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Abstract
Since the 1960s, researchers have been trying to optimize the sequencing of instruc-
tional activities using the tools of reinforcement learning (RL) and sequential
decision making under uncertainty. Many researchers have realized that reinforce-
ment learning provides a natural framework for optimal instructional sequencing
given a particular model of student learning, and excitement towards this area of
research is as alive now as it was over fifty years ago. But does RL actually help
students learn? If so, when and where might we expect it to be most helpful? To
help answer these questions, we review the variety of attempts to use RL for instruc-
tional sequencing. First, we present a historical narrative of this research area. We
identify three waves of research, which gives us a sense of the various communi-
ties of researchers that have been interested in this problem and where the field is
going. Second, we review all of the empirical research that has compared RL-induced
instructional policies to baseline methods of sequencing. We find that over half of the
studies found that RL-induced policies significantly outperform baselines. Moreover,
we identify five clusters of studies with different characteristics and varying levels of
success in using RL to help students learn. We find that reinforcement learning has
been most successful in cases where it has been constrained with ideas and theories
from cognitive psychology and the learning sciences. However, given that our theo-
ries and models are limited, we also find that it has been useful to complement this
approach with running more robust offline analyses that do not rely heavily on the
assumptions of one particular model. Given that many researchers are turning to deep
reinforcement learning and big data to tackle instructional sequencing, we believe
keeping these best practices in mind can help guide the way to the reward in using
RL for instructional sequencing.
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Introduction

In 1960, a book was published by the name of Dynamic Programming and Markov
Decision Processes and an article by the name of “Machine-Aided Learning”. The
former established itself as one of the foundational early texts about Markov deci-
sion processes (MDPs), the model that underpins reinforcement learning (RL). The
latter is a virtually unknown two-page vision paper suggesting that computers could
help individualize the sequence of instruction for each student. Both were written
by Ronald Howard, who is one of the pioneers of decision processes and is now
considered the “father of decision analysis.” These two lines of work are not unre-
lated; in 1962, Howard’s doctoral student Richard Smallwood wrote his dissertation,
A Decision Structure for Teaching Machines, on the topic of how to use decision pro-
cesses to adapt instruction in a computerized teaching machine. This is perhaps the
first example of using reinforcement learning (broadly conceived) for the purposes
of instructional sequencing (i.e., determining how to adaptively sequence various
instructional activities to help students learn). Instructional sequencing was thus one
of the earliest applications of reinforcement learning.

Over 50 years later, we find that researchers continue to attempt tackling the prob-
lem of instructional sequencing with the tools of reinforcement learning in a variety
of educational settings (perhaps not always realizing that this problem was first for-
mulated and studied decades ago) and excitement for this area of research is perhaps
as alive now as ever. Many researchers were drawn to this area of research, because
(1) it is well known that the way in which instruction is sequenced can make a differ-
ence on how well students learn (Ritter et al. 2007), and (2) reinforcement learning
provides the mathematical machinery to formally optimize the sequence of instruc-
tion (Atkinson 1972a). But over the past 50 years, how successful has RL been in
discovering useful adaptive instructional policies? More importantly, looking to the
future, how might RL best impact instructional sequencing?

In this paper, we seek to address these questions by reviewing the variety of
attempts to apply reinforcement learning to the task of instructional sequencing in
different settings. We first narrate a brief history of RL applied to instructional
sequencing. We identify three waves of research in this area, with the most recent
wave pointing to where the field seems to be heading in the future. Second, to assess
how successful using RL for instructional sequencing has been in helping students
learn, we review all of the empirical research comparing RL-induced instructional
policies to baseline instructional policies. We find that over half of the studies found
significant effects in favor of RL-induced policies. Moreover, we identify five clus-
ters of studies that vary in the way RL has been used for instructional sequencing and
have had varying levels of success in impacting student learning.

We find that reinforcement learning has been most successful in cases where it has
been constrained with ideas and theories from cognitive psychology and the learn-
ing sciences, which suggest combining theory-driven and data-driven approaches, as
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opposed to purely relying on black-box data-driven algorithms. However, given that
our theories and models are limited, we also find that it has been useful to comple-
ment this approach with running more robust offline analyses that do not rely heavily
on the assumptions of one particular model.

Recent advances in reinforcement learning and educational technology, such as
deep RL (Mnih et al. 2015) and big data, seem to be resulting in growing inter-
est in applying RL to instructional sequencing. Our hope is that this review will
productively inform both researchers who are new to the field and researchers who
are continuing to explore ways to impact instructional design with the tools of
reinforcement learning.

Reinforcement Learning: Towards a “Theory of Instruction”

In 1972, the psychologist Richard Atkinson wrote a paper titled “Ingredients for a
Theory of Instruction” (Atkinson 1972b), in which he claims a theory of instruction
requires the following four “ingredients”:

“1. A model of the learning process.
2. Specification of admissible instructional actions.
3. Specification of instructional objectives
4. A measurement scale that permits costs to be assigned to each of the

instructional actions and payoffs to the achievement of instructional objec-
tives.”

Atkinson further describes how these ingredients for a theory of instruction map
onto the definition of a Markov decision process (MDP). Formally, a finite-horizon
MDP (Howard 1960a) is defined as a five tuple (S, A, T , R, H), where

– S is a set of states
– A is a set of actions
– T is a transition function where T (s′|s, a) denotes the probability of transitioning

from state s to state s′ after taking action a

– R is a reward function where R(s, a) specifies the reward (or the probability
distribution over rewards) when action a is taken in state s, and

– H is the horizon, or the number of time steps where actions are taken.

In reinforcement learning (RL), the goal is for an agent to learn a policy π—a
mapping from states to actions or probability distributions over actions—that incurs
high reward (Sutton and Barto 1998). The policy specifies for each state what action
the agent should take. There exist various methods for planning in a MDP, such as
value iteration (Bellman 1957) or policy iteration (Howard 1960a), which yield the
optimal policy for the given MDP. However, RL refers to the task of learning a policy
when the parameters of the MDP (the transition function and possibly the reward
function) are not known ahead of time.

As Atkinson explained, in the context of instruction, the transition function maps
onto a model of the learning process, where the MDP states are the states that the
student can be in (such as cognitive states). The set of actions are instructional activi-
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ties that can change the student’s cognitive state. These activities could be problems,
problem steps, flashcards, videos, worked examples, game levels in the context of
an educational game, etc. Finally, the reward function can be factorized into a cost
function for each instructional action (e.g., based on how long each action takes) and
a reward based on the cognitive state of the student (e.g., a reward for each skill a
student has learned).

We note that this review specifically focuses on applications of reinforcement
learning to the sequencing of instructional activities. Reinforcement learning and
decision processes have been used in other ways in educational technology that we
do not consider here. For example, Barnes and Stamper (2008) have used MDPs to
model students’ problem solving processes and automatically generate hints for stu-
dents. Similarly, Rafferty et al. (2015, 2016b) modeled student problem solving as a
MDP and used problem solving trajectories to infer the MDP so they could ultimately
give feedback to the students about misconceptions they might have. In these papers,
the actions of the MDP are problem solving steps taken by students in the course of
solving a problem, whereas in our paper, we focus on studies where the actions are
instructional activities taken by an RL agent to optimize a student’s learning over the
course of many activities.

As we show below, the natural formulation of the instructional process as a deci-
sion process and a problem that can be tackled by reinforcement learning drew many
researchers, including psychologists like Atkinson, to this problem. In theory, RL
could formalize that which was previously an art: instruction. How well it can do so
in practice is the subject of investigation of this paper.

Examples of RL for Instructional Sequencing

In order to situate the rest of this paper, it is worth giving some concrete examples
of how the techniques of decision processes and RL could be applied to instructional
sequencing. We will begin with one of the simplest possible MDPs that could be used
in the context of instructional sequencing, and then consider a series of successive
refinements to be able to model more authentic phenomena, ending with the model
considered by Atkinson (1972b). While there are many more ways of applying RL
to instructional sequencing, this section will give us a sense of one concrete way in
which it has been done, as well as introduce several of the design decisions that need
to be made in modeling how people learn and using such models to induce instruc-
tional policies. In the review of empirical studies below, we will discuss a much
broader variety of ways in which various researchers have used RL to implement
instructional sequencing.

The first model we will consider is a simple MDP that assumes for any given fact,
concept, or skill to be learned (which we will refer to as a knowledge component or
KC), the student can be in one of two states: the “correct” state or the “incorrect”
state. Whenever the student answers a question correctly, the student will transition to
the correct state for the associated KC, and whenever the student answers a question
incorrectly, the student will transition to the incorrect state for that KC. The complete
state can be described with a binary vector of all the individual KC states. The set
of actions is the set of items that we can have students practice, where each item is
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associated with a given KC. For each item, there is a 2-by-2 transition matrix that
specifies the probability of its associated KC transitioning from one state to another.
(For simplicity, we assume that all items for the same KC have the same probability
of transitioning to the correct state.) Suppose our goal is to have the student reach
the correct state for as many KCs as possible. Then we can specify a reward function
that gives a reward of one whenever the student transitions from the incorrect state
to the correct state, a reward of negative one whenever the student transitions from
the correct state to the incorrect state, and a reward of zero otherwise. In this case,
the optimal instructional policy is trivial: always give an item for the KC that has the
highest probability of transitioning to the correct state among all KCs in the incorrect
state.

Of course to use this policy in practice, we need to learn the parameters of the
MDP using prior data. Given the assumptions we made, the only parameters in this
model are the transition probabilities for each KC. In this case, the maximum likeli-
hood transition probability1 for each KC can be inferred simply by computing how
many times students transitioned from the incorrect state to the correct state divided
by the number of time steps where the students received an item in the incorrect state.

However, notice that the MDP presented above is likely not very useful, because it
assumes our goal is just to have students answer questions correctly. A student may
be able to answer questions correctly without displaying proper understanding, for
example by guessing or by answering correctly for slightly wrong reasons. In reality,
we may assume that students’ answers are only noisy signals of their underlying
knowledge states. To model the fact that we cannot know a student’s true cognitive
state, we would need to use a partially observable Markov decision process (POMDP)
(Sondik 1971). In a POMDP, the underlying state is inaccessible to the agent, but
there is some observation function (O) which maps states to probability distributions
of observations. In our example, the observation at each time step is whether the
student answers a question correctly or incorrectly, and the probability of answering
a question correctly or incorrectly depends on which state the student is in for the
current KC that is being taught. Again, we can assume there are two states for each
KC, but we will call the states the “learned” state and the “unlearned” state, as they
represent whether the student has learned the KC. If we ignore the reward function,
this POMDP is equivalent to the Bayesian knowledge tracing model (Corbett and
Anderson 1995), which has been used to implement cognitive mastery learning in
intelligent tutoring systems (Corbett 2000). Typically BKT is not considered in the
RL framework, because a reward function is not explicitly specified, although using
BKT for mastery learning does implicitly follow a reward function. One possible
reward function for cognitive mastery learning would be that each time our estimated
probability that the student has learned a particular KC exceeds 0.95, then we receive
a reward of one, and otherwise we receive a reward of zero. Such a model would then
keep giving items for a given KC, until we are 95% confident that the student has
learned that KC before moving on. Notice that the optimal policy under this reward

1Maximum likeilihood parameters are the parameters that maximize the likelihood of sampling the data
that was previously collected.
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function (i.e., cognitive mastery learning) can be very different from the optimal
policy under other reasonable reward functions (e.g., get a reward of one for each KC
that is actually in the learned state, which we cannot directly observe).

The parameters of a POMDP like the BKT model are slightly more difficult to
infer, because we do not actually know when students are in each state, unlike in the
MDP case. However, there are a number of algorithms that could be used to esti-
mate POMDP parameters including expectation maximization (Welch 2003), spectral
learning approaches (Hsu et al. 2012; Falakmasir et al. 2013), or simply performing
a brute-force grid search over the entire space of parameters (Baker et al. 2010).

We consider one final modification to the model above, namely that which was
used by Atkinson (1972b) for teaching German vocabulary words. Note that the BKT
model does not account for forgetting. Atkinson (1972b) proposed a POMDP with
three states for each word to be learned (or KC, in the general case): an unlearned
state, a temporarily learned state, and a permanently learned state. The model allows
for some probability of transitioning from either the unlearned or temporarily learned
states to the permanently learned state, but one can also transition from the temporar-
ily learned state back to the unlearned state (i.e., forgetting). Moreover, this model
assumes that a student will always answer an item correctly unless the student is in
the unlearned state, in which case the student will always answer items incorrectly.
The reward function in this case gives a reward of one for each word that is perma-
nently learned at the end (as measured via a delayed posttest, where it is assumed
that any temporarily learned word will be forgotten). The optimal policy in this case
can be difficult to compute because one needs to reason about words that are forgot-
ten over time. Therefore, Atkinson (1972b) used a myopic policy that chooses the
best next action as though only one more action will be taken. In this case, the best
action is to choose the word that has the highest probability of transitioning to the
permanently learned state.

Design Considerations in Reinforcement Learning

Before continuing, it is worthwhile to describe several different settings that are
considered in reinforcement learning, and the design considerations that researchers
need to make in considering how to apply RL. RL methods are often divided into
model-based and model-free approaches. Model-based RL methods learn the model
(transition function and reward function) first and then use MDP planning methods to
induce a policy. Model-free methods use data to learn a good policy directly without
learning a model first. Most of the studies we review in this paper have used model-
based RL. All of the examples described above are model-based—a model is fit to
data first and then a policy (either the optimal policy or a myopic policy) is derived
using MDP/POMDP planning.

There are two different ways in which RL can be used. In online RL, the policy
is learned and improved as the agent interacts with the environment. In offline RL,
a policy is learned on data collected in the past, and is then used in an actual envi-
ronment. For instance, in the examples we presented above, the models were fit to
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previously collected data in an offline fashion, which was then used to do model-
based RL. While online RL can lead to more quickly and efficiently identifying a
good policy, it can be more difficult to use in practice as one must determine and fix
the algorithms used before collecting any data.

In online RL, the agent must decide whether to use the current best policy in order
to accrue a high reward or to make decisions which it is uncertain about with the
hopes of finding a better policy in the future. This is know as the exploration vs.
exploitation trade-off. Exploration refers to trying new actions to gather data from
less known areas of the state and action space, while exploitation refers to using
the best policy the agent has identified so far. This trade-off is rarely tackled in the
studies we consider below that have applied RL to instructional sequencing, with a
few exceptions (Lindsey et al. 2013; Clement et al. 2015; Segal et al. 2018).

As discussed in our examples, since the cognitive state of a student usually cannot
be observed, it is common to use a partially observable Markov decision process
rather than a (fully observable) MDP. Planning, let alone reinforcement learning, in
POMDPs is, in general, intractable, which is why researchers often use approximate
methods for planning, such as myopic planning. However, some models of learning
(such as the BKT model discussed above) are very restricted POMDPs, making it
possible to find an optimal policy.

In model-based RL, our model is generally incorrect, not only because there is not
enough data to fit the parameters correctly, but also because the form of the model
could be incorrect. As we will see, researchers have proposed various models for stu-
dent learning, which make rather different assumptions. When the assumptions of
the model are not met, we could learn a policy that is not as good as it seems. To
mitigate this issue, researchers have considered various methods of off-policy policy
evaluation, or evaluating a policy offline using data from one or more other policies.
Off-policy policy evaluation is important in the context of instructional sequencing,
because it would be useful to know how much an instructional policy will help stu-
dents before testing it on actual students. Ultimately, a policy must be tested on actual
students in order to know how well it will do, but blindly testing policies in the real
world could be costly and potentially a waste of student time.

From the intelligent tutoring systems literature, we can distinguish between two
broad forms of instructional sequencing in terms of the granularity of the instruc-
tional activities: task-loop (or outer loop) adaptivity and step-loop (or inner loop)
adaptivity (Vanlehn 2006; VanLehn 2016; Aleven et al. 2016a). In task-loop adap-
tivity, the RL agent must select distinct tasks or instructional activities. In step-loop
adaptivity, the RL agent must choose the exact nature of each step (e.g., how much
instructional scaffolding to provide) for a fixed instructional task. For example, an
RL agent operating in the step loop might have to decide for all the steps in a prob-
lem whether to show the student the solution to the next step or whether to ask the
student to solve the next step (Chi et al. 2009). Almost all of the papers we include
in this review operate in the task loop. While step-loop adaptivity is a major area of
research in adaptive instruction in general (Aleven et al. 2016a), relatively little work
has been pursued in this area using RL-based approaches.
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A Historical Perspective

The use of reinforcement learning (broadly conceived) for instructional sequencing
dates back to the 1960s. We believe at least four factors led to interest in automated
instructional sequencing during the 60s and 70s. First, teaching machines (mechan-
ical devices that deliver step-by-step instruction via exercises with feedback) were
gaining a lot of interest in the late 50s and 60s, and researchers were interested in
implementing adaptive instruction in teaching machines (Lumsdaine 1959). Second,
with the development of computers, the field of computer-assisted instruction (CAI)
was forming and there was interest in developing computerized teaching machines
(Liu 1960). Third, pioneering work on mathematical optimization and dynamic pro-
gramming (Bellman 1957; Howard 1960a), particularly the development of Markov
decision processes, provided a mathematical literature for studying the optimiza-
tion of instructional sequencing. Finally, the field of mathematical psychology was
beginning to formulate mathematical models of learning (Atkinson and Calfee 1963).

As mentioned earlier, Ronald Howard, one of the pioneers of Markov decision pro-
cesses, was interested in using decision processes to personalize instruction (Howard
1960b). In 1962, Howard’s PhD student, Richard Smallwood, wrote his dissertation,
A Decision Structure for Teaching Machines (Smallwood 1962), which presented
what is to our knowledge the first time an RL-induced instructional policy was
tested on actual students. Even though the field of reinforcement learning had not
yet developed, Smallwood was particularly interested in what we now call online
reinforcement learning, where the system could improve over time as it interacts
with more students. In fact, he provided preliminary evidence in his dissertation that
the policy developed for his computerized teaching machine did in fact change with
the accumulation of more data. Smallwood’s PhD student Edward Sondik’s disser-
tation, The Optimal Control of Partially Observable Markov Decision Processes,
was seemingly the first text that formally studied planning in partially observable
Markov decision processes (POMDPs). Sondik wrote in his dissertation, “The results
obtained by Smallwood [on the special case of determining optimum teaching strate-
gies] prompted this research into the general problem” (Sondik 1971). Thus, the
analysis of POMDPs, an important area of research in optimal control, artificial intel-
ligence, and reinforcement learning, was prompted by its application to instructional
sequencing.

Around the same time, a group of mathematical psychologists at Stanford, includ-
ing Richard Atkinson and Patrick Suppes, were developing models of learning from
a psychological perspective and were interested in optimizing instruction according
to these models, using the tools of dynamic programming developed by Howard and
his colleagues. Atkinson and his students tested several instructional policies that
optimized various models of learning (Dear et al. 1967; Laubsch 1969; Atkinson and
Lorton 1969; Atkinson 1972b; Chiang 1974).

Curiously, there is almost no work on deriving optimal policies from the mid-70s
to the early 2000s. While we cannot definitively say why, there seem to be a number
of contributing factors. Researchers from the mathematical optimization community
(including Howard and his students) stopped working on this problem after a few

International Journal of Artificial Intelligence in Education (2019) 29:568–620 575



years and continued to work in their home disciplines. On the other hand, Atkin-
son’s career in psychology research ended in 1975 when he left for the National
Science Foundation (Atkinson 2014), and presumably the field of mathematical
psychology lost interest in optimizing instructional policies over time. Research in
automated instructional sequencing re-emerged at the turn of the twenty-first cen-
tury for seemingly three reasons that completely parallel the trends that existed in the
60s. First, there was growing interest in intelligent tutoring systems, a natural testbed
for adaptive instructional policies, paralleling the interest in teaching machines and
computer-assisted instruction in the 60s. Second, the field of reinforcement learning
formally formed in the late 1980s and early 1990s (Sutton and Barto 1998), com-
bining machine learning with the tools of Markov decision processes and dynamic
programming built in the 60s. Finally, the field of Artificial Intelligence in Education
(AIED) and, later, educational data mining (EDM) were interested in developing sta-
tistical models of learning, paralleling mathematical psychologists’ interest in models
of learning several decades earlier.

Even though there has been no void of research on instructional sequencing since
the early 2000s, there seems to be a third wave of research appearing in this area
in recent years. This is due to certain shifting trends in the research landscape that
might be attracting a new set of researchers to the problem of data-driven instruc-
tional sequencing. First, there is a new “automated” medium of instruction, like the
teaching machines, CAI, and ITSs of previous decades: MOOCs and other large-
scale online education providers.2 And with MOOCs comes the promise of big data.
Second, the field of deep reinforcement learning has formed, leading to significantly
more interest in the promise of reinforcement learning as a field. Indeed, there were
around 35% more papers and books mentioning reinforcement learning in 2017 than
in 2016 (as per the number of Google Scholar search hits). While initial advances
in deep reinforcement learning have been focused largely on playing games such as
Atari (Mnih et al. 2015) and Go (Silver at el. 2016, 2017), we have recently seen
researchers applying deep reinforcement learning to the problem of instructional
sequencing (Piech et al. 2015; Chaplot et al. 2016; Reddy et al. 2017; Wang et al.
2017a; Upadhyay et al. 2018; Shen et al. 2018a). Finally, in tandem with the use
of deep reinforcement learning, there is also a growing movement within the AIED
and EDM communities to use deep machine learning models to model human learn-
ing (Piech et al. 2015; Chaplot et al. 2016); this is a significantly different approach
from the previous trends to use models that were more interpretable in the 1990s and
models that were more driven by psychological principles in the 1960s.

Table 1 summarizes the trends that we believe have been responsible for the
“three waves” of interest in applying reinforcement learning and decision processes
to instructional sequencing. We find that there is a general trend that the meth-
ods of instructional sequencing have become more data-driven over time and the

2Although many researchers are still testing RL-induced policies in ITSs and other platforms, there is rea-
son to believe that MOOCs and other online instructional platforms such as Khan Academy and Duolingo
have attracted many new researchers to this area. This can be witnessed by the emergence of Learn-
ing@Scale as a new conference that emerged as a result of MOOCs. Indeed, one of us (Doroudi) was
drawn to AIED as a result of the development of MOOCs.
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Table 1 Trends in the three waves of interest in applying reinforcement learning to instructional
sequencing

First wave Second wave Third wave

(1960s–1970s) (1990s–2010s) (2010s–)

Instructional technology Teaching machines/CAI ITSs MOOCs

Optimization methods MDP planning RL Deep RL

Models of learning Mathematical psychology EDM/AIED Deep learning

The “Instructional Tecnology” row shows technologies that were being developed or saw a lot of hype in
the associated time period, even though older technologies were still used during the later time periods.
The “Optimization Methods” row shows the form that RL research took in each time period; notice that
the field of “reinforcement learning” was formally introduced in the late 1980s, but earlier work in MDP
planning used with data-driven models in the 60s would still be considered RL. The “Models of Learning”
row shows the research communities where new types of models of learning were emerging from during
each time period

media for delivering instruction have become generally more data-generating. Per-
haps researchers are inclined to believe that more computational power, more data,
and better reinforcement learning algorithms makes this a time where RL can have a
demonstrable impact on instruction. However, we do not think these factors are suffi-
cient for RL to leave its mark; we believe there are insights to gain about how RL can
be impactful from the literature, which is where we will look to next. Based on the
growth of interest in reinforcement learning in general and deep reinforcement learn-
ing in particular, we anticipate many more researchers will be interested in tackling
instructional sequencing in the coming years. We hope this history and the review of
empirical literature that follows will be informative to these researchers.

Review of Empirical Studies

To understand how successful RL has been in impacting instructional sequencing,
we conduct a broad review of the empirical literature in this area. In particular we
are interested in any studies that run a controlled experiment comparing one or more
instructional policies, at least one of which is induced by an RL-based approach. We
are interested in seeing how often studies find a significant difference between RL-
induced policies and baseline policies, and what factors might affect whether or not
an RL-induced policy is successful in helping students learn beyond a baseline policy.
This review of the empirical literature was prompted by two experiments on RL-
induced instructional sequencing that we ran in a fractions intelligent tutoring system.
Both experiments resulted in no significant differences among the policies we tested.
We were interested in identifying reasons why our experiments led to null results,
and how our findings compared to other studies that tested RL-induced policies. Our
own experiments have also given us insights into the challenges of applying RL to
instructional sequencing, which have informed the discussion following the literature
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review below; details from one of our experiments along with some of the insights it
provided are given in Appendix B.

Inclusion Criteria: Scope of the Review

One challenge of conducting this systematic review is determining what counts as an
“RL-induced policy.” First of all, not all studies (especially ones from the 60s and
70s) use the term reinforcement learning, but they are clearly doing some form of RL
or at least applying Markov decision processes to the task of instructional sequenc-
ing. Second, some studies are not clearly conducting some form of RL, but still have
the “flavor” of using RL in that they find instructional policies in a data-driven way
or they use related techniques such as multi-armed bandits (Gittins 1979; Auer et al.
2002) or Bayesian optimization (Mockus 1994; Brochu et al. 2010). On the other
hand, some studies that do use the language of RL rely on heuristics or approxima-
tions in trying to find an instructional policy (such as myopic planning). We included
all studies that had the “flavor” of using RL-induced instructional policies, even when
the language of RL or related optimization techniques were not used.

There are two components to reinforcement learning: (1) optimization (e.g., MDP
planning in the model-based setting) and (2) learning from data (e.g., learning the
MDP in the model-based setting). For a study to be considered as using RL for
instructional sequencing, it should use some form of optimization and data to find
instructional policies. More formally, we included any studies where:

• The study acknowledges (at least implicitly) that there is a model governing
student learning and giving different instructional actions to a student might
probabilistically change the state of a student according to the model.

• There is an instructional policy that maps past observations from a student (e.g.,
responses to questions) to instructional actions.

• Data collected from students (e.g., correct or incorrect responses to previous
questions), either in the past (offline) or over the course of the study (online), are
used to learn either:

– a statistical model of student learning, and/or
– an instructional policy.

• If a statistical model of student learning is fit to data, the instructional policy
is designed to approximately optimize that model according to some reward
function, which may be implicitly specified.

Notice that this means we consider any studies that might learn a model from
prior data and then use a heuristic to find the instructional policy (such as myopic
planning rather than long-horizon planning). This also means we did not include any
studies that applied planning to a pre-specified MDP or POMDP (e.g., a BKT model
with hand-set parameters), since learning is a critical component of reinforcement
learning.

Searching for all papers that match our inclusion criteria is challenging as not
all papers use the same language to discuss data-driven instructional sequencing.
Therefore, to conduct our search, we began with an initial set of papers that we knew
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matched our inclusion criteria in addition to any papers that we became aware of
over time. We iteratively added more papers by performing one-step forward and
backward citation tracing on the growing pool of papers. That is, for every paper that
we included in our review, we looked through the papers that it cited as well all papers
that cited it—as identified by Google Scholar as of December 2018—to see if any of
those papers also matched our inclusion criteria. This means if we have missed any
relevant studies, they are disconnected (in terms of direct citations) from the studies
that we have identified. We found relevant papers coming from a diversity of different
research communities including mathematical psychology, cognitive science, optimal
control, AIED, educational data mining, machine learning, machine teaching, and
human-robot interaction.

Results

We found 34 papers containing 41 studies that matched our criteria, including a pre-
viously unpublished study that we ran on our fractions tutoring system, which is
described in Appendix B. Before discussing these studies in depth, we briefly men-
tion the kinds of papers that did not match our inclusion criteria, but are still related to
studying RL for instructional sequencing. Among these papers, we found 19 papers
that learned policies on offline data but did not evaluate the performance of these
policies on actual students.3 At least an additional 23 papers learned (and compared)
policies using only simulated data (i.e., no data from real learners were used).4 At
least eight papers simply proposed using RL for instructional sequencing or proposed
an algorithm for doing so in a particular setting without using simulated or real data.5

We also found at least fourteen papers that did study instructional policies with real
students, but did not match our inclusion criteria for various reasons, including not
being experimental, varying more than just the instructional policy across conditions,
or using hand-set model parameters.6 For example, Corbett and Anderson (1995)
compare using a model (BKT) to determine how many remediation exercises should

3These papers include: Chi et al. (2008), Theocharous et al. (2010), Mitchell et al. (2013a), Mitchell et al.
(2013b), Mota et al. (2015), Piech et al. (2015), Rollinson and Brunskill (2015), Lan and Baraniuk (2016),
Hoiles and Schaar (2016), Antonova et al. (2016), Käser et al. (2016), Chaplot et al. (2016), Lin and Chi
(2016), Shen and Chi (2016a), Wang et al. (2016), Wang et al. (2017a), Sawyer et al. (2017), and Tabibian
et al. (2017), and Fenza et al. (2017).
4These papers include: Chant and Atkinson (1973), Iglesias et al. (2003), Martin and Arroyo (2004),
Sarma and Ravindran (2007), Iglesias et al. (2009), Theocharous et al. (2009), Folsom-Kovarik et al.
(2010), Kujala et al. (2010), Champaign and Cohen (2010), Malpani et al. (2011), Pietquin et al. (2011),
Daubigney et al. (2013), Dorça et al. (2013), Schatten et al. (2014), Andersen et al. (2016), Clement et al.
(2016), Reddy et al. (2017), Goel et al. (2017), Wang et al. (2017b), and Zaidi et al. (2017), and Mu et al.
(2018), Upadhyay et al. (2018), and Lakhani (2018).
5These papers include: Beck (1997), Bennane et al. (2002), Legaspi and Sison (2002), Almond (2007),
Brunskill and Russell (2011), Ramachandran and Scassellati (2014), and Mejı́a-Lavalle et al. (2016), and
Spaulding and Breazeal (2017).
6These papers include: Smallwood (1962), Corbett and Anderson (1995), Joseph et al. (2004), Iglesias
et al. (2006), Pavlik et al. (2008), Van Rijn et al. (2009), Nijboer (2011), Folsom-Kovarik (2012), Lomas
et al. (2012), Wang (2014), Leyzberg et al. (2014), Settles and Meeder (2016), and Sense (2017), and
Hunziker et al. (2018).
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be given for each KC, but they compare this to providing no remediation, not another
way of sequencing remediation exercises. Finally, many papers have mathematically
studied deriving optimal instructional policies for various models of learning, espe-
cially during the first wave of optimizing instructional sequencing (e.g. Karush and
Dear, 1967; Smallwood, 1968, 1971). The sheer number of papers that study RL-
induced policies in one form or another shows that there is broad interest in applying
RL to instructional sequencing, especially as these papers come from a variety of
different research communities.

For the studies that met our inclusion criteria, the first row of Table 2 shows how
the studies are divided in terms of varying “levels of significance.” Twenty-one of
the 36 studies found that at least one RL-induced policy was statistically signifi-
cantly better than all baseline policies for some outcome variable, which is typically
performance on a posttest or time to mastery. Four studies found no significant
difference overall, but a significant aptitude-treatment interaction (ATI) favoring low-
performing students (i.e., finding that the RL-induced policy performed significantly
better than the baselines for lower performing students but no significant difference
was detected for high performing students). Four studies found mixed results, namely
that an RL-induced instructional policy outperformed at least one baseline policy but
not all the baselines. Ten studies found no significant difference between adaptive
policies and baseline policies. Only one study found a baseline policy outperformed
an RL-induced policy.7

Thus, over half of the studies found that adaptive policies outperform all baselines
that were tested. Moreover, the studies that found a significant difference, as well as
those that demonstrated an aptitude-treatment interaction, often found a Cohen’s d

effect size of at least 0.8, which is regarded as a large effect (Cohen 1988). While
this is a positive finding in favor of using RL-induced policies, it does not tell us
why some studies were successful in showing that RL-induced policies can help stu-
dents learn beyond a baseline policy, and why others were less successful. To do
so, we qualitatively cluster the studies into five different groups based on how they
have applied RL. The clusters generally vary in terms of the types of instructional
actions considered and how they relate to each other. In paired-associate learning
tasks, each action specifies the content presented to the student, but each piece of
content is assumed to be independent of the rest. In the concept learning tasks cluster,
actions are interrelated insofar as they give different bits of information about a par-
ticular concept. In the sequencing interdependent content cluster, the various pieces
of content are assumed to be interdependent, but not in the restricted form present in
concept learning tasks. In the sequencing activity types cluster, the order of content
is fixed, and each potential action specifies the type of instructional activity for the
fixed content. In all of these studies, the goal is to maximize how much students learn
or how quickly they learn a prespecified set of material. The final cluster contains
two studies that maximize objectives other than learning gains/speed.

7As we discuss later, the “baseline” in this case was actually an adaptive policy that the authors
developed—Adaptive Response-Time-based sequencing (ARTS) (Mettler et al. 2011). However, since the
ARTS model is not fit to data, it does not satisfy our criteria for an RL-induced adaptive policy, whereas
the policy they compared to was based on the model from Atkinson (1972b) and was fit to data.
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Table 2 Comparison of clusters of studies based on the “significance level” of the studies in each clus-
ter: Sig indicates that at least one RL-induced policy significantly outperformed all baseline policies, ATI
indicates an aptitude-treatment interaction, Mixed indicates the RL-induced policy significantly outper-
formed some but not all baselines, Not sig indicates that there were no significant differences between
policies, Sig worse indicates that the RL-induced policy was significantly worse than the baseline policy
(which for the only such case was an adaptive policy)

Sig ATI Mixed Not Sig Sig Worse

All Studies 21 4 4 11 1

Paired-associate learning tasks 11 0 0 2 1

Concept learning tasks 4 0 2 1 0

Sequencing interdependent content 0 0 2 6 0

Sequencing activity types 4 4 0 2 0

Maximizing other objectives 2 0 0 0 0

There are many other ways in which we could have chosen to cluster the studies,
including distinctions between the types of RL algorithms used (e.g., model-based
vs. model-free, online vs. offline, MDP vs. POMDP), the form of instructional media
that content was delivered in (e.g., CAI vs. ITSs vs. online platforms vs. educational
games), and the types of baseline policies used. We chose to cluster studies based
on the types of instructional actions, because we found the type of MDP or POMDP
that underlies each of these clusters differs drastically from one another. In paired-
associate learning tasks, the transition dynamics of the MDP can be factored into
separate dynamics for each piece of content, and the key consideration becomes how
people learn and forget individual pieces of content over time. If we assume con-
tent is interdependent, then the dynamics must capture the dependencies between the
pieces of content. If we are trying to sequence activity types, then the dynamics must
capture some relationship between activity types and what the student knows. More-
over, as we completed this literature review, it became clear that these differences
play a role in the difficulty of sequencing instruction—and relatedly, the empirical
success of applying RL to instructional sequencing. Table 2 shows for each clus-
ter, the number of studies in each “significance level” that we identified above (e.g.,
whether the study showed a significant effect in favor of RL-induced policies, an
aptitude-treatment interaction etc.). The table clearly shows that the different types
of studies had very varying levels of success. Therefore, a qualitative understanding
of each cluster will help us understand when and where RL can be most useful for
instructional sequencing.

In what follows we describe the five clusters in more depth. For each cluster, we
provide a table that gives a summary of all of the studies in that cluster and we
describe some of the key commonalities and differences among the studies. In doing
so, we will (a) demonstrate the variety of ways in which RL can be used to sequence
instructional activities, and (b) set the stage for obtaining a better understanding of
the conditions under which RL has been successful in sequencing instruction for
students, which we discuss in the next section. Appendix A—including Tables 8 and
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9—provides more technical details about the particulars of all the studies, including
the types of models and instructional policies used in these studies.

Paired-Associate Learning Tasks

The studies in this cluster are listed in Table 3. All of the studies that were run
in the first wave of instructional sequencing (1960s-70s) belong to this cluster. A
paired-associate learning task is one where the student must learn a set of pairs of
associations, such as learning a set of vocabulary words in a foreign language. In
such tasks, a stimulus (e.g., a foreign word) is presented to the student, and the stu-
dent must attempt to provide the translation of the word. The student will then see
the correct translation. Such tasks may also be referred to as flashcard learning tasks,
because the student is essentially reviewing a set of words or concepts using “flash-
cards.” A key assumption in any paired-associate learning task is that the stimuli are

Table 3 Summary of all empirical studies in the paired-associate learning tasks cluster

Paper(s) Domain Population Setting Baseline Num Effect

Policies of Subjects

Laubsch (1969) Swahili-English Uni Lab R 24 Sig

Atkinson and Lorton
(1969)

English Spelling Gr 4-6 Lab R/S 42 Sig

Atkinson (1972b) German-English Uni Lab R 30 Sig

Chiang (1974) Exp 1 Chinese-English Uni Lab R 12 Sig

Chiang (1974) Exp 2 Chinese-English Uni Lab RL+ 12 Sig

Katsikopoulos et al.
(2001) Exp 1

String-Num
Mapping

Adults Lab R 16 Sig

Pavlik and Anderson
(2008)

Japanese Words Adults Lab RL+/H 20 Sig

Lindsey et al. (2014) English-Spanish Gr 8 Class H 57 Sig

Lindsey (2014) English-Spanish Gr 8 Class R/H 56 Sig

Papoušek et al. (2016) Geography Online Online R ≈5000 Sig

Leyzberg et al. (2018) Spanish-English Gr 1 Lab R 9 Sig

Dear et al. (1967) Num-Num
Mapping

Uni Lab R 40 Not sig

Katsikopoulos et al.
(2001) Exp 2

String-Num
Mapping

Adults Lab R 12 Not sig

Mettler et al. (2011) African Countries Uni Class H 50 Sig worse

The baseline policies column denotes whether each baseline policy involves random sequencing (R),
a heuristic/expert-designed policy (H), student choice (S), an RL policy that was demonstrated to be
effective in another study (RL+), or an RL policy that was specificially designed to be ineffective by min-
imizing rewards (RL−). More details on the baseline policies used are provided in Tables 8 and 9 and
Appendix A.2.3. The number of subjects column reports the number of subjects in the condition with the
least subjects
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independent of one another. For example, if one learns how to say “chair” in Span-
ish, it is assumed that it does not help or hinder one’s ability to learn how to say
“table” in Spanish.8 Because of this assumption, we may also think of this cluster as
“sequencing independent content,” which clearly contrasts it with some of the later
clusters.

The key goal in sequencing instruction for paired-associate learning tasks is to
balance between (1) teaching stimuli that the student may have not learned yet, and
(2) reviewing stimuli that the student may have forgotten or be on the verge of forget-
ting. The psychology literature has shown that sequencing instruction in such tasks is
important due to the presence of the spacing effect (Ebbinghaus 1885), whereby rep-
etitions of an item or flashcard should be spaced apart in time. Thus, a key component
of many of the instructional policies developed for paired-associate learning tasks is
using a model of forgetting to predict the optimal amount of spacing for each item.
Early models used to sequence instruction such as the One-Element Model (OEM)
ignored forgetting and only sequenced items based on predictions of whether students
had learned the items or not (Bower 1961; Dear et al. 1967). Atkinson (1972b) later
developed the Markov model we described in Section “Examples of RL for Instruc-
tional Sequencing”, which accounted for forgetting, and he showed that it could be
used to successfully sequence words in a German to English word translation task.
More recently, researchers have developed more sophisticated psychological models
that account for forgetting such as the Adaptive Control of Thought—Rational (ACT-
R) model (Anderson 1993; Pavlik and Anderson 2008), the Adaptive Response Time
based Sequencing (ARTS) model (Mettler et al. 2011), and the DASH model (Lind-
sey et al. 2014). See Appendix A.1 for a brief description of these models. In some
of the studies, policies using these more sophisticated models were shown to outper-
form RL-induced policies that used Atkinson’s original memory model (Pavlik and
Anderson 2008; Mettler et al. 2011).

Thus, aside from the type of task itself, a key feature of the studies in this cluster is
their use of statistical psychological models of human learning. As shown, in Table 2,
in 11 out of 14 studies, RL-induced policies outperformed baseline policies. In the
two studies where there were no significant differences between policies (Dear et al.
1967; Katsikopoulos et al. 2001), the model that was used was the OEM model—a
simple model that does not account for forgetting and hence cannot space instruction
of paired-associates over time. Similarly, Laubsch (1969) compared two RL-induced
policies to a random baseline policy, and found that the policy using the OEM model
did not do significantly better than the baseline while the policy based on the more
sophisticated Random-Trial Increment (RTI) model did better. Finally, the only study
that showed a baseline policy significantly outperformed an RL-induced policy, was
the comparison of a policy based on the ARTS model with a policy based on the
model used by Atkinson (1972b). The ARTS model was actually a more sophisti-
cated psychological model than Atkinson’s, but the parameters of the model were

8Of course, this assumption will almost certainly not hold when learning words that might share the same
root, but may still be a reasonable approximation in some cases.
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not learned from data, and therefore, we considered the policy based on ARTS to
technically be a non-RL-induced “baseline” policy.

Concept Learning Tasks

Concept learning is another type of task where several researchers have applied RL-
based instructional sequencing. The studies in this cluster are shown in Table 4.
Concept learning tasks are typically artificially-designed tasks that can be used to
study various aspects of human cognition, and as such are commonly studied in the
cognitive science literature. In a concept learning task, a student is presented with
examples that either belong or do not belong to an initially unknown concept, and the
goal is to learn what constitutes that concept (i.e., how to distinguish between positive
examples that fit the concept and negative examples that do not). For example, (Raf-
ferty et al. 2016a) used a POMDP to sequence instructional activities for two types
of concept tasks, one of which is called the Number Game (Tenenbaum 2000), where
students see numbers that either belong or do not belong to some category of numbers
such as multiples of seven or numbers between 64 and 83. While such tasks are of
little direct educational value, the authors’ goal was to show that models of memory
and concept learning from cognitive psychology could be combined with a POMDP
framework to teach people concepts quickly, which they succeeded in doing. White-
hill and Movellan (2017) extended this idea to teaching a concept learning task that
is more authentic: learning foreign language vocabulary words via images. White-
hill and Movellan (2017) call this a “Rosetta Stone” language learning task, as it was
inspired by the way the popular language learning software, Rosetta Stone, teaches
foreign language words via images. Notice that this task differs from teaching vocab-
ulary as a paired-associate learning task, because there are multiple images that might
convey the meaning of a foreign word (i.e., the concept), and the the goal is to find
a policy that can determine at any given time both what foreign vocabulary word
to teach and what image to present to convey the meaning of that word. Sen et al.
(2018) also used instructional policies in an educationally-relevant concept learning
task, namely perceptual fluency in identifying if two chemical molecules shown in
different representations are the same. In this task, the student must learn features of
the representations that help identify which chemical molecule is being shown.

Unlike paired-associate learning tasks, the various pieces of content that can be
presented in a concept learning task are mutually interdependent, but in a very partic-
ular way. That is, seeing different (positive or negative) examples for a concept help
refine one’s idea of a concept over time.9 For example, in the Number Game, know-
ing that 3, 7, and 11 are in a concept might lead one to think the concept is likely
odd numbers, while also knowing that 9 is not a member of the concept might lead

9Despite this difference between concept learning tasks and paired-associate learning tasks, one of the
concept learning tasks used by Rafferty et al. (2011, 2016a), Alphabet Arithmetic, is actually quite similar
to paired-associate learning tasks, in that the goal is for students to learn a mapping of letters (A-F) to
numbers (1-6), which is the concept to be learned. What distinguishes the task from paired-associate
learning tasks is that the examples shown to the learner aren’t mappings but rather arithmetic equations
(e.g., A + B = 5). Therefore, each example gives some information about two letter-number mappings.
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Table 4 Summary of all empirical studies in the concept learning tasks cluster. Details are as described in
the caption of Table 3

Paper(s) Domain Population Setting Baseline Num Effect

Policies of Subjects

(Rafferty et al. 2011) Alphabet Arithmetic Online Online R 20 Sig

(Rafferty et al. 2016a) Exp 1 Alphabet Arithmetic Uni Lab R 20 Sig

(Rafferty et al. 2016a) Exp 2 Number Game Uni Lab R 20 Sig

(Sen et al. 2018) Chemical Molecules AMT Online H/R 100 Sig

(Lindsey et al. 2013) Concept Learning AMT Online H 50 Mixed

(Whitehill and Movellan 2017)a Picture-Word Mapping AMT Online R/H 26 Mixed

(Geana 2015) Concept Learning Uni Lab RL− 25 Not sig

a This experiment was reported earlier in a dissertation (Whitehill 2012)

one to believing the concept is likely prime numbers. The exact sequence of exam-
ples presented can have a large influence on a student’s guess as to what the correct
concept might be. Therefore, determining the exact sequence of examples to present
is critical for how to most quickly teach a given concept. Moreover, in these tasks, it
is often beneficial to use information-gathering activities (e.g., giving a quiz to test
what concept the student finds most likely), to determine what examples the student
needs to refine their understanding.

As with the paired-associate learning task studies, one common feature among the
studies in this cluster is that they have typically used psychologically inspired models
of learning coming from the concept learning literature and computational cogni-
tive science literature. For example, Rafferty et al. (2016a) considered three different
psychological models of human learning of varying degrees of complexity. The sim-
plest of these models—based on a model from the concept learning literature (Restle
1962)—assumes that students have a (known) prior distribution over concepts and at
any given time they posit a concept as the correct one. When presented with an exam-
ple, they change their concept to be consistent with the example presented, picking a
random concept with probability proportional to their prior. In more complex models,
students might have some memory of previous examples shown or might maintain a
distribution over concepts at any given time. While the dynamics of such models are
mostly prespecified by the structure of the model, there are certain model parameters
(e.g., the probability of answering a question accurately according to one’s concept)
that could be fit to data, as done by Rafferty et al. (2016a).

As seen in Table 4, the majority of studies in this cluster have been successful
in showing that RL-induced policies outperformed some baselines. The studies in
this cluster often had several baseline policies, including decent heuristic policies,
so they set a higher bar for RL-induced policies. This could explain why two stud-
ies found mixed results where RL-induced policies outperformed some but not all
baselines. Moreover, Rafferty et al. (2016a) compared the same policies on multiple
concept learning tasks, and while their POMDP policies were generally better than
the random baseline policies, there was no one POMDP policy that outperformed
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baseline policies for all concept learning tasks. This study indicates that even though
RL-induced policies may be effective, the same model may not be optimal for all
tasks.

Sequencing Interdependent Content

This cluster focuses on sequencing content, under the assumption that different areas
of content are interdependent. The studies in this cluster are shown in Table 5. The
sequencing task here is closest to traditional “curriculum sequencing,” or order-
ing various content areas for a given topic. However, unlike traditional curriculum
sequencing, the ordering of content can be personalized and adaptive, for example
based on how well students have mastered various pieces of content. While concept
learning tasks also have interdependent content, the goal in concept learning tasks
is to teach a single underlying concept. In this cluster, the goal is to teach a broader
scope of content under the assumption that how the content is sequenced affects
students ability to learn future content. An instructional policy in this context must
implicitly answer questions like the following: When teaching students how to make
a fraction from the number line, when should we move on to the next topic and what
should that topic be? Should the next topic depend on how well the student answered
questions about the number line? If the student is struggling with the next topic,
should we go back and teach some prerequisites that the student might have missed?
When should we review a content area that we have given the student previously?

For these studies, typically a network specifying the relationship between different
content areas or KCs (such as a prerequisite graph) must either be prespecified or
automatically inferred from data. Appendix B describes one of our studies performed
in a fractions tutoring system where the relationships between different KCs were
automatically inferred from data. As we see from Table 2, the studies in this cluster
have been the least successful, with all of them resulting in either a mixed result or

Table 5 Summary of all empirical studies in the sequencing interdependent content cluster. Details are as
described in the caption of Table 3

Paper(s) Domain Population Setting Baseline Num Effect

Policies of Subjects

Green et al. (2011) Exp 1 Finite Field
Arithmetic

Uni Lab R/H 26 Mixed

Green et al. (2011) Exp 2 Artificial
Language

Uni Lab R/H 5 Mixed

Clement et al. (2015) Arithmetic
(with Coins)

7-8yo Class H 133 Not sig

David et al. (2016) Basic Math K-12 Class H 35 Not sig

Schatten (2017) Basic Math K-12 Class H 49 Not sig

Doroudi et al. (2017a) Fractions Gr 4-5 Class H 69 Not sig

Appendix B Fractions Gr 4-5 Class H 100 Not sig

Segal et al. (2018) Math Gr 7 Class H 9 Not sig
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no significant difference between policies. We analyze why this might be in the next
section.

Sequencing Activity Types

While the previous three clusters of studies were based on the way various pieces of
content did or did not depend on each other—this cluster is about how to sequence
the types of activities students engage with rather than the content itself. The studies
in the sequencing activity types cluster are shown in Table 6. These studies used
RL to determine what activity type to give at any given time for a fixed piece of
content, based on the content being taught and the work that the student has done so
far. For example, Shen and Chi (2016b), Zhou et al. (2017), and Shen et al. (2018a),
and Shen et al. (2018b) all consider how to sequence worked examples and problem
solving tasks. Similarly, Chi et al. (2009, 2010a) consider, for each step, whether
the student should be told the solution or whether the student should be asked to
provide the solution, and, in either case, whether the student should be asked to justify
the solution. Notice that Chi et al. (2009, 2010a) consider using RL for step-loop
adaptivity as opposed to task-loop adaptivity, which all of the other studies reported
in this review consider.

Table 6 Summary of all empirical studies in the sequencing activity types cluster. Details are as described
in the caption of Table 3

Paper(s) Domain Population Setting Baseline
Policies

Num of
Subjects

Effect

Chi et al. (2010a) Physics Uni Lab RL− 29 Sig

Lin et al. (2015)
Exp 1

Linear
Algebra

Uni Lab RL− 13 Sig

Lin et al. (2015)
Exp 2a

Linear
Algebra

Uni Lab RL− 12 Sig

Zhou et al. (2017) Probability Uni Class R 77 Sig

Shen and Chi (2016b) Logic Uni Class R 33 ATI

Shen et al. (2018a)
Exp 1

Logic Uni Class R 37 ATI

Shen et al. (2018a)
Exp 2

Logic Uni Class R 34 ATI

Shen et al. (2018b) Logic Uni Class R 39 ATI

Chi et al. (2009) Physics Uni Lab R 37 Not sig

Rowe and Lester
(2015)b

Microbiology Gr 8 Class R 28 Not sig

a The distinguishing factor between Exp 2 and Exp 1 by Lin et al. (2015), is that in Exp 2, the subjects did
not have prior knowledge in the domain while in Exp 1, they did have prior knowledge
b This experiment was reported earlier in a dissertation (Rowe 2013)
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Table 7 Summary of all empirical studies in the maximizing other objectives cluster. Details are as
described in the caption of Table 3

Paper(s) Domain Population Setting Baseline Policies Num of Subjects Effect

Beck et al. (2000) Arithmetic Gr 6 Class H 39 Sig

Mandel et al. (2014) Fractions Kids Game H/R 500 Sig

For the studies that use RL to sequence worked examples and problem solving
tasks, we note the existence of an expertise-reversal effect (Kalyuga et al. 2003),
where novices benefit more from reviewing worked examples while experts benefit
more from problem solving tasks. This suggests an ordering where worked exam-
ples are given prior to problem solving tasks (for learners who are initially novice).
Renkl et al. (2000) have further shown that fading steps of worked examples over
time, such that students have to fill-in incomplete steps of worked examples until they
solve problems on their own, is more beneficial than simply pairing worked exam-
ples with problem solving tasks. Thus, in this setting, we know that the sequence of
instructional activities can make a difference, which could help explain the relative
empirical success of studies in this cluster.

In general, most of the studies in this cluster found either that RL-induced poli-
cies significantly outperformed baseline policies (four out of ten) or that there was an
aptitude-treatment interaction favoring the RL-induced policy (four out of ten). How-
ever, the studies in this cluster often compared to a policy that randomly sequenced
tasks. Thus, it is not known if the RL-induced adaptive policies explored in this
cluster would do better than a more reasonable heuristic (e.g., as suggested by the
expertise-reversal effect). Future work in this area is needed to determine whether RL
is useful in inducing adaptive policies for sequencing activity types beyond heuris-
tic techniques, or if RL can simply help find one of many decent policies that can
outperform randomly sequencing activity types.

Maximizing Other Objectives

There are two studies that do not fit into any of the previous four clusters, because
they do not optimize for how much or how fast students learn (see Table 7). Beck
et al. (2000) sequence instructional activities in an intelligent tutoring system with the
goal of minimizing the time spent per problem, which their resulting policy achieved.
While minimizing the time per problem could result in teaching students faster, it
could also lead to the policy choosing instructional activities that are less time con-
suming (but not necessarily beneficial for student learning). Mandel et al. (2014) try
to maximize the number of levels completed in an educational game, and their RL
policy does significantly increase the number of levels completed over both a random
policy and an expert-designed baseline policy. While interesting, these two papers do
not shed light on whether RL can be used to significantly improve student learning
over strong baseline policies.
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Discussion: Where’s the Reward?

We now turn to analyzing what the results of this review tell us about how impactful
RL has been in the domain of instructional sequencing, and when and where it might
be most impactful. We discuss a few factors which we believe have played a role in
determining the success of RL-based approaches.

Leveraging Psychological Learning Theory

Our results suggest that RL has seemingly been more successful in more constrained
and limited settings. For example, the cluster where RL has been most successful
is paired-associate learning tasks, which treats pieces of content as independent of
one another. RL has also been relatively successful in sequencing for concept learn-
ing tasks, typically constrained tasks designed for understanding aspects of cognition
in lab studies rather than authentic tasks in traditional classroom settings. More-
over, RL has been relatively successful in sequencing activity types, where the agent
must typically only choose between one of two or three actions. However, when it
comes to sequencing interdependent content, there is not yet evidence that RL can
induce instructional policies that are significantly better than reasonable baselines.
This could be in part due to the fact that under the assumption that content is inter-
related, the student’s state may be a complicated function of the history of activities
done so far and estimating the parameters of such a model may require an inordinate
amount of data.

We believe the relative success of RL in some of these clusters over others could,
at least in part, be explained by the ability to draw on psychological learning the-
ory. As mentioned earlier, for both paired-associate learning and concept learning
tasks, the models that were used were informed by the psychology literature. On
the other hand, for sequencing activity types and interdependent content, the mod-
els used were solely data-driven. Moreover, in the case of paired-associate learning
tasks, we noted that as psychological models got more sophisticated over time, the
result of using them to induce instructional policies also got more successful, to the
point that policies from more sophisticated psychological models sometimes outper-
formed policies from simpler models (see Section “Paired-Associate Learning Tasks”
for more details). We also noted that an instructional policy derived from the ARTS
model (a psychological model that was not fit to data) outperformed an instructional
policy derived from the data-driven model developed by Atkinson (1972b). Thus,
in some cases, a good psychological theory might be more useful for finding good
instructional policies than a data-driven model that is less psychologically plausible.

In addition, for paired-associate learning tasks and sequencing activity types,
there are well-known results from psychology and the learning sciences that shows
sequencing matters: the spacing effect (Ebbinghaus 1885) and the expertise-reversal
effect (Kalyuga et al. 2003) respectively. On the other hand, for sequencing inter-
dependent content, we do not yet have domain-general principles from the learning
sciences that tell us whether and how sequencing matters.
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Thus, psychology and the learning sciences can give us insights for both how to
make RL more likely to succeed in finding good instructional policies as well as when
to hypothesize the precise sequencing of instructional activities might matter. Settings
which have been more extensively studied by psychologists—and hence where we
have better theories and principles to rely upon—are often more constrained, because
such settings are easier for psychologists to tackle. But this does not mean RL should
only be used in simple, unrealistic settings. Rather, it suggests that we should leverage
existing theories and principles when using RL, rather than simply taking a data-
driven approach. We explore this idea further in Section “Planning for the Future”.

Prior Knowledge

RL may have more room for impact in instructional settings where students are learn-
ing material for the first time, because students have more room to learn and because
there is less variance in students’ experiences. Almost all of the paired-associate
learning tasks are in domains where students have never learned the material before,
such as foreign language learning. In many of these studies, researchers specifically
recruited students who did not have expertise in the foreign language. The same
holds for concept learning tasks, where students are learning a concept that is artifi-
cally devised, and as such, new to the student. Moreover, many of the studies in the
sequencing activity types cluster were also teaching content to students for the first
time. For example, Chi et al. (2009, 2010a) explicitly recruited students that had taken
high school algebra but not college physics (which is what their dialogue-based ITS
covered). Zhou et al. (2017) and Shen and Chi (2016b), and Shen et al. (2018a, b)
all ran experiments in a university course on discrete mathematics, where the ITS
was actually used to teach course content to the students. This could also possibly
explain why many of these studies found an aptitude-treatment interaction in favor of
low-performing students: students who have more room to improve can benefit more
from a better instructional policy than students who have more prior knowledge. On
the other hand, almost all of the studies in the sequencing interdependent content
cluster were on basic K-12 math skills, where the student was also presumably learn-
ing the content outside of using the systems in the studies. The only exceptions to this
were the lab studies run by Green et al. (2011) with university students, which actu-
ally showed that RL-induced policies did outperform random policies but not expert
hand-crafted or heuristic baselines.

When students are learning material for the first time, there is also less variance in
terms of students’ intial starting state, which makes RL-based approaches more likely
to find policies that work for many students from prior data. Furthermore, in many of
these cases, students are only being exposed to the content via the RL policy, often in
a single lab session, rather than learning content through other materials. This again
reduces the variance in the effect of an RL policy and makes it easier to estimate a
student’s state. Indeed, only three out of 15 studies that were run in classroom settings
found an RL-induced policy was significantly better than baselines and four found
aptitude-treatment interactions.
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Baselines

Another factor that might affect why some studies were more likely to obtain signifi-
cant results could be the choice of baseline policies. Among the 24 studies that found
a significant effect or aptitude-treatment interaction, 17 of them (71%) compared
adaptive RL-induced policies to a random baseline policy and/or other RL-induced
policies that have not been shown to perform well, rather than comparing to state-of-
the-art baselines. On the other hand, among the studies that did not find a significant
effect, only 6 of them (35%) only compared to random or RL-induced baseline poli-
cies. This suggests that while the ordering of instructional activities matters, it does
not give us insight into whether RL-based policies lead to substantially better instruc-
tional sequences than relying on learning theories and experts for sequencing. Indeed,
in some studies, researchers intentionally compared to baseline policies designed to
perform poorly (e.g., by minimizing rewards according to a MDP), in order to deter-
mine if instructional sequencing has any effect on student learning whatsoever (Chi
et al. 2010a; Lin et al. 2015; Geana 2015).

Of course, it is important to note that random sequencing is not always unreason-
able. In some cases, a random baseline may actually be a fairly decent policy. For
instance, when the policy must decide whether to assign worked examples or problem
solving tasks, both actions have been shown to be beneficial in general, and hence a
policy that sequences them randomly is thought to be reasonable (Zhou et al. 2017;
Shen et al. 2018a). Moreover, in paired-associate learning tasks, random policies may
be reasonable because they happen to space problems fairly evenly. However, given
that we now have better heuristics for potentially sequencing worked-examples and
problem solving tasks (Kalyuga et al. 2003; Kalyuga and Sweller 2005) as well as
paired-associate learning tasks (Pavlik and Anderson 2008; Lindsey et al. 2014), it
would be useful to compare RL-induced policies to these more advanced baselines.

The most successful cases of demonstrating that RL-induced policies can out-
perform reasonable baselines are in the context of paired-associate learning tasks.
Lindsey et al. (2014) compared their policy against both a policy that spaces units
of vocabulary words over time and a policy that blocked units of vocabulary words.
Pavlik and Anderson (2008) compared their policy against a heuristic that learners
might naturally use when learning with flashcards. However, even in this context,
there are more sophisticated (but not data-driven) algorithms that are commonly used
in flashcard software such as Leitner system (Leitner 1972) and SuperMemo (Woz-
niak 1990). Future work should consider comparing to some of these state-of-the-art
baseline to determine if RL-induced policies can improve upon current educational
practice.

Robust Evaluations

Several of the studies that have been successful in using RL performed some kind of
robust evaluation to try to evaluate in advance of the study if the proposed policy was
likely to yield benefits, given some uncertainty over how students learn. Lindsey et al.
(2014) justified their use of a greedy heuristic policy by some simulations they ran in
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prior work (Khajah et al. 2014) that showed the heuristic policy can be approximately
as good as the optimal policy according to two different cognitive models (ACT-R
and MCM). Rafferty et al. (2016a) also ran simulations to evaluate how well various
policies would be under three different models of concept learning. Although they
actually tested all policies that they ran in their simulations on actual students (for
a better understanding of how effective various models and policies are), the kind
of robust evaluation they did could have informed which policy to use if they did
not want to test all policies. These techniques are specific instances of a method we
proposed in prior work called the robust evaluation matrix (REM), which involves
simulating each instructional policy of interest using multiple plausible models of
student learning that were fit to previously collected data (Doroudi et al. 2017a).
Mandel et al. (2014) used importance sampling, a technique that can give an unbiased
estimate of the value of a policy without assuming any particular model is true, to
choose a policy to run in their experiment. On the other hand, several of the studies
that did not show a significant difference between adaptive policies and baseline
policies, including one of our own, only used a single model to simulate how well
the policies would do, and that model overestimated the performance of the adaptive
policy (Chi et al. 2010a; Rowe et al. 2014; Doroudi et al. 2017a).

Of course, even robust evaluations are limited by the models considered when
doing the evaluation. For example, in our second experiment reported in Appendix B,
we used REM to identify a simple instructional policy that was expected to out-
perform a baseline according to several different models. However, our experiment
showed no significant difference between the adaptive policy and the baseline. Post-
hoc analyses helped us identify two factors that we had not adequately accounted for
in our robust evaluations: (1) the student population in this experiment was quite dif-
ferent from the population in our past data that we used to fit the models, and (2) the
order in which problems were presented was quite different than the order in our prior
experiments. Despite the null experimental result, these evaluations led to insights
about what aspects our models were not adequately considering, which could inform
future studies and the development of better models of student learning.

Summary

In short, it appears that reinforcement learning has yielded more benefits to students
when one or more of the following things held:

– the sequencing problem was constrained in one or more ways (e.g., simple
learning task with restricted state space or restricted set of actions),

– statistical models of student learning were inspired by psychological theory,
– principles from psychology or the learning sciences suggested the importance of

sequencing in that setting,
– students had fairly little prior knowledge coming in (but enough prior knowledge

such that they could learn from the software they were interacting with),
– RL-induced policies were compared to relatively weak baselines (such as ran-

domly presenting actions or policies that were not expected to perform well),
and
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– policies were tested in more robust and principled ways before being deployed
on students.

This gives us a sense of the various factors that may influence the success of RL
in instructional sequencing. Some of these factors suggest best practices which we
believe might lead to more successfully using RL in future work. Others suggest
practices that are actually best to avoid—such as using weak baseline policies when
stronger baselines are available—in order to truly determine if RL-induced policies
are beneficial for students. We now turn to how we can leverage some of these best
practices in future work.

Planning for the Future

Our review of the empirical literature suggests that one exciting potential direction is
to further combine data-driven approaches with psychological theories and principles
from the learning sciences. Theories and principles can help guide (1) our choice of
models, (2) the action space under consideration, and (3) our choice of policies. We
briefly discuss the prospects of each of these in turn.

Psychological theory could help inform the use of reasonable models for particular
domains as has been done in the case of paired-associate learning tasks and concept
learning tasks in the literature. These models can then be learned and optimized using
data-driven RL techniques. Researchers should consider how psychological models
can be developed for educationally relevant domains beyond just paired-associate
and concept learning tasks. Indeed such efforts could hopefully be productive both
in terms of improving student learning outcomes in particular settings, as well as in
testing and contextualizing existing or newly-developed theories.

Our results also suggest focusing on settings where the set of actions is restricted
but still meaningful. For example, several of the studies described above consider the
problem of sequencing worked examples and problem solving tasks, which mean-
ingfully restricts the decision problem to two actions in an area where we know the
sequence of tasks makes a difference (Kalyuga et al. 2003).

Finally, learning sciences principles can potentially help constrain the space of
policies as well. For example, given that the expertise-reversal effect suggests that
worked examples should precede problem solving tasks and that it is best to slowly
fade away worked example steps over time, one could consider using RL to search
over the space of policies that follow such a structure. This could mean rather than
deciding at each time step what activity type to give to the student, the agent would
simply need to decide when to switch to the next activity type. The expertise-reversal
effect also suggests such switches should be based on the cognitive load on the
student, which in turn can guide the representation used for the state space. Such
policies have been implemented in a heuristic fashion in the literature on faded
worked examples (Kalyuga and Sweller 2005; Salden et al. 2010; Najar et al. 2016),
but researchers have not yet explored using RL to automatically find policies in
this constrained space. Related to this, the learning sciences literature could suggest
stronger baseline policies with which to compare RL-induced policies, as discussed
in Section “Baselines”.
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As the psychology and learning sciences literature identify more principles and
theories of sequencing, such ideas can be integrated with data-driven approaches
to guide the use of RL in instructional sequencing. Given that deep reinforcement
learning has been gaining lots of traction in the past few years and will likely be
increasingly applied to the problem of instructional sequencing, it seems especially
important to find new ways of meaningfully constraining these approaches with psy-
chological theory and learning sciences principles. A similar argument was made
by Lindsey and Mozer (2016) when discussing their successful attempts of using
a data-driven psychological model for instructional sequencing: “despite the power
of big data, psychological theory provides essential constraints on models, and . . .
despite the success of psychological theory in providing a qualitative understanding
of phenomena, big data enables quantitative, individualized predictions of learning
and performance.”

However, given that finding a single plausible psychological model might be dif-
ficult in more complex settings, a complementary approach is to explicitly reason
about robustness with respect to the choice of the model. Of course, such robust eval-
uations are not silver bullets and they can make inaccurate predictions, but even if the
results do not match the predictions, this can help prompt new research directions in
understanding the limitations of the models and/or instructional policies used.

Beyond these promising directions and suggestions, we note that the vast majority
of the work we have reviewed consists of system-controlled methods of sequenc-
ing instruction that target cognitive changes. However, for data-driven instructional
sequencing to have impact, we may need to consider broader ways of using instruc-
tional sequencing. The following are meant to be thought-provoking suggestions for
consideration that build on current lines of research in the artificial intelligence in
education community. In line with our recommendation to combine data-driven and
theory-driven approaches, a common theme in many of these ideas is to combine
machine intelligence with human intelligence, whether in the form of psychological
theories, student choice, or teacher input.

Learner Control

In this review, we have only considered approaches where an automated instructional
policy determines all decisions about what a learner should do. However, allowing for
student choice could make students more motivated to engage with an instructional
system (Fry 1972; Kinzie and Sullivan 1989) and may benefit from the learner’s own
knowledge of their current state. Among the studies reported in our empirical review,
only (Atkinson 1972b) compared an RL-induced policy to a fully learner-controlled
policy, and he found that while the learner-controlled policy was 53% better than
random, it was not as good as the RL-induced policy (108% better than random).
While this result was taken in favor of system-controlled policies, Atkinson (1972a)
suggested that while the learner should not have complete control over the sequencing
of activities, there is still “a place for the learner’s judgments in making instructional
decisions.”

There are a number of ways in which a machine’s instructional decisions could be
combined with student choice. One is for the agent to make recommendations about
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what actions the student should take, but ultimately leave the choice up to the student.
This type of shared control has been shown to succesfully improve learning beyond
system control in some settings (Corbalan et al. 2008). Green et al. (2011) found that
expert policies do better than random policies, regardless of whether either policy
made all decisions or gave the student a choice of three actions to take. Cumming and
Self (1991) also describe such a form of shared control in their vision of “intelligent
educational systems,” where the system is a collaborator to the student rather than an
instructor. A related approach is to give students the freedom to select problems, but
have the system provide feedback on students’ problem-selection decisions, which
Long and Aleven (2016) showed can lead to higher learning gains than system con-
trol. Another approach would be for the agent to make decisions where it is confident
its action will help the student, and leave decisions that it is less confident about up
to the student. RL-induced policies could also take learner decisions and judgements
as inputs to consider during decision making (e.g., as part of the state space). For
instance, Nelson et al. (1994) showed that learners can effectively make “judgments
of learning” in paired-associate learning tasks, and remarked that judgments of learn-
ing could be used by MDPs to make instructional decisions for students. Such a form
of shared control has recently been considered in the RL framework for performance
support (Javdani et al. 2018; Reddy et al. 2018; Bragg and Brunskill 2019), but has
not been considered in the context of instructional sequencing to our knowledge.

Teacher Control

Building on the previous point, sometimes when an instructional policy does not
know what to do, it could inform the teacher and have the teacher give guidance
to the student. For example, Beck and Gong (2013) have shown that mastery learn-
ing policies could lead to “wheel-spinning” where students cannot learn a particular
skill, perhaps because the policy cannot give problems that help the student learn.
Detectors have been designed to detect when students are wheel-spinning (Gong
and Beck 2015; Matsuda et al. 2016). These detectors could then relay information
back to teachers, for example through a teacher dashboard (Aleven et al. 2016b) or
augmented reality analytics software (Holstein et al. 2018), so that teachers know
to intervene. In these cases, an RL agent could encourage the teacher to pick the
best activity for the student to work on (or a recommend a set of activities that
the student could choose from). Finding the right balance between learner-control,
teacher-control, and system-control is an open and important area of research in
instructional sequencing.

Beyond the Cognitive

Almost all of the empirical studies we have reviewed used cognitive models of learn-
ing that were designed to lead to cognitive improvements in learning (e.g., how much
students learned or how fast they learned). However, RL could also take into account
affective, motivational, and metacognitive features in the state space and could also
be used in interventions that target these non-cognitive aspects of student learning by
incorporating them into reward functions. For example, could a policy be derived to
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help students develop a growth mindset or to help students develop stronger metacog-
nitive abilities? While detecting affective states is a growing area of research in
educational data mining and AIED (Calvo and D’Mello 2010; Baker et al. 2012),
only a few studies have considered using affective states and motivational features to
adaptively sequence activities for students (Aleven et al. 2016a). For example, Baker
et al. (2006) used a detector that predicts when a student is gaming the system in order
to assign students supplementary exercises when they exhibit gaming behavior and
Mazziotti et al. (2015) used measures of both the student’s cognitive state and affec-
tive state to determine the next activity to give the student. There has also been work
on adaptive learning technologies that improve students’ self-regulatory behaviors,
but this work has not aimed to improve self-regulation via instructional sequencing
per se (Aleven et al. 2016a). While there is a risk that modeling metacognition or
affect may be even harder than modeling students’ cognitive states in a reinforcement
learning framework, there may be certain places where we can do so effectively, and
the impact of such interventions might be larger than solely cognitive interventions.

Conclusion

We have shown that over half of the empirical studies reviewed found that RL-
induced policies outperformed baseline methods of instructional sequencing. How-
ever, we have also shown that the impact of RL on instructional sequencing seems
to vary depending on what is being sequenced. For example, for paired-associate
learning and concept learning tasks, RL has been fairly successful in identifying
good instructional policies, perhaps because for these domains, psychological theory
has informed the choice of statistical models of student learning. Moreover, when
determining the sequence of activity types, RL-induced policies have been shown to
outperform randomly choosing activity types, especially for lower performing stu-
dents. But for sequencing interdependent content, we have yet to see if a data-driven
approach can drastically improve upon other ways of sequencing such as expert-
designed non-adaptive curricula. While the order of content almost certainly matters
for domains with interconnected content (like mathematics), it can be difficult to
identify good ways to adaptively sequence content with typical amounts of data.

Even in the cases where RL has been successful, one caveat is that the baseline
policies are often naı̈ve (e.g., randomly sequencing activities) and may not represent
current best practices in instructional sequencing. For this reason, it does not seem
like RL-based instructional policies have significantly impacted educational practice
to date. Some studies have shown that RL-induced policies can outperform more
sophisticated baselines, but more work is needed in this area.

One of the key recommendations we have drawn from this review is that instruc-
tional sequencing can perhaps benefit most by discovering more ways to combine
psychological theory with data-driven RL. More generally, we suggested a number of
ways in which instructional sequencing might benefit by combining machine intelli-
gence with human intelligence, whether in the form of theories from domain experts
and psychologists, a teacher’s guidance, or the students’s own metacognition.
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We conclude by noting that the process of using reinforcement learning for instruc-
tional sequencing has been beneficial beyond its impact on student learning. Perhaps
the biggest success of framing instructional sequencing as a reinforcement learning
problem has actually been its impact on the fields of artificial intelligence, operations
research, and student modeling. As mentioned in our historical review, investigations
in optimizing instruction have helped lead to the formal development of partially
observable Markov decision processes (Sondik 1971; Smallwood and Sondik 1973),
an important area of study in operations research and artificial intelligence. More
recently, in some of our own work, the challenge of estimating the performance of dif-
ferent instructional policies has led to advancements in general statistical estimation
techniques (Doroudi et al. 2017b) that are relevant to treatment estimation in health-
care, advertisement selection, and many other areas. Finally, in the area of student
modeling, the robust evaluation matrix (Doroudi et al. 2017a) can help researchers
not only find good policies but also discover the limitations of the models when a
policy under-delivers. Not only should we use theories of learning to improve instruc-
tional sequencing, but also by trying to improve instructional sequencing, perhaps we
can gain new insights about how people learn.
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Appendix A: Details of Studies in Empirical Review

For the studies that found a significant difference, Table 8 gives more details about the
technical aspects of each study, such as the form of RL (online vs. offline), the mod-
els that were used, the nature of the RL-induced and baseline policies, the outcome
variables of interest, and the effect sizes. Table 9 reports the same information for the
remainder of the studies. The outcome variables used in the studies include posttest
score, learning gains (i.e., posttest - pretest), normalized learning gains (NLG), time
(i.e., how long it takes to reach some desired level of completion), performance (i.e.,
how well the student performs on some tasks during the intervention), and time per
problem (i.e., how long students spend on the assigned problems on average). We
note that many studies report on more than one outcome variables; in such cases we
chose to only report one outcome variable, tending to favor the outcome variable
closest to what the instructional policies were directly optimizing. Descriptions of
the various models used in these studies (as well as acronyms used in Tables 8 and 9)
are given in Appendix A.1; similarly a description of the variety of RL-induced and
baseline policies is given in Appendix A.2. Appendix A.3 describes how some stud-
ies performed model selection or policy selection (i.e., how they chose which models
or policies to use). There is of course a lot of relevant detail for each study that could
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not be encapsulated in these tables; we refer the reader to the individual papers for a
better understanding of the experiments conducted.

A.1 Models of Learning

Several models of learning have been used to derive instructional policies. Some
of these models are based on psychological theories, whereas others were devised
from a more machine learning or data-driven perspective. Here we summarize the
variety of models used in the empirical studies along with the acronyms used for
the models in Tables 8 and 9. We begin by describing the models used for paired-
associate learning tasks in the first wave of RL applied to instructional sequencing:

– One-Element Model (OEM): This is a simple model that describes learning in
all-or-none fashion: you either know something or you don’t (Bower 1961). The
OEM supposes that for each item, the student is either in a latent learned state
or unlearned state. If the student is in the learned state, they will always answer
questions on the item correctly, but if they are in the unlearned state, they have
a probability of guessing, but will otherwise answer incorrectly. With each item
presentation, the student also has some probability of learning the item.

– Single-Operator Linear Model (SOL): In opposition to the OEM, this model
assumes learning occurs incrementally. In particular, with each item presenta-
tion, the probability of a student answering incorrectly decreases by a constant
multiplier.

– Random-Trial Increment (RTI): This model combines OEM and SOL; with each
item-presentation there is some probability that the the student will incrementally
learn the skill (i.e., that the probability of answering incorrectly decreases by a
constant multiplier).

– Three-State Markov Model (3SM): This describes a variety of models like the
final model discussed in Section “Examples of RL for Instructional Sequencing”.
There are three latent knowledge states (instead of two as in OEM), and when the
student is in the intermediary state, there is some probability that they will forget
the item. Forgetting can occur with each presentation of any other item; therefore,
unlike all the previous models, a student’s knowledge of an item can change
even when the student is practicing other items. These models allow for spacing
effects. We will differentiate between two cases of this model: one where all
items are assumed to be homogeneous or have the same parameters (3SM-Hom),
and one where the items can be heterogeneous or each item is allowed to have
different parameters (3SM-Het). Many years after the experiments performed
by Atkinson and colleagues, Katsikopoulos et al. (2001) builds on this work by
using a similar four-state Markov model (4SM).

Although these models are relatively simple and all assume that items are inde-
pendent of one another, several interesting properties emerge when considering using
these models to derive instructional policies. First, we note that if we consider the
problem of which item to present to a student, then all of the models above can be
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described as factored POMDPs (where the state can be factored into individual items,
and there is a separate transition and observation matrix for each item), provided that
we give an appropriate reward function, such as a delayed reward proportional to the
number of items learned in the end. The SOL model in particular can be described
as a factored MDP, since we can determine the state of each item uniquely by how
many times it was presented to the student. Moreover, SOL is a deterministic MDP.
Thus, the optimal policy for SOL is a non-adaptive policy (or response insensitive
strategy, as it is referred to in the literature). In particular, if we assume homogeneous
parameters, the optimal policy is to repeatedly cycle through all items in any order
to maximize the minimum number of presentations for each item. Even though this
is technically the optimal policy for a model, it is such a simple instructional policy
that it is commonly used as a baseline in many of the empirical studies.

On the other hand, for OEM, the optimal strategy is adaptive (or response sen-
sitive). In particular, as shown by Karush and Dear (1967), the optimal policy for
OEM (assuming homogeneous parameters) is simply to give the item that has had the
shortest consecutive streak of correct responses. Interestingly, as with SOL, (1) the
myopic policy is optimal, and (2) this optimal policy does not depend on the param-
eters of the OEM model, so one does not need to learn the parameters of the model
in order to execute its optimal policy. Even though no learning is necessary, we still
consider the optimal policy for the OEM model to be an RL-induced policy, albeit a
simple one.

We now consider models that have been used in more recent papers:

– Bayesian Knowledge Tracing (BKT): This model is identical to OEM, except
that it also allows for a probability of slipping when the item or skill is in the
learned state. In addition, it is typically used in a different context than OEM. In
particular, an instructional action (such as a problem in an ITS) may have several
different skills on it. When a student works on a problem, their knowledge state
of several skills may change. Thus an optimal policy for BKT may be much more
complicated than for OEM; however, a heuristic policy is typically used for BKT
where problems are given until a student is believed to be in the learned state with
high probability (e.g., at least 95%). David et al. (2016) used a modified version
of BKT to choose problems believed to be in the student’s zone of proximal
development.

– Performance Factors Analysis (PFA): This is a model that was proposed as an
alternative to BKT in the educational data mining literature (Pavlik et al. 2009). It
models the probability of answering and item correctly as a logistic function that
depends on the number of times the item was answered correctly in the past and
the number of times it was answered incorrectly. Although it is commonly used
to predict learning, Papoušek et al. (2016) are the only ones who have evaluated
its efficacy in instructional sequencing to our knowledge. Papoušek et al. (2016)
use a modified version of the PFA algorithm by combining it with the Elo rating
system (Pelánek et al. 2017).

– Featurized (PO)MDP (Feat-(PO)MDP): This type of model has been popular in
recent papers that consider using RL for instructional sequencing. The idea is to

International Journal of Artificial Intelligence in Education (2019) 29:568–620604



create a MDP (or POMDP) that uses a set of features collected from the soft-
ware to encapsulate the state of the MDP (or observation space of the POMDP).
Features could include, for example, whether the student answered questions of
various types correctly in the past, actions taken by the student in an ITS, and
aspects of the history of instructional actions such as how many actions of type
X the policy has given so far. Since there are many features one could feasibly
consider, some papers have looked at various methods of doing feature reduc-
tion (Chi et al. 2009; Zhou et al. 2017) and feature compression (Mandel et al.
2014). For instance, Mandel et al. (2014) used features to represent the observa-
tion space of a POMDP; however, to make the problem tractable, they did feature
compression on thousands of features, which resulted in only two features.

– Factored MDP (FMDP): This is a particular type of featurized MDP, where the
state space is factored into a set of features and each feature’s transition dynamics
only depends on some (ideally small) subset of features. This is a useful way
to represent how students learn a set of interrelated skills, where the ability to
learn one skill might depend on some, but not all, of the remaining skills. The
relationship between skills can be determined by a domain expert (e.g., through
a prerequisite graph) (Green et al. 2011) or determined automatically (Doroudi
et al. 2017a).

– POMDP: All of the models above could be described as a particular type of
POMDP, but some papers explicitly use the POMDP formulation to describe
their models of learning. Rafferty et al. (2016a) and Whitehill and Movellan
(2017) use POMDPs to naturally describe how learners perform concept learning
tasks based on cognitive science theories. For example, Rafferty et al. (2016a)
use models where the state space consists of hypotheses over concepts, and
when the student is presented information that goes against their hypothesis,
they randomly transition to a new hypothesis that is in line with the evidence
presented.

– ACT-R: ACT-R is a cognitive architecture that generally describes human cog-
nition and how people acquire procedural and declarative knowledge (Anderson
1993). Pavlik and Anderson (2008) extended ACT-R and used it to derive an
instructional policy for sequencing vocabulary items.

– DASH: DASH combines a data-driven logistic regression model with psycho-
logical theories of memory that capture “difficulty, ability, and study history”
(Lindsey et al. 2014).

– Machine Learning Models: Some papers have assumed that the learner learns
according to a particular type of machine learning model. For example, (Sen et al.
2018) assume the learner learns according to an artificial neural network (ANN)
and (Geana 2015) assumes that learners are either a reinforcement learning agent
or a Bayesian learner. Notice that assuming the student is an RL agent is different
from assuming that the cognitive state of the student changes according to a
MDP. Rather, it means that the student is an RL agent that is trying to learn the
parameters of a MDP.

International Journal of Artificial Intelligence in Education (2019) 29:568–620 605



A.2 Instructional Policies

A.2.1 Model-Based Policies

Given a model, there are many ways to derive an instructional policy. In this section,
we will mention some of the most common types of policies used for model-based
methods:

– Optimal: This refers to the optimal policy given a model. Optimal policies for
MDPs can be derived using dynamic programming methods such as value itera-
tion (Bellman 1957) and policy iteration (Howard 1960a). As mentioned earlier,
for simple models such as SOL and OEM, the optimal policy takes a very simple
form that does not actually depend on the models. Optimal policies are typically
only used for these simple models as well as for feature-based MDPs. For more
complex models such as POMDPs and FMDPs with large state spaces, solv-
ing for the optimal policy can be intractable. An approximation can be made
for POMDPs by solving for the optimal policy in the equivalent QMDP, which
is a POMDP where the state is assumed to be known after one action (QMDP
Optimal).

– Myopic: These policies optimize the reward function by only considering the
consequences of the next action (Myopic-1) or the next two actions (Myopic-2),
rather than considering the entire horizon. In some simple cases the myopic strat-
egy might be optimal, and in other cases it might be close to optimal (Matheson
1964).

– Threshold: Given a model that predicts the probability that a student will answer
any item correctly, a commonly used policy is to pick the item closest to some
threshold. Interestingly, such policies are motivated in terms of educational the-
ories such as desirable difficulty (Lindsey et al. 2014) and the zone of proximal
development (Schatten 2017). Khajah et al. (2014) showed in simulation that
a threshold policy could be nearly optimal according to two different models
of student learning for tasks where there are a set of independent items like
paired-associate learning tasks.

– Fixed: A fixed policy is a non-adaptive policy that is meant to be near opti-
mal according to a given model. Mandel et al. (2014) used the best fixed policy
according to their model, while Sen et al. (2018) used a hill-climbing approach to
find a good fixed policy that led to the least error for their neural network model
(although the policy found could have achieved a local optimum).

A.2.2 Model-Free Policies

A minority of the papers that derived RL-induced policies for instructional sequenc-
ing did so using model-free methods. In some cases, authors used RL methods such
as temporal difference learning (TD(0)) (Sutton and Barto 1998) and the Deep Q-
Network (DQN) (Mnih et al. 2015). In other cases, related methods such as Bayesian
optimization (BO) (Mockus 1994; Brochu et al. 2010), multi-armed bandits (MABs)
(Gittins 1979; Auer et al. 2002), and genetic algorithms were used. While MABs
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are typically used to find the best static decision (assuming no change in state),
researchers have used them in novel ways to account for student learning, such as
by progressing students through a knowledge graph and using the multi-armed ban-
dit to find the best actions among the set that the student is ready for Clement et al.
(2015) or by modifying which actions are optimal by adjusting the weights of actions
based on the level of difficulty student can currently tackle (Segal et al. 2018). Like
the model-based threshold policies, these policies also motivate the idea of using a
set of appropriately challenging problems at any given time using educational theory,
namely the zone of proximal development (Clement et al. 2015; Segal et al. 2018).

A.2.3 Baseline Policies

RL-induced policies have been compared to a variety of baseline policies. Some of
the common baseline policies include:

– Random: This policy presents content in a random order. Although random
sequencing will often be a weak baseline, it can be reasonable in cases where
the content being sequenced does not have strong dependencies, especially given
that interleaving content has been shown to be effective.

– Cycle: This policy randomly cycles through items, such as words in a paired-
associate learning task, in a randomly-determined fixed order. As mentioned
earlier, this is actually the optimal policy under the simple SOL model. How-
ever, because it is one of the simplest policies that could be considered and a
non-adaptive policy, we consider it as a baseline policy whenever it is used.

– Inverse: This policy takes the reward function of an MDP and minimizes it
instead of maximizing it. Therefore, it is a policy that is made to intentionally
perform poorly. The idea behind using such a policy is to show that the order-
ing of instructional activities actually makes a difference. However, this baseline
cannot be used to discern if RL-induced policies are effective ways of teaching
students beyond reasonable methods for instructional sequencing.

– Inc Difficulty: This general type of policy orders content in order of increasing
difficulty or complexity as determined by domain experts. In our experiments,
we used a modified version of this general policy referred to as Spiral Difficulty
where three broad topics were ordered in terms of difficulty, but once students
finished twelve randomly chosen problems per topic, they would be returned to
the first topic and so on, loosely motivated by the idea of a spiral curriculum
(Bruner 1960; Harden 1999).

A.3 Model/Policy Selection

In Tables 8 and 9, we report the models ultimately used in each of the studies; how-
ever, many of the researchers considered a variety of models and policies before
settling on one in particular. These researchers used a variety of model selection (or
policy selection) criteria to choose which policy to use in the experiments. For a
number of different studies, Min Chi and colleagues (Chi et al. 2009, 2010a; Shen
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and Chi, 2016b; Zhou et al., 2017; Shen et al., 2018a) fit several MDPs on differ-
ent featurized representations of the state space and used the expected cumulative
reward (ECR) of the optimal policies under each model to determine which policy
was expected to perform best. As shown by Mandel et al. (2014), ECR is a biased
and inconsistent estimator of the true value of a policy. Instead, Mandel et al. (2014)
used importance sampling to evaluate policies for several different types of mod-
els to settle on a final policy. While the importance sampling estimator can give an
unbiased estimate of the value of a policy, it is only data-efficient when sequencing
a few instructional activities and can lead to biased decisions when used for policy
selection (Doroudi et al. 2017b).

To provide a more robust estimator than ECR while mitigating the data ineffi-
ciency of importance sampling, we proposed the robust evaluation matrix method
to perform policy selection (Doroudi et al. 2017a). REM involves simulating each
instructional policy of interest using multiple plausible models of student learning
that were fit to previously collected data. If a policy robustly outperforms other poli-
cies according to multiple different models, we can have increased confidence that it
will actually be a better instructional policy rather than “overfitting” to a particular
model (which ECR is susceptible to). We used REM to select a policy for our sec-
ond experiment as described in Appendix B. Several other studies used similar robust
evaluation methods (Rafferty et al. 2016a; Lindsey et al. 2014).

Appendix B: Case Study: Fractions Tutor Experiment

Here we report on a case study of our own work in applying RL to instructional
sequencing in a fractions intelligent tutoring system (ITS), as this experiment is
unpublished and was a primary motivation behind writing the current paper. We ran
two experiments in our ITS, both of which resulted in no significant difference in
posttest performance between any of the conditions. We have reported on the first
experiment in prior work (Doroudi et al. 2017a). Given that our experiments were
for a very particular use of RL in a particular domain and tutoring system, we ques-
tioned the generalizability of our null results and were initially hesitant about how
informative they would be to the broader research community. However, by situating
our particular null results in the broader review we present in this paper, we believe
we can gain some insights from this case study.

B.1 Fractions Tutor

We extended the Fractions Tutor, a web-based intelligent tutoring systems for
fourth and fifth grade fractions learning (Rau et al. 2012, 2013). Our version of
the ITS included activities for three topics: making and naming fractions, frac-
tion equivalence and comparison, and fraction addition. Our ITS was also designed
to include activities that support the three learning mechanisms posited by the
knowledge-learning-instruction (KLI) framework (Koedinger et al. 2012): sense-
making, induction and refinement, and fluency building. Our goal was to find an
adaptive policy that could discover how to optimally sequence content in these three
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topics as well as how to sequence different types of activities to support learning
mechanisms at the appropriate time. KLI does not give strong recommendations
about how to optimally order activities that support each of the learning mechanisms,
therefore we were hoping our data-driven approach would not only lead to a good
adaptive policy for our ITS but would also inform the theory behind KLI learning
mechanisms. However, our policies did not make decisions at the level of topic or
learning mechanism. Rather we took the more ambitious route of trying to pick a
specific activity (one of 155) at each time step. These activities included individual
problems, groups of problems, and videos followed by conceptual questions, but for
simplicity we use the terms activities and problems interchangeably.

B.2 Data Collection

We initially collected data from over 1000 students working on our ITS in a num-
ber of different schools. Students took a pretest, used the tutor for several sessions,
and then took a posttest that was identical to the pretest. Students were free to work
at their own pace and hence completed varying numbers of problems. We presented
activities in a semi-randomized order as a compromise between two potentially com-
peting objectives. The first objective was to enhance student learning for the students
that participated in this initial data collection. This objective would push us towards
selecting an activity order that draws upon existing research on effective sequencing,
and satisfies commonly assumed topic orderings (e.g. obtaining a basic understand-
ing of fractions before doing fraction addition). Our second objective was to find a
good instructional policy. To find a good instructional policy, RL methods require
that many states were explored in the initial dataset and various actions were taken
from each state. Since a student’s state could potentially depend on the actions taken
thus far, to ensure we explore the state-action space sufficiently, we would ideally
give random actions. Our semi-randomized order enforced that the first 26 activ-
ities a student saw consisted of activities that we believed were important for the
student to encounter before moving on to more advanced topics. Moreover, among
those 26 activities, the sequence of activities was restricted to follow a prerequisite
graph. When there were multiple possible activities that could have been presented,
the activity was chosen randomly. After the first 26 activities, activities were chosen
uniformly at random without replacement from a pool of 130 activities.

In addition to this data, we collected data from over 300 students in our first exper-
iment. In this experiment, students were assigned problems according to one of five
instructional policies; see Doroudi et al. (2017a) for more details. We used data from
both experiments to fit models for our robust evaluation matrix. Since these two
datasets consisted of different policies and different student populations and were
collected in different years, we fit the same models to each dataset in order to improve
the robustness of REM.

B.3 Policy Selection

The null results of our first experiment led to the development of the robust evalua-
tion matrix as a tool for off-policy policy selection (Doroudi et al. 2017a). A natural
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next step was to see if REM could be used to actually discover a good instructional
policy for our next experiment. We wanted to compare a new instructional policy to
one of the baseline policies from our first experiment. This baseline policy only gave
problems that supported the induction and refinement mechanism (as these problems
are standard in many ITSs) and spiraled through the curriculum by first giving several
problems on making and naming fractions, then on fraction equivalence and compar-
ison, and finally on fraction addition, and then giving problems in that order again.
Problems were randomly chosen within each topic. In what follows, we will refer to
this policy as “the baseline policy”.

Before coming up with new instructional policies, we wanted to include the time
spent per problem in our REM analyses, as that is something we ignored when devis-
ing policies for our first experiment. Namely, the off-policy estimation we did prior to
our first experiment assumed that students would do 40 problems each (i.e., we simu-
lated trajectories of 40 problems). In reality, trajectories will be of varying length due
to a number of factors: some students work faster than others, some students spend
less time working or may be absent on certain days of our experiment, etc. How-
ever, even if we had considered the variance in trajectory lengths that existed in our
past data, the evaluation results would be similar. But one thing we did not consider
is that the distribution of trajectory lengths varies for different instructional policies.
For example, students who had the baseline policy, did around 48 problems on aver-
age, whereas for all the other policies, the average was 28 problems or less. This is, at
least in part, because the baseline policy only assigns problems of a particular activ-
ity type (induction and refinement), which tended to be the activity type that took the
least amount of time on average. This could explain why the baseline did as well as
the other policies in our experiment; these students completed more problems, which
could make up for the lack of diversity or adaptivity in problem selection. To tackle
this issue, each of the student models we used in REM assumed that the time per
problem was sampled from how long students took in our prior data, and to increase
robustness, we experimented with sampling times from different student populations
that we had data for. However, as we will soon demonstrate, such a simple model for
predicting time per problem was not sufficient.

To see how important the time spent per problem might be, we tested a simple
policy that sequenced problems in increasing order of average time students spent in
our previous experiment (i.e., students would first get the problem that took the least
amount of time on average). REM predicted that this policy would be better than the
baseline policy under a variety of (but not all) student models. To make this policy
adaptive, we augmented this policy with a simple rule to skip any problem where
all skills taught in that problem were already believed to have been mastered, using
a Bayesian Knowledge Tracing model with a mastery threshold of 0.9. We thought
this might help avoid over-practice, especially because assigning problems in order
of increasing time often meant giving similar problems multiple times in sequence.
Indeed, this new adaptive policy was predicted by REM to be considerably better
than the baseline according to many student models, including ones that predicted
the non-adaptive version would be worse than the baseline. Models predicted the
improvement of this new policy over the baseline would be between 0.31 and 2.23
points on the posttest (out of 16 points), with most models predicting an improvement
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of at least one point on the posttest. Thus we chose to use this policy in our next
experiment.

B.4 Experiment and Results

We ran an experiment with 220 4th and 5th grade students to see if our new data-
driven adaptive policy could outperform the baseline induction and refinement policy.
The experimental design was the same as for our initial data collection and first exper-
iment; only the instructional policies were changed. Despite our REM predictions,
when we ran our experiment, we found that students assigned the baseline policy had
a mean posttest score of 8.12 (out of 16) and students assigned the new adaptive pol-
icy had a mean posttest score of 7.97, indicating the new policy was no better than
the baseline. In terms of learning gains (posttest minus pretest score), the baseline
had a mean score of 1.32, while the new adaptive policy had a mean scores of 1.55.
While there was a positive difference in learning gains, it was not significant.

B.5 Discussion

So one might ask, why did the new policy fare no better than the baseline, when REM
predicted otherwise? There are two factors that we did not adequately account for in
our REM analyses: (1) the student population in this experiment was quite different
from the population in our past data that we used to fit the models, and (2) the order
in which problems were presented was quite different than in our prior experiments.
To account for the first issue, we had done REM analyses by fitting models to sub-
populations of our prior data, but we had still predicted that the new adaptive policy
would do better. We did more extensive analyses after the experiment, and we found
that the predicted difference between the two policies was much smaller for students
from a particular school district. Developing models and instructional policies that
can generalize to new student populations is a big open question in the literature
(Baker 2019). While REM can help with this by seeing how different policies might
interact with different populations of students we have collected data from, it cannot
definitively tell us how the policy will effect new students.

The second issue may have had an even greater effect on our results. All of the
models that we used in REM assumed that the time per problem was sampled accord-
ing to our prior data. Our new adaptive policy gave problems that took the least
amount of time first, but it ignores the fact that students in our previous experiments
had typically done those problems after having completed many other problems,
which could be why they worked through those problems quickly. Indeed, in our
experiment we found that problems given early on were taking students much longer
than those same problems took for students in our first experiment or in the base-
line condition. Our experiment highlights the importance of not only modeling how
students answer problems over time, but also how long they spend on problems, espe-
cially when we want to use time spent as a variable to determine how to adaptively
assign problems to students. We believe future researchers can build on this insight
in one of two ways: (1) developing more sophisticated ways of predicting how long
students will spend on problems to use in offline analyses (such as REM analyses),
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or (2) developing policies that can be robust to how long students actually spend
on problems by taking into account data collected from the student online (e.g., if
a student appears to be slower than average on a certain type of problem, use that
information in deciding what problem to give the student next).

While both of our experiments had null results, and we did not successfully
demonstrate how using REM could lead to improved instructional policies, this pro-
cess has revealed a number of challenges that can affect the process of using RL
to induce instructional policies. Moreover, by identifying some of the limitations of
how we used REM, we now have some insights that can lead to the development of
more robust instructional policies, for example by taking the student population and
time per problem into account. As we demonstrate in this paper, we were not the
only researchers to have faced challenges in demonstrating how RL could be used
to derive impactful instructional policies. We hope that the retrospective insights we
developed about REM as well as the insights drawn from the review presented in this
paper can help researchers mitigate some of these challenges in the future.
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H.U., Luckin, R., Mavrikis, M., Porayska-Pomsta, K., McLaren, B., du Boulay, B. (Eds.) Artificial
intelligence in education (pp. 154–168). Cham: Springer International Publishing.

Howard, R.A. (1960a). Dynamic programming and Markov processes. Oxford: Wiley.
Howard, R.A. (1960b). Machine-aided learning. High speed computer system research: quarterly progress

report, 9, 19–20.
Hsu, D., Kakade, S.M., Zhang, T. (2012). A spectral algorithm for learning hidden Markov models.

Journal of Computer and System Sciences, 78(5), 1460–1480.
Hunziker, A., Chen, Y., Mac Aodha, O., Rodriguez, M.G., Krause, A., Perona, P., Yue, Y., Singla, A.

(2018). Teaching multiple concepts to forgetful learners. arXiv:1805.08322.
Iglesias, A., Martı́nez, P., Aler, R., Fernández, F. (2006). Learning pedagogical policies from few training

data. In Proceedings of the 17th European conference on artificial intelligence workshop on planning,
learning and monitoring with uncertainty and dynamic worlds.

Iglesias, A., Martı́nez, P., Aler, R., Fernández, F. (2009). Learning teaching strategies in an adaptive and
intelligent educational system through reinforcement learning. Applied Intelligence, 31(1), 89–106.

Iglesias, A., Martinez, P., Fernández, F. (2003). An experience applying reinforcement learning in a web-
based adaptive and intelligent educational system. Informatics in Education, 2, 223–240.

Javdani, S., Admoni, H., Pellegrinelli, S., Srinivasa, S.S., Bagnell, J.A. (2018). Shared autonomy via hind-
sight optimization for teleoperation and teaming. The International Journal of Robotics Research,
717–742.

Joseph, S.R., Lewis, A.S., Joseph, M.H. (2004). Adaptive vocabulary instruction. In IEEE international
conference on advanced learning technologies, 2004. Proceedings (pp. 141–145): IEEE.

Kalyuga, S., Ayres, P., Chandler, P., Sweller, J. (2003). The expertise reversal effect. Educational
Psychologist, 38(1), 23–31.

Kalyuga, S., & Sweller, J. (2005). Rapid dynamic assessment of expertise to improve the efficiency of
adaptive e-learning. Educational Technology Research and Development, 53(3), 83–93.

Karush, W., & Dear, R. (1967). Optimal strategy for item presentation in a learning process. Management
Science, 13(11), 773–785.
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