corrected
in D.

3.2 Finding the cause conditions

The condition we try to discover is defined as a form of
a triplet Z, v, k(Z = v, L =“doubt”), which are a set
of attributes, their values, and an agreement metrics which
evaluates co-occurrence between a condition and a “doubt”
label. We first identify the cause of error Z (hereafter called
cause attributes) among attr (D), using a sample of data
Dsample-

We treat a tuple as a basic unit for probability computation.
We label tuples in D either “clean” or “doubt”, using a set
of labels for tuples L = {“clean”, “doubt”}, where L(t) =

@ Springer

Vietnam J Comput Sci (2017) 4:3—-12

“clean” when tuple 7 is not in conflict and L(¢) = “doubt”
when in conflict with any rule in X. In Fig. 1, doubt tuples
are 1, 13, 14 and ty, and all the rest are clean tuples.

When determining the error attributes, CondRepair uses
the agreement statistics Kappa which indicates co-occurrence
between the doubt tuples and candidate cause conditions. The
Kappa statistics « is defined as follows.

The Kappa agreement statistics: x (Z = v, L =“doubt”)

Pyctual — Peoincidental {zt1Z]=vAL(t)="doubt"}|
= Zacwal“Zcoincidental ywhere P,.yal =
1— Peoincidental actual |D, sample |

and Pooineidenal (I{tlt[Z]—v}I)(I{tlL(t)—“doubt }|)_

[Dsample [| Dsample ‘

The meaning of Kappa index is, basically, the difference
between the rate of actual co-occurrence and the rate of
theoretical co-occurrence. The value is normalized by the
negation of coincidental co-occurrences. Therefore, when the
probability of coincidental co-occurrence is higher, « will be
higher.

‘We now describe some heuristics introduced in response to
the subproblem described in Theorem 2. We could have dis-
covered acommon condition among a set of doubt tuples in an
apriori-like manner ([19]). However, the a priori algorithm is
known to be still computationally expensive especially with
data of high arity. Hence, we developed a more efficient infer-
ence method for cause discovery using the Kappa index. The
virtue of Kappa index is, it evaluates different attribute values
with a single viewpoint, a co-occurrence with doubt tuples.
We obtain attribute values in a single list in the order of
Kappa value and seek if there is a composed cause condition
(ZU A, v+v) that has higher Kappa than a simpler condition
(Z, V).

3.3 Generating a repair

When tuples to be corrected are determined, it is fairly
straightforward to generate a repair. We use equivalence
classes proposed by Bohannon et al., based on the descrip-
tion given by Beskales et al. [1,7]. Equivalence class is
a useful data structure to repair data with multiple rules.
It groups cells into sets within which all member cells

@ Springer

should have the same value when the cleansing is com-
pleted, delaying decision on the exact value the set will
have.

Use of equivalence classes assures a complete repair, i.e., a
repair with no remaining violation. However, as Bohannon et
al. have noted as collision problem, it often generates exces-
sively large equivalence sets by applying repeated merges
with multiple rules. For example, an equivalence class with
cell 1[B] is merged with the one with cell t'[B] based on
¢1 : A — B, then an equivalence class with cell ¢[C] is
merged with the one with ¢/[C], based on another rule ¢ :
B — C, and so on. We make some modifications to Beskales
et al.’s equivalence class. First, we do not make equivalence
classes where there is no conflict, whereas Beskales” method
first merges all cells that have the same values. Secondly, we
merge equivalence classes not based on their LHS equiva-
lence classes, but simply based on the values on the LHS
attributes. In order to achieve a complete repair, we impose
some limitations on the order and the involving attributes
of rules in the input rule, so that pe o {p | VA €
¢.LHS, A ¢ ¢/ RHS, V¢’ <TU1°S ¢}, which means ¥ is a
list of rules sorted in the order <*“1®S where any attribute
on LHS of rule ¢ is not included in the RHS of any preceding
rule ¢'.

During the repair generation, a cell’s value #[B] is changed
to another tuple’s value ¢'[B] where there is a cleaner tuple,
which is a tuple that is assigned with the lowest probability
of being erroneous among the ones in the same equivalence
class, ¢’ within the equivalence class.

Equivalence classes cannot produce corrections for con-
stant CFDs. So, constant CFDs are treated separately by
changing any of the cell in LHS to a special symbol
OTHER_VALUE, which indicates a value not in the domain
of the attribute and defined not to match any value (thus,
OTHER_VALUE # OTHER_VALUE). The specific value
can be filled in by a human in the process of verification,
which is out of the scope of this paper. We now provide
a step by step description of the algorithm CondRepair
(Algorithm 1).

Vietnam J Comput Sci (2017) 4:3—-12

Algorithm 1 CondRepair

Input: D, X, n(sample size), m(a threshold to limit the size of S)

Output: Dicpr = X
1: Diepr := D

2: take Dgample, a sample of size n from Diyepr

//label each tuple
: for each ¢ € ¥ do

SR w

//infer the cause condition

calculate k(A = v, L =“doubt”)

SSew

// fix LHS of constant CFDs

Ddisagree,¢ = {Szf),k‘ | tv t/ S S¢,k A S¢,k g Dsample A f[¢RHS] # f’[¢RHS]}
if |S¢, k| < m where Sy i has a conflict then
label(t) := “doubt” for all t € Sg i

: for each (A, v) € Dgisagree, a set of tuples whose labels are “doubt” do
: for each (A, v) in the descending order of kappa do

if AZZ and k(Z,v) < kK(ZU A,v +v) then
(Z,v) :=(ZU A, v +v) else break

12: for each ¢t [= ¢ € X, t € Dyepr, where ¢ is a constant CFD, do
13: t[B] = OTHER.VALUE for any attribute B € ¢.LHS

// build equivalence classes
14: BuildEquivRel(Dyepr, X)

//fix values

15: for each e € E, where e is a equivalence class and E is a set of all equivalence classes, do
16: ¢* := a cell under (Z, v) which has the smallest x in E

17: for each c € e do
18: val(c) := val(c™)
19: return Diepr

The inputs for the algorithm are D, the data to be cleaned,
%, a set of CFD rules, n, a size of sample data, and m, a
maximum size of LHS value sets to be used to infer the cause
attribute. The output is the Dyepr, which conforms to all rules
in X.

The algorithm first takes a sample of size n from Dyep;
(Line 2). It then label the tuples as “clean” or “doubt”,
depending on the existence of violation with rules in X. If
a tuple ¢ violates a rule in ¥ and if the size of the kth LHS
value set (described as | Dgjsagree, ¢,k |) 18 equal to or smaller
than the parameter m, it is labeled as “doubt”, otherwise the
tuple is treated as “clean” (lines 3-6).

Lines 7-11 perform a discovery of the cause condition.
The algorithm calculates the kappa agreement statistics of the
doubt tuples and all attribute value pairs (A, v)s appearing in
Dyisagree, Which is a union of all Dyisagree, ¢, k. It then, looks
at the list of attribute value pairs (A, v)s in the descending
order of kappa and joins an (A, v) if it has larger kappa
when combined with the preceding condition. If a combined
condition does not exceed the preceding condition in kappa,
it stops looking further in the list.

Lines 12—13 make corrections on the violations to constant
CFDs. The algorithm turns any of the attribute values on LHS
of the rule to an OTHER_VALUE, which resolves violation
without producing a new conflict.

Line 14 builds equivalence classes on Dyepy, with the mod-
ifications described in Sect. 3.3.

Lines 15-18 fix values in each equivalence class by
turning them to the ones of the cells which have the small-
est k within the equivalence classes. The comparison of
kappa values canbe done when building equivalence class,
so this step consists only of producing corrections on cells
that have higher « than other cells in the equivalence
classes.

4 Experiments

The proposed algorithm, along with two previous methods,
is tested in terms of its scalability and accuracy in detect-
ing and correcting error cells with different degrees of error
skewness. The algorithms are implemented in Java™and all
experiments are conducted on a Linux CentOS with 16-Core
Xeon E5-2450 (2.1 GHz) and 128-GB memory. We describe
experimental settings (Sects. 4.1, 4.2, 4.3, 4.4) followed by
some key results (Sects. 4.5, 4.6). Results are examined from
the aspects of completeness of repairs (Sect. 4.7) and correct-
ness of repair values (Sect. 4.8).

4.1 Datasets
We used three datasets, two of which are from the UCI

machine learning database: (1) Wisconsin Breast Cancer
(WBC) and (2) US Census dataset (Adult). WBC is a numeric

@ Springer

Vietnam J Comput Sci (2017) 4:3—-12

data and US Census contains mostly nominal values. The
third dataset is DBGen [20], a synthetic data set obtained
from the authors of a previous algorithm [7].

4.2 The previous algorithms

Two previous algorithms were used for comparison, which
are IncRepair by Cong et al. [2] and FDRepair by Beskales
et al. [7]. See “Appendices 1 and 2” for algorithm descrip-
tions. IncRepair (“Appendix 17) is an incremental algorithm
that cleans AD when A D has been added to a dataset D so
A D U D satisfies X. Note that it performs with a better scal-
ability than its batch counterpart (BatchRepair) without loss
of accuracy. We used IncRepair so that it treated all the data
as AD as done by Cong et al. IncRepair was re-implemented
using the same basic utility classes as CondRepair for data
10 and for CFD validations.

FDRepair (“Appendix 2”) is a repair algorithm based on
Beskales et al.’s proposed notion of cardinality-set-minimal
repairs. It employs the equivalence classes originally pro-
posed by Bohannon et al. [14] and attempts to rectify the
collision problem that we described in Sect. 3.3 by revert-
ing the values to the original ones where it does not cause
a violation. FDRepair is a sampling algorithm that pro-
duces samples from the cardinality-set-minimal repairs. We
used a Java implementation of FDRepair obtained from the
author.

4.3 Input rules

The CFD rules we used was extracted from WBC and Adult
datasets before error injection using a FastCFD algorithm
with the support threshold set to 10 % of the number of
tuples in input data, where 10 % is a popularly used value
in previous work. The number of CFD rules can be exces-
sive, and rules with a large number of attributes on LHS are
often not useful in data cleansing, so we have limited the
size of LHS to at most four. For FDRepair, we used FDs
which were included in the result of the CFD discovery,
and for the other two algorithms, we used the same num-
ber of randomly sampled CFD rules. As a result, 35 rules
from WBC and Adult have been extracted. For the dataset
DBGen, we used the same 18 FD rules as used by Beskales
et al. [7].

4.4 Injected errors

We injected errors by turning an attribute value of a random
tuple (¢, A) into the value of the same attribute of another
randomly chosen tuple (¢/, A). In effect, this can cause mul-
tiple cells with originally different values to have the same
value, or multiple cells with originally the same value to have
different values. When (¢, A)’s value was the same as that of

@ Springer

(', A), OTHER_VALUE was inserted in the selected cell. The
default error rate was set to 0.05 (i.e., the number of errors
injected is 5 % of the total number of tuples).

For experiments with error skewness, we injected the
errors that follow the probability P (Err,), or the probabil-
ity of tuple ¢ includes an error, as follows:

es/Ift | 1121 =)|
€(1.0 =)/1{t | 1[Z] # V)]

(tZ] =v)

P(Err) = [(otherwise)

where ¢ is the overall error rate in the dataset and s(0 <
s < 1) is the skewness factor denoting the proportion of
errors that occur under specified condition (Z, v). When s >
{t | t[Z] = v}|/|{t | t € D}| holds, if the cell is within the
specified area Z = v, the cell is erroneous for the specified
probability, otherwise the cell can still be erroneous, but for
a much smaller probability.

4.5 Scalability

We first look at the runtime of the repair algorithms as the
input data size increases. Figures 2, 3 and 4 describe the
results with each dataset (the average of 10 iterations). IncRe-
pair performed the fastest and looked the most scalable with
WBC, but clearly did not seem to scale well with the two
larger datasets. We stopped the runs where it took too long to
complete. The result shows that IncRepair’s exploration of
all values in the domain of attribute C to find a fix that sat-

o n
§7 —e— IncRepair /
- —A— CondRepair

%,: -1 |~®* FDRepair
o

(%2}

E &

~ ©

[0}

£ 7

€ o

S S

xg
o

I T T T T 1
0 100 300 500 700
Data size (number of tuples)

Fig. 2 Scalability (WBC)

| —o— IncRepair
—A— CondRepair
<S8 —#— FDRepair
%S
ESR
£ - -
5
€3
o _
S
= A_‘—_‘—r-"’/_‘
o [=E I/"”"'
T T T T
0 5000 10000 15000

Data size (number of tuples)

Fig. 3 Scalability (DBGen)

Vietnam J Comput Sci (2017) 4:3—-12

=1 —e— IncRepair
S —A— CondRepair
35 —=— FDRepair
3
E
©
£
o
25
S
Yo}
o
| T | T |
0 5000 15000 25000

Data size (number of tuples)

Fig. 4 Scalability (Adult)

isfies X is prohibitively expensive with a large dataset with
unbounded attribute domains. FDRepair’s runtime, as shown
in the original paper, is at least quadratic, and looks sensitive
even when the data consist of limited number of different
values as with WBC. We think that the result is due to the
algorithm’s high cost for validating and reverting the candi-
date corrections. As opposed to the two previous algorithms,
we observe that CondRepair’s runtime is closer to linear with
the data size.

4.6 Effect of error skewness

We then change the error skewness using the aforementioned
error distribution model. Overall error rate was fixed to 0.05.
A set of tuples with a predetermined condition is called
“high error area” or HIGH, which is defined as HIGH =
{t | t[Z] = v} where v is a set of values selected from
the domains of attributes in Z. For (Z, v), we used a single
attribute and v was selected so the number of tuples with
t[Z = v] is closest to 10 % of the input tuples. Cause condi-
tions clump_thickness = “10” for WBC, state = NULL for
DBGen, and occupation = “Adm-clerical” for Adult were
used throughout the iterations. The parameter s varied from
0.05,0.1 (no skew) to 1.0 (extremely skewed, where all errors
occur under condition Z = v, but no errors occur in other
areas).

As noted in some of the previous work, an injected error
does not always violate a CFD rule, which may lead to a
low recall. To separate out the problem of errors’ not being
detected by the input rules, we measure the performances
with the score metrics defined as follows:

. # correctly detected errors
Precision =

detected errors

correctly detected errors
Recall =

conflict — introducing errors

Figures 5, 6 and 7 show the accuracy (precision and recall)
with different degrees of skewness (average of 20 iterations).
The precision and recall scores are calculated on the cell-base
count of errors.

]
- —e— IncRepair(Prec)
—a— CondRepair(Prec)
o_| —=— FDRepair(Prec)
- © @ - IncRepair(Recall)
8 A - CondRepair(Recall)
D ©_| = - FDRepair(Recall)
o
c
2
Iz
SN =]
[}
=
o
N
o
<]
o

Fig. 5 Accuracy (WBC)

]
- —e— IncRepair(Prec)
—A— CondRepair(Prec)
©_| —=— FDRepair(Prec)
- O @ - IncRepair(Recall)
8 - A- CondRepair(Recall)
D © = - FDRepair(Recall)
Co| , & =
= AAh--oAoooooe A--
2
@< -
OC | L. m-o---- S
@ Ny -
2
o
N
o
o B I — » ' —
— 0 ———0— 06—
o

Fig. 6 Accuracy (DBGen)

]
- —e— IncRepair(Prec)
—4— CondRepair(Prec)
©_| —=— FDRepair(Prec)
- © ® - IncRepair(Recall)
8 A - CondRepair(Recall)
@ ©_| = - FDRepair(Recall)
T o
<
°
@a <
[+
8 o
a
N
o
|
o

Fig. 7 Accuracy (Adult)

With all datasets, CondRepair exceeded, in most of the
skewness settings, the other two algorithms both in precision
and recall. CondRepair’s score ranged 0.4-0.6 with all data
sets with an exception for the precision for DBGen, where all
the other algorithm’s scores were low as well. FDRepair per-
formed with equal to or higher scores than CondRepair only
with WBC and where there is little or no skewness. IncRe-
pair’s scores were especially low. We think this is because
the type of errors used could not be correctly detected by the
edit distance metrics.

In summary, CondRepair’s runtime is nearly linear with
the data size and its accuracy surpassed that of IncRepair and
FDRepair with all tested datasets when the skewness is larger
than 0.1.

@ Springer

10

Vietnam J Comput Sci (2017) 4:3—-12

Table 1 Correctness of error detection and correction when s = 0.25

Dataset WBC (2 x 699 lines) DBGen (2 x 1000 lines) Adult (2 x 1000 lines)

#ICV 38.1/46.7 90.5 24.2/33.65

Algorithm TDP TDR DP DR CP CR TDP TDR DP DR CP CR TDP TDR DP DR CP CR
IncRepair 0.07 0.57 000 001 000 000 0.14 093 000 000 000 000 031 002 0.00 0.00 0.00 0.00
FDRepair 043 0,53 0.10 0.15 0.09 0.14 0.16 072 0.05 036 0.04 027 066 030 024 029 0.16 0.19
CondRepair 047 038 036 045 036 045 0.18 0.63 0.04 0.54 0.04 050 0.69 067 039 042 022 0.24

The figures of the best performing algorithms are shown in bold

ICV injected and caused violation for CFDs/FDs, TDP tuple-wise detection precision, TDR tuple-wise detection recall, DP cell-wise detection
precision, DR cell-wise detection recall, CP correction precision, CR correction recall

4.7 Result analysis 1: completeness of repairs

To test the completeness of repairs, we have used a basic
function for CFD validation implemented separately from
the one used in CondRepair and IncRepair. The basic func-
tion followed the original definition of CFD described in
Bohannon et al. [1], by naively matching LHS value sets and
RHS values for all pairs of tuples for all input rules. Con-
dRepair produced repairs without a violation with WBC and
Adult datasets, and left on average 43.2 tuples with violation
with DBGen, because the input FD set contained rules that
lead to the collision problem. It should be noted that if we
are allowed to impose an order restriction described in Sect.
3.3 on the input rules, there should be no remaining errors
also with DBGen. There were on average 308.5 tuples with
remaining violations with IncRepair, 534.6 with FDRepair
(WBC), 271.2 with IncRepair and 268.4 with FDRepair (1 K
tuples of DBGen), and 4.8 with IncRepair and 236.6 with
FDRepair (1 K tuples of Adult), when the error rate 0.05 and
with no skew.

Here are some possible reasons why the two previous algo-
rithms could not produce complete repairs. IncRepair, when
multiple rules in £ cannot be satisfied at once by changing the
focused k values within the tuple, the tuple is left with viola-
tions. In the case of FDRepair, apparently, the algorithm does
not create equivalence classes for singleton values. Leaving
singleton values as they are can result in remaining viola-
tions because singleton values on a rule’s RHS attribute can
cause a conflict. In fact, FDRepair generated much less num-
ber of corrections than the number of conflict-introducing
errors.

4.8 Result analysis 2: correctness of repair values

We look at precision and recall of corrections, which are the
rate of correctly fixed errors over all fixes made and the rate
of correctly fixed errors over all conflict-introducing errors,
respectively. Table 1 summarizes numbers of injected errors,
conflict-introducing errors, and scores for tuple-wise detec-
tion, cell-wise detection (same as shown in Figs. 5, 3, 7), and
scores for correction (skewness 0.25, a weak skew). Sim-

@ Springer

ply injecting errors to the datasets did not produce sufficient
number of conflicts, so we repeated all tuples in the datasets
so each tuple appears twice, which leads to sufficient number
of conflicts for evaluation.

The scores of CondRepair were the highest except for
tuple-wise detection with WBC and DBGen and for cell-
wise detection precision with DBGen. IncRepair’s tuple-wise
detection was higher with the two cases with tuple-wise
detection, but notably, its cell-wise detection scores and
correction scores were zero or very low. FDRepair per-
formed much better than reported in the original paper,
but did not exceed in the scores for correction of Con-
dRepair. CondRepair were able to find 67 % tuples with
conflict-introducing errors with 69 % precision, which looks
promising for a practical use. The scores for correction are
not so high as we can leave the machine an important data
to cleanse, but the algorithm can be used to suggest human
users possible corrections.

5 Conclusions

We have proposed a data-repairing technique that discovers
and leverages the common cause of errors. Our method Con-
dRepair, achieved a nearly linear scalability and accuracy of
error detection that is higher than previous methods. Further
directions include (1) a closer observation of real-world data-
cleansing work and incorporation of observed characteristics
of errors in experimental settings, (2) an incremental version
of the algorithm, and (3) interaction with a human user to
efficiently achieve an optimal repair.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix 1: IncRepair (Cong et al. [2])

Algorithm 2 summarizes our understanding the algorithm
IncRepair.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Vietnam J Comput Sci (2017) 4:3—-12

11

Algorithm 2 IncRepair

Input: D, AD, %,0,k

Output: A Dy, such that D U ADepr = 2
I: ADyepr := AD

2: sort ts in A Dyepy by order O

3: for each f in A Dyepr do

4: C:={}

5: for each C € attr(D) do
6: V= {}
7

8

for each v; € dom(C) UNULL do
t = t;t}[C] =vj;C:={CUC}L V= VUt}

9: if k < |C] then

10: break

11: end if

12: end for

13: for each ¢ € X(CUC) do
14: if #; = ¢ then

15: Vi=V-— {t}}

16: end if

17: end for

18: v* 1= arg miny ¢y cost£ix(¢[C], t'[C]); t[C] := v*
19: end for

20: end for

21: return A Dyepr

IncRepair takes as an input AD, X, and O, where AD is
a batch of data added to D and X is a set of rules, and O is an
order of tuples in AD. As we described in Sect. 4, we use the
whole D as the input AD, and X is the same as CondRepair.

IncRepair linearly processes tuples in A D applying fixes
that have the least cost £ix among the candidates t}s that
satisfy the rules. It produces all values v in dom(C), where
C is the attribute to fix. Since the algorithm did not specify
the order of Cs, we used an arbitrary order. Note that the
algorithm works linearly with attributes within a tuple, pro-
ducing a set of candidates t}s that satisfies X(CUC) = {¢ :
X > A| (XUA) C (CUC)}, where C is the attribute
that has already been fixed and C is the attribute on which
the algorithm has just produced the candidates. The algo-
rithm proceeds to obtain the t} with the least cost £ix and
reaches at the last C in attr(D) with t} that satisfies all
rules in X.

There is a parameter k, which specifies the size of the
attribute set C, or the number of values changed at once.
In the experiment, we set k to one. According to Cong et
al., IncRepair achieves a good accuracy with k = 1 or 2.
As we increase parameter k, the algorithm’s computational
cost increases exponentially, since it generates as many can-
didates fixes vs as the combination of dom(C)s.

The cost function costfix is defined as follows:

dist(v,v) ’
costEix(v,v)) = | maxurwp (V' # NULL)
00 (v = NULL)

where dist (v, v) is Levenstein’s edit distance, and |v| is the
number of characters in value v. We have added the case of
v/ = NULL, so NULL is selected when all values in dom(C)
fail to satisfy X (C U C).

What is notable about this algorithm is the calculation
order when the number of different values increases as the
data size. It will be (N?3), where N is the number of tuples in
the input batch AD.

Proof The loop that starts at line three contains another loop
over dom(C)U{NULL} (starting atline 7), where |dom(C)| o
N. Within this second loop, when ¢ is a variable CFD, the
algorithm does a validity check that requires as many as N
times string comparisons. Thus, the computational cost of
IncRepair is O (N 3. O

Appendix 2: Cardinality-set-minimal
(Beskales et al. [7])

repair

Motivated by the same problem as described in Sect. 3.1,
Beskales et al. has proposed a method to obtain repairs
that satisfy their proposed cardinality-set-minimal [7]. In
their claims, cardinality-set-minimal precludes repairs with
unwanted redundancy from among the exponential universe
of repairs, thereby achieving high quality repairs. We briefly
describe the notion of cardinality-set-minimal and their pro-
posed algorithm.

Cardinality-set-repair is an intermediate set between the
previously proposed cardinality-minimal repair and the set-
minimal repair. Given a relation instance 7, Beskales et al.’s
cardinality-set-minimal repair is defined as follows:

Definition 4 (Cardinality-Set-Minimal Repair [7]) A repair
I’ of I is cardinality-set-minimal iff there is no repair I” of
I such that A(1, I") C AL, 1").

That is, a cardinality-set-minimal-repair is a repair achie-
ved with the minimal set of cells (i.e., reverting any changed
cells to the original values in / causes a violation, while
other cells are not necessarily the same values as in I”).
With this, they aim at striking a balance between the “fewest
changes” metric of cardinality-minimality and the “neces-
sary changes” criterion of set-minimality. Their algorithm
GenRepair (referred to as FDRepair in Sect. 4), simply
random-samples from the space of cardinality-set-minimal
repair, as shown in Algorithm 3.

@ Springer

12

Vietnam J Comput Sci (2017) 4:3—-12

Algorithm 3 GenRepair (FDRepair)
Input: /, X

Output: I’

1: CleanCells := ¢

2: while CleanCells # all cells in / do

3: Insert a random cell t[A] to CleanCells

4: E :=BuildEquivRel(CleanCells, I’, ¥)

5. if IsClean(CleanCells, I’, E) = false then

6: E := BuildEquivRel(CleanCells\{t[A]}, I, X)

7: try changing the value of #[A] to the one of other clean cells in
the equiv. class

8: try changing the value of /[A] to a randomly selected constant
or variable

9: try changing the value of t[A] to a new variable v’

10: endif

11: end while
12: return I’

Algorithm 4 BuildEquivRel
Input: D, ¥
QOutput: E
1: for each attribute A € attr(R) do
2: foreachcellc € A do
/le: an equivalence class; E: the equivalence relation

3: €val(c) < eval(e) Y E <= EUeyai(
4: end for
5: end for

6: while each rule ¢ € X where 3t € D [~ ¢ do
7: LHSValGroup < {Ve | e € LHS value}
8: for each equiv. class pair e, ez € LHSValGroup do

9: for each equiv. class pair e3, e4 € {Ve | ¢ € RHS} do
10: e3 < e3Uey; eq < NULL

11: end for

12: end for

13: end while

14: return E

References

1. Bohannon, P., Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.:
Conditional functional dependencies for data cleaning. In: ICDE,
pp. 746755 (2007)

2. Cong, G., Fan, W,, Geerts, F., Jia, X., Ma, S.: Improving data qual-
ity: consistency and accuracy. In: VLDB, pp. 315-326 (2007)

3. Chiang, F., Miller, R.J.: Discovering data quality rules. PVLDB
1(1), 1166-1177 (2008)

4. Fan, W, Li, J.,Ma, S., Tang, N., Yu, W.: Towards certain fixes with
editing rules and master data. PVLDB 3(1), 173-184 (2010)

5. Fan, W., Geerts, F.: Capturing missing tuples and missing values.
In: PODS, pp. 169-178 (2010)

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Yeh, PZ., Puri, C.A.: Discovering conditional functional depen-

dencies to detect data inconsistencies. In: Proceedings of the Fifth
International Workshop on Quality in Databases at VLDB2010
(2010)

. Beskales, G., Ilyas, LF, Golab, L.: Sampling the repairs of

functional dependency violations under hard constraints. VLDB
Endowment, vol 3(1-2), pp. 197-207 (2010)

. Fan, W, Li,J.,Ma, S., Tang, N., Yu, W.: Interaction between record

matching and data repairing. In: SIGMOD Conference, pp. 469—
480 (2011)

. Bertossi, L., Bravo, L., Franconi, E., Lopatenko, A.: The complex-

ity and approximation of fixing numerical attributes in databases
under integrity constraints. Inf. Syst. 33(4-5), 407-434 (2008)
Chomicki, J., Marcinkowski, J.: Minimal-change integrity mainte-
nance using tuple deletions. Inf. Comput. 2005 (2005)

Kolahi, S., Lakshmanan, L.V.S.: On approximating optimum
repairs for functional dependency violations. In: Proceedings of
the 12th International Conference on Database Theory, series ICDT
’09, pp. 53-62. ACM, New York (2009)

Chandel, A., Koudas, N., Pu, K.Q., Srivastava, D.: Fast identifica-
tion of relational constraint violations. In: International Conference
on Data Engineering, pp. 776-785 (2007)

Zhang, B., Tang, X., Wei, W., Zhang, M.: A data cleaning method
based on association rules. In: International Conference on Intelli-
gent Systems and Knowledge Engineering, ISKE (2007)
Bohannon, P, Flaster, M., Fan, W., Rastogi, R.: A cost-based model
and effective heuristic for repairing constraints by value modifica-
tion. In: SIGMOD Conference, pp. 143—154 (2005)

Damerau, FJ.: A technique for computer detection and correction
of spelling errors. Commun. ACM 7(3), 171-176 (1964)

Golab, L., Karloff, H.J., Korn, F,, Srivastava, D., Yu, B.: On generat-
ing near-optimal tableaux for conditional functional dependencies.
PVLDB 1(1), 376-390 (2008)

Berti-Equille, L., Dasu, T., Srivastava, D.: Discovery of complex
glitch patterns: a novel approach to quantitative data cleaning. In:
ICDE, pp. 733-744 (2011)

Zaki, M.J., Ogihara, M.: Theoretical foundations of association
rules. In: 3rd ACM SIGMOD Workshop on Research Issues in
Data Mining and Knowledge Discovery (1998)

Agrawal, R., Imielinski, T., Swami, A.: Mining association rules
between sets of items in large databases. In: SIGMOD Record,
vol. 22(2), pp. 207-216 (1993). doi:10.1145/170036.170072
Gray, J., Sundaresan, P., Englert, S., Baclawski, K., Weinberger,
P.J.: Quickly generating billion-record synthetic databases. In: Pro-
ceedings of the 1994 ACM SIGMOD International Conference on
Management of Data, series SIGMOD ’94, pp. 243-252. ACM,
New York (1994). doi:10.1145/191839.191886

http://dx.doi.org/10.1145/170036.170072
http://dx.doi.org/10.1145/191839.191886

	Inferring the cause of errors for a scalable, accurate, and complete constraint-based data cleansing
	Abstract
	1 Introduction
	2 Related work
	3 Data cleansing based on error conditions
	3.1 Problem description
	3.2 Finding the cause conditions
	3.3 Generating a repair

	4 Experiments
	4.1 Datasets
	4.2 The previous algorithms
	4.3 Input rules
	4.4 Injected errors
	4.5 Scalability
	4.6 Effect of error skewness
	4.7 Result analysis 1: completeness of repairs
	4.8 Result analysis 2: correctness of repair values

	5 Conclusions
	Appendix 1: IncRepair (Cong et al.)
	Appendix 2: Cardinality-set-minimal repair (Beskales et al. [7])
	References

