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Abstract
We present a technique that examines handwritten equations from a student’s solution
to an engineering problem and from this estimates the correctness of the work. More
specifically, we demonstrate that lexical properties of the equations correlate with
the grade a human grader would assign. We characterize these properties with a set
of features that include the number of occurrences of various classes of symbols and
binary and tripartite sequences of them. Support vector machine (SVM) regression
models trained with these features achieved a correlation of r = .433 (p < .001)
on a combined set of six exam problems. Prior work suggests that the number of
long pauses in the writing that occur as a student solves a problem correlates with
correctness. We found that combining this pause feature with our lexical features
produced more accurate predictions than using either type of feature alone. SVM
regression models trained using an optimized subset of three lexical features and the
pause feature achieved an average correlation with grade across the six problems of
r = .503 (p < .001). These techniques are an important step toward creating systems
that can automatically assess handwritten coursework.
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Introduction

The ready availability of large amounts of data from educational software systems
has enabled data mining techniques to be used to examine a wide range of education
research questions (Romero and Ventura 2010). For example, log files from intelli-
gent tutoring systems (e.g., Stevens et al. 2005) and learning management systems
(e.g., Krüger et al. 2010) are common sources of data for mining. However, in many
disciplines — particularly science, technology, engineering, and math (STEM) —
learning involves a substantial amount of problem solving with paper and pencil,
which is more challenging to mine than text-based work.

In previous work (Stahovich and Lin 2016), we developed techniques capable of
extracting text information from handwritten solutions to engineering problems like
the one in Fig. 1b. As an example of the utility of these methods, we used them
to examine the relationship between the amount of writing in a student’s handwrit-
ten solution to an exam problem and the correctness of the work. More specifically,
we found that the total number of alphabetic characters (i.e., the 26 English char-
acters), the number of units of measure (e.g., “kg” and “ft”), and the number of
equation groups each correlated positively and significantly with the grade assigned
by a human grader. An equation group is a string of characters belonging to a single
equation and written on the same baseline (Fig. 2). This work also demonstrated that
the number of long pauses between characters correlated positively and significantly
with the grade.

This prior work primarily examined the relationship between the amount of writ-
ing and the correctness of a solution. Here, we examine the hypothesis that the types
of content comprising a solution, and the sequences in which it is arranged, relate
to the correctness. For example, skilled problem-solvers often solve problems by
manipulating the equations in symbolic form, and avoid substituting numerical val-
ues into the variables until the final step. One advantage of this approach is that it
facilitates the identification of errors. For example, while it is clear that “F = m ∗ v”
is an incorrect statement of Newton’s second law (force relates to acceleration not
velocity), it is not readily apparent if “F = 20.0 * 4.5” is a correct statement of
this law. Likewise, manipulating symbolic variables reduces transcription errors that
can occur when manipulating multi-digit real numbers. Thus, having a majority of
non-numerical symbols rather than numbers may be indicative of correctness.

In short, the present work examines the hypothesis that lexical properties of a
student’s handwritten solution to a problem in a STEM course correlate with the
correctness of the solution. We consider a number of lexical properties including
the number of occurrences of various classes of symbols (e.g., letters, numbers, and
mathematical symbols), the number of occurrences of various binary sequences of
characters (e.g., a digit followed by a letter), and the number of tripartite sequences
(e.g., a digit followed by a mathematical symbol followed by a letter). Likewise, we
also consider the number of equation groups and the number of occurrences of units
of measure from (Stahovich and Lin 2016). We refer to these as “lexical properties”
to emphasize that we do not consider the semantics of the symbols. Said differently,
we do not interpret the meaning of the written solution but rather consider only the
quantities of various types of textual elements.
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As the work in (Stahovich and Lin 2016) suggests that the number of long inter-
character pauses that occur as a student solves a problem in a STEM course is related
to the correctness of the solution, we include this feature in our models. Similar to
the lexical features, this feature can be computed without interpreting the meaning of
the solution.

For our present study, we used Livescribe smartpens to collect a dataset of hand-
written solutions to exam problems from an undergraduate engineering course on
statics. The smartpens have an integrated camera and are used with dot-patterned
paper. They serve the same function as a traditional ink pen and also record the

Fig. 1 A typical statics problem. a Problem statement. b A typical solution. Light gray = free body
diagram, medium gray = equation, black = cross-out
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work as time-stamped pen strokes, thus enabling both temporal and spatial analysis
of the writing. Statics is the subdiscipline of engineering mechanics that examines
the equilibrium of structures subject to forces. The solution to a statics problem typ-
ically includes free body diagrams and equilibrium equations. The former represent
the forces acting on a system, while the latter are the application of Newton’s Second
Law. Figure 1a shows a typical problem from an undergraduate statics course and
Fig. 1b shows the sort of solution a student might generate for that problem.

This work demonstrates that the lexical properties of handwritten solutions to a
problem in an undergraduate engineering course are predictive of the correctness of
the solution. This work could provide the basis for an automated system to provide
students with feedback on their homework. In large undergraduate STEM courses,
it is often impractical to manually grade students’ homework. Our techniques pro-
vide an inexpensive and scalable means of estimating the correctness of this work.
By examining the entire solution to a problem, our techniques complement tradi-
tional online homework systems that consider only the final answer (Demirci 2010).
This sort of automated feedback would also be useful for online courses. While
online courses provide an efficient means for delivering course content, there are
currently no cost-effective methods for assessing handwritten work. Our techniques
could provide the basis for creating such a method.

RelatedWork

Recent research has begun to examine the relationship between the amount of writ-
ing a student produces and academic achievement (Rawson et al. 2017; Van Arsdale
and Stahovich 2012). For example, Rawson et al. (2017) examined students’ writ-
ing on homework assignments in an introductory engineering course and found that
the amount of writing, measured both in terms of the number of pen strokes and the
length of ink written, correlated positively and significantly with course grade. Simi-
larly, Van Arsdale and Stahovich (2012) found that the amount of effort on equations
correlated positively and significantly with the correctness of the work. These studies
examined the amount of writing, not the content, and found that it correlated posi-
tively with outcomes. In the present work, we build upon these results by examining
how lexical properties of the content correlate with the correctness of a student’s work.

Van Arsdale and Stahovich (2012) examined the relationship between the tem-
poral and spatial organization of a student’s handwritten solution to a statics
problem and the correctness of the work. They computed 10 features describing the
organization of the solution process and used them to construct stepwise regression
models predicting the grade students achieved on the work. Our work is complemen-
tary in that we consider lexical properties of equations rather than the organization of
the solution process.

Cheng and Rojas-Anaya (2008) examined pauses that occurred as students copied
equations and found that the number of long pauses correlated negatively with com-
petence. They defined a long pause as one longer than twice the median pause
occurring while the student wrote his or her name. By contrast, Stahovich and Lin
(2016) found that the number of long inter-character pauses during problem solving
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correlated positively with the correctness of the solution. The difference in the sign
of the correlations is likely due to the nature of the tasks: one considers a copying
task while the other considers a problem-solving task. We employ the pause measure
from (Stahovich and Lin 2016) in the present work.

Research in educational data mining has seen a dramatic increase in the past few
years (Romero and Ventura 2010). Much of the data used in this work is extracted
from log files of intelligent tutoring systems (Stevens et al. 2005; Beal and Cohen
2008; Shanabrook et al. 2010; Mostow et al. 2011; Li et al. 2011; Trivedi et al.
2011) and learning management systems such as Moodle or Blackboard (Krüger
et al. 2010; Romero et al. 2010). Our work differs from this in that we record and
mine data from learning activities in natural environments, rather than online envi-
ronments. The work of Oviatt et al. (2006) suggests that natural work environments
are critical to student performance. In their examinations of computer interfaces for
completing geometry problems, they found that “as the interfaces departed more from
familiar work practice. . . , students would experience greater cognitive load such that
performance would deteriorate in speed, attentional focus, meta-cognitive control,
correctness of problem solutions, and memory.”

While assessment is a critical element of effective instruction (Pellegrino et al.
2001; Bransford et al. 2000), it can be a burdensome task. Thus, educators have long
sought to create methods for automating it. Gikandi et al. (2011) present a recent
overview of online assessment tools. Multiple-choice exams are perhaps the most
common automated offline tool. While such exams are inexpensive to grade, they
generally capture the product of thinking rather than the process. Our techniques are
complementary as they consider all of the work for a traditional handwritten problem,
not just the final answer.

There have been some efforts to develop tools to facilitate manual grading of
handwritten coursework (Schneider 2014; Singh et al. 2017), but there is relatively
little work addressing automated grading. Recently, there has been some progress in
developing systems for automatically grading handwritten essays (Srihari et al. 2007;
Sharma and Jayagopi 2018). These systems first use optical handwriting recognition
techniques to identify the text, and then apply automated essay scoring techniques
to score the writing. As handwritten solutions to problems in STEM courses are dis-
similar from essays, these techniques are not suitable for our task. One fundamental
difference is that the text in an essay is written in a highly structured way (e.g., lines
of text written from left to right and proceeding down the page), while the writing for
a problem solution (e.g., Fig. 1b) is typically scattered around the page in a loosely
structured fashion. Additionally, essays employ a known lexicon, whereas the combi-
nations of symbols in a solution to a STEM problem are arbitrary. Researchers have
developed techniques for interpreting handwritten equations (Smithies et al. 1999;
LaViola and Zeleznik 2004; de Silva et al. 2007; LaViola 2007). These techniques
are suitable for interpreting isolated equations and often require the user to draw in
a structured manner or to use gestures to guide the interpretation. Thus, these tech-
niques are unsuitable for our task, as the homework solutions we consider contain
freeform writing.

Recently, Rawson and Stahovich (2013) and Rawson et al. (2017) examined the
relationship between homework effort and course grade. Effort was represented by
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a set of features describing the amount of writing and the distribution of the writing
activity over the assignment period. The features were used to construct regression
models predicting course grade. These models demonstrated that the amount of writ-
ing correlated positively and significantly with course grade. Herold et al. (2013a)
used a related approach that considered both the effort on individual problems and
on the assignment as a whole. Herold et al. (2013b) represent homework activity
as sequences of actions, including diagram drawing, equation writing, and taking
breaks. They used differential data mining techniques to differentiate the activity
sequences of students who achieved a high exam grade from those who achieved a
low grade. All of these studies examined homework activity (effort) to predict future
achievement in the course. By contrast, our work examines the lexical properties
of equations written in solutions to exam problems to predict the correctness of the
solutions.

Herold and Stahovich (2012) used smartpens as an assessment tool to examine
how self-explanation affects the order in which students solve assigned homework
problems. The study found that students who generated self-explanations of their
work were more likely to finish each problem before starting the next compared to
students who did not generate self-explanations.

More traditional educational data mining techniques have also been used to exam-
ine learning activities in statics courses. For example, work by Steif and Dollár (2009)
examined usage patterns of a web-based statics tutoring system and found that learn-
ing gains increased with the number of tutorial elements completed. Similarly, work
by Steif et al. (2010) examined whether students can be induced to talk about the bod-
ies in a statics problem, and if doing so can increase a student’s performance. They
used tablet PCs to record the students’ spoken explanations and their handwritten
solutions, but the written work was left mostly unanalyzed.

Method

We used Livescribe smartpens to capture students’ handwritten solutions to exam
problems written on dot-patterned paper. The pens digitize pen strokes as they are
written and store them as sequences of time-stamped Cartesian coordinates. We used
techniques from Stahovich and Lin (2016) to process the pen stroke data into a form
suitable for data mining. In the first step of processing, the equation pen strokes are
separated from other content such as diagrams. Then the equation pen strokes are
grouped, first into individual equations, and then into individual characters. Finally,
after a character recognizer is used to recognize each individual character, a hidden
Markov model is used to correct recognition errors.

Once the pen strokes have been recognized, we characterize a problem solution
by computing features that characterize lexical properties of the equations. Some
features describe the number of occurrences of various symbols and symbol combi-
nations. One feature, for example, describes the number of occurrences of units of
measure (e.g., “kg”), while another describes the number of occurrences of a letter
following a mathematical operator. We also compute a feature counting the number
of long inter-character pauses in the writing. We use support vector machine (SVM)
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regression models to relate these features to the correctness of the work. We take the
grade assigned by a human grader to represent the correctness of a solution.

The next section describes the techniques we use to process the digital pen stroke
data. This is followed by a description of our features and the dataset we used in this
work.

Recognizing Equation Text

We use techniques from Stahovich and Lin (2016) to process the pen stroke data so
that we can extract lexical features from it. Here we provide a brief summary of these
techniques. Complete details can be found in (Stahovich and Lin 2016).

Handwritten solutions to engineering problems, like the one in Fig. 1b, contain a
variety of content including diagrams, equations, and cross-outs. (Because the dig-
ital pens use ink which cannot be erased, students must cross out incorrect work.)
The first step of processing is to identify which ink belongs to equations. This is
accomplished with two filters. The first uses a set of heuristics to distinguish cross-
outs from equations and diagrams. The second uses an AdaBoosted J48 decision tree,
trained with a set of features describing the spatial and temporal properties of the pen
strokes, to distinguish the equations from the diagrams.

Once the equation pen strokes have been identified, they are grouped into individ-
ual equation groups. As shown in Fig. 2, an equation group is a string of characters
belonging to a single equation and written on the same baseline. One equation may
comprise multiple equation groups. For example, if an equation wraps to a sec-
ond baseline, there will be two equation groups, one for each baseline. Similarly,
if a fraction is written with a horizontal fraction bar (vinculum), the numerator and
denominator will likely be identified as separate equation groups.

We focus on equation groups, rather than complete equations, for the sake of sim-
plicity. Identifying complete equations is a difficult problem for which no solutions
currently exist. Consider, for example, the three equation groups in the lower right
portion of Fig. 2. These three groups form a single equation:

cos(30)

cos(45)
= NB(μB cos(30) + sin(30))

NA(sin(45) − μA cos(45))
(1)

However, identifying this would require complex semantic analysis of the writing.
As the focus of our present study is to determine the relationship between lexical

Fig. 2 Rectangles indicate typical equation groups from Fig. 1b
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properties of a student’s handwritten solution — rather than semantic content — and
the correctness, we avoid the complexity of the semantic analysis.

The equation grouper uses a classifier to determine if a pair of pen strokes belongs
to the same equation group. The pairwise classifier is a J48 decision tree, imple-
mented in WEKA (Hall et al. 2009) and trained using three features computed from
the bounding boxes of the two pen strokes. Figure 3 shows the bounding boxes of
two pen strokes and the four distances used to compute the features. The feature GY

describes the vertical overlap of the bounding boxes. If yA and yB are the heights of
the bounding boxes, and yO is their vertical overlap, then GY = max( yO

yA
,

yO

yB
). GY

is large if one of the characters lies mostly within the vertical extent of the other. A
large value of GY suggests that the two pen strokes lie on the same baseline.

The feature GD is related to the Manhattan distance. If xD is the horizontal dis-
tance between the bounding boxes, GD is defined as xD − yO . If the bounding boxes
overlap horizontally, xD = 0. GD compares the horizontal spacing between two
strokes to the vertical overlap between them. If the former is small compared to the
latter, the strokes are near each other horizontally.

The feature GA2 is the ratio of the area of the intersection of the bounding boxes to
the area of their union. However, before computing this ratio, the bounding boxes are
expanded if they are too small. If the height of a bounding box is less than the median
bounding box height, the box is expanded to that height. The width is adjusted anal-
ogously. Additionally, the width of each bounding box is then doubled to emphasize
the horizontal arrangement of the strokes. The medians are computed separately for
each problem solution. A large value of GA2 provides additional evidence that two
pen strokes are near each other and are on the same baseline.

To group pen strokes into equation groups, the pairwise classifier is applied to
every pair of strokes. A chaining process is then used to merge pairs of grouped
strokes that share a common stroke. For example, if the pairwise classifier groups
stroke A with B and B with C, the chaining process will combine A, B, and C into
one group. Sometimes subscripts are not properly grouped with an equation. As a

Fig. 3 Properties of bounding boxes used for grouping pen strokes into equation groups
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remedy, small equation groups containing less than five strokes are merged with the
nearest equation group if that group is nearby.

Once the pen strokes have been grouped into equations, it is necessary to group the
strokes into individual characters so they can be recognized. For example, the letter
“X” is typically drawn with two pen strokes. These two strokes must be grouped into
a single multi-stroke character before the letter can be recognized.

Characters are grouped using a variation on the equation grouper employing only
two features,GA andGX.GA is similar toGA2, but the widths of the bounding boxes
are not doubled.GX is similar toGY but considers horizontal overlap of the bounding
boxes: GX = max(

xO

xA
,

xO

xB
). Here xA and xB are the widths of the bounding boxes

of the two strokes, and xO is their horizontal overlap. As before, these features are
used to train a J48 decision tree. This classifier is applied to all pairs of strokes in an
equation group to determine which pairs form multi-stroke characters. Grouped pairs
can chain together to form larger characters.

After the individual characters in a solution have been located, an image-based
recognizer (Kara and Stahovich 2005) is used to recognize them. The recognizer uses
a database of handwritten symbols to identify each character group. An approach
based on a hidden Markov model (HMM) is used to correct recognition errors. Some
errors are due to variations in writing style. Others result from ambiguity. For exam-
ple, a lowercase “t” can be confused with a “+” and the number “1” can be confused
with the letter “i”. The HMM uses local context to correct errors. For example, imag-
ine that the recognizer identifies a sequence of characters as “s1n”. The HMM will
examine the sequence and determine that “sin” is a more likely interpretation than
“s1n”.

During error correction, the output of the image-based recognizer is considered
to comprise the observations and the true identity of the characters are the hidden
states. The Viterbi algorithm (Rabiner 1989) is used to compute the most likely
sequence of hidden states to produce the observations. This sequence is then used as
the interpretation of the equation.

Extracting Features from Equation Groups

Once the equations have been recognized, we compute 25 features from the text
as summarized in Table 1. The first feature, FE is the number of equation groups
identified by the equation grouper.

Several features describe the number of occurrences of various classes of symbols.
FD is the number of individual digits in the solution (i.e., 0 – 9). FL is the number of
letters, including both the English alphabet and the Greek letters ‘θ ’ and ‘φ’, which
are often used to represent angles. We include only these two Greek letters (and ‘Σ’)
because they occur far more frequently in our dataset than other Greek letters. FM is
the number of mathematical symbols including ‘+’, ‘-’, ‘*’, ‘/’, and ‘=’. The number
of parentheses is excluded in the count of mathematical symbols. FΣ is the number
of occurrences of the symbol ‘Σ’, which is typically used in equation prototypes
(see below). Finally, FC is the total number of characters in the solution: FC =
FD + FL + FM + FΣ + N(), where N() is the number of parentheses. (While we
include the number of parentheses in the total count of characters, we found that
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Table 1 Features for
characterizing equations. D =
digit, L = letter, M =
mathematical symbol, “units”
are units of measure, e.g., “kg”
and “ft”

Features Description

FE No. of equations

FD No. of digits

FL No. of letters

FM No. of mathematical symbols

FΣ No. of ‘Σ’ characters

FC No. of characters

FD/L Ratio of FD to FL

FD/M Ratio of FD to FM

FL/M Ratio of FL to FM

FU No. of units of measure

FDD No. of pattern DD

FDM No. of pattern DM

FDL No. of pattern DL

FLD No. of pattern LD

FLM No. of pattern LM

FLL No. of pattern LL

FMD No. of pattern MD

FMM No. of pattern MM

FML No. of pattern ML

F=D No. of pattern =D

FDMD No. of pattern DMD

FDML No. of pattern DML

FLMD No. of pattern LMD

FLML No. of pattern LML

FP No. of long pauses

excluding this from the count of mathematical symbols resulted in slightly higher
prediction accuracy.) Three features describe the relative number of occurrences of
the three most common symbol classes: FD/L = FD/FL, FD/M = FD/FM , and
FL/M = FL/FM . Finally, FU is the number of units of measure in the solution,
including “kg”, “g”, “kN”, “N”, “m”, “lb”, “ft”, and “in”. To be identified as such,
units must be immediately preceded by a digit such as “7 lb”.

The next two categories of features are the number of occurrences of binary and
tripartite sequences of digits (D), letters (L), and mathematical symbols (M). The
features Fij for i, j ∈ {D, L, M} are the number of occurrences of binary sequences.
For example, FDM is the number of pairs of characters containing a digit followed
by a mathematical symbol. The feature F=D considers the number of occurrences of
the specific sequence in which an equal sign is followed by a digit, such as “= 4”.
Equal signs are important as they are one indication of the number of complete equa-
tions. The features FiMj for i, j ∈ {D, L} are the number of occurrences of tripartite

International Journal of Artificial Intelligence in Education (2019) 29:459–483468



sequences. For example, FDML is the number of character sequences containing a
digit, mathematical symbol, and letter, in that order.

Our set of lexical features is inspired by aspects of effective problem-solving
approaches. For example, students in STEM courses are often encouraged to solve
problems symbolically and then to plug in the numbers at the end. It is believed that
manipulating symbols, rather than numbers, makes the concepts more evident to the
student and reduces transcription errors. Likewise, students are encouraged to write
units of measure (e.g., “kg” and “ft”) for the various quantities when solving physics-
based problems. Problem-solving errors often result in inconsistent or incorrect units.
Thus, explicitly writing units can help students to identify errors. Similarly, when
solving mechanics problems, students are encouraged to write equation prototypes
such as “ΣFX = 0”, which is read as “the sum of the forces in the x-direction equals
zero.” Equation prototypes guide students in writing equilibrium equations. By repre-
senting the number of occurrences of the various classes of symbols, and the various
combinations of them, our features model aspects of a student’s problem-solving
approach. Thus, we predict that these features will correlate with the correctness of
the work.

The final feature, which is taken from (Stahovich and Lin 2016), characterizes the
number of pauses between characters. The feature FP is the number of inter-character
pauses longer than the median inter-character pause.

Dataset

We used Livescribe smartpens to collect exam solutions from an undergraduate
mechanical engineering course in statics taught at the University of California, River-
side. A total of 147 students enrolled in the course and 138 completed it. The course
included two midterm exams and a final exam. Here we use data from the midterm
exams. The data comprises a total of 1,069,918 pen strokes, of which 72% are
equation strokes.

After we collected the midterm exam data, we manually partition it into individual
problem solutions. To do this, we rendered each page of digital ink and interactively
separated it by problem. In this way, we created a dataset containing 79 solutions
for Midterm 1 Problem 1 (P1), 113 solutions for Midterm 1 Problem 2 (P2), 76
solutions for Midterm 1 Problem 3 (P3), 77 solutions for Midterm 2 Problem 1 (P4),
82 solutions for Midterm 2 Problem 2 (P5), and 48 solutions for Midterm 2 Problem
3 (P6).

The exam problems were graded by teaching assistants based on rubrics devel-
oped by the course instructor. These rubrics assigned credit for the correctness of
individual problem-solving steps as well as the overall correctness of the solution. To
verify the reliability of the grading, we randomly selected exams from 25 students
and regraded the problems. As we did not have access to the rubric for problem P2,
we did not regrade this problem. Also as not all students completed all exam prob-
lems, the random selection of 25 students resulted in only 22 solutions for 5 of the
six exam questions. (There were 25 solutions for problem P1.) The new grades were
highly consistent with the original ones. For problems P1, P3, P4, P5, and P6, the
correlations between the original grades and the new grades were r = .882, r = .896,
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r = .780, r = .932, and r = .926, respectively. These correlations are significant at p
< .001.

Results

Table 2 shows the means and standard deviations for the 24 lexical features, the pause
feature, and grade for each of the six exam problems. By some measures, students
produced the least amount of equations for problem P2, and the most for problem P4.
For example, the average number of equation groups (FE) for problem P2 is 23.7 and
for problem P4 it is 32.1. Likewise, the average number of characters written (FC)
for problem P2 is 227.8 and for problem P4 it is 329.1. Interestingly, problem P2 had
the lowest average grade of 11.2, while problem P4 had the highest average grade
of 16.4. (All problems have a maximum possible grade of 20.) The average number
of long pauses (FP ) ranged from 45.1 for problem P5 to 69.8 for problem P4. Once
again, problem P4 had the largest number of long pauses out of all six problems.

To examine our hypothesis that lexical properties of handwritten solutions cor-
relate with the correctness of the work, we computed Pearson correlations between
each of the 24 lexical features and grade for all six problems, both separately and
combined. The results are listed in the first 24 rows of Table 3. For the six problems
combined (column P:All), all of the correlations are positive and significant. In fact,
for 22 of the lexical features, p < .001. (Note that all p values are computed with two
tails and the number of degrees of freedom equal to the number of data points minus
two.)

For four of the individual problems, the correlations with grade are significant for
most of the lexical features. More specifically, for problem P1, all lexical features
except FΣ , FD/L, FD/M , and FL/M correlate positively and significantly with grade.
For problem P2, all except FΣ , FD/L, and FL/M correlate positively and significantly
with grade. For problem P3, all except FL/M correlate positively and significantly
grade. For problem P6, all except FΣ , FD/M , FL/M , and FLML correlate positively
and significantly with grade. FL/M correlates significantly, but the correlation is
negative.

For problem P4, only three lexical features correlate significantly with grade: FE

correlates negatively and FD/M and FL/M correlate positively. For problem P5 only
one lexical feature correlates significantly with grade: FDD correlates positively.

Table 3 also includes Pearson correlations between the number of long pauses
(FP ) and grade for all six problems, both separately and combined. The results are
listed in the last row of Table 3. For the six problems combined, the correlation is pos-
itive and significant (r = .461, p < .001). Furthermore, FP correlates positively and
significantly with grade for all individual problems except problem P4. The average
correlation coefficient across all six individual problems is r = .405.

As a measure of the collective power of the features for predicting grade, we used
them to construct SVM regression models. We began by considering a problem-
dependent training approach in which the model for each individual problem was
trained and tested using data from only that problem. We constructed the models
using WEKA’s SVM regression method (SMOreg) with default parameter values
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Table 3 Correlations between the lexical and pause features and grade for the six problems separately and
combined (P:All)

Feature P1 P2 P3 P4 P5 P6 P:All

FE .365‡ .269† .480‡ −.323† −.016 .516‡ .256‡

FD .515‡ .498‡ .651‡ .011 .193 .487‡ .443‡

FL .455‡ .450‡ .633‡ −.045 .165 .385† .418‡

FM .449‡ .374‡ .667‡ −.205 .144 .516‡ .372‡

FΣ .084 .049 .471‡ −.185 .156 .186 .190‡

FC .519‡ .472‡ .693‡ −.071 .196 .507‡ .446‡

FD/L .118 .172 .239∗ .092 .149 .337∗ .147†

FD/M .150 .282† .237∗ .340† .212 .170 .250‡

FL/M −.046 .079 −.063 .267∗ .052 −.296∗ .096∗

FU .359† .387‡ .573‡ .154 .154 .347∗ .414‡

FDD .491‡ .491‡ .577‡ .094 .229∗ .461‡ .417‡

FDM .488‡ .432‡ .658‡ −.114 .146 .481‡ .396‡

FDL .468‡ .407‡ .591‡ .125 .163 .427† .433‡

FLD .351† .502‡ .624‡ .098 .120 .307∗ .425‡

FLM .478‡ .368‡ .603‡ −.104 .185 .422† .353‡

FLL .411‡ .448‡ .597‡ .026 .151 .315∗ .414‡

FMD .541‡ .395‡ .648‡ −.087 .171 .501‡ .405‡

FMM .383‡ .255† .569‡ −.096 .138 .626‡ .328‡

FML .385‡ .390‡ .602‡ −.184 .172 .398† .337‡

F=D .507‡ .383‡ .628‡ −.088 .121 .449† .380‡

FDMD .511‡ .451‡ .553‡ −.166 .195 .407† .356‡

FDML .365‡ .372‡ .565‡ −.057 .052 .407† .321‡

FLMD .442‡ .365‡ .526‡ −.008 .179 .387† .341‡

FLML .361† .357‡ .402‡ −.117 .150 .167 .242‡

FP .481‡ .510‡ .746‡ −.087 .238∗ .542‡ .461‡

∗p < .05, †p < .01, ‡p < .001

(Hall et al. 2009). This method normalizes the data and uses a polynomial kernel with
an exponent of 1.0. We trained the models for all problems, both separately and com-
bined, using 10-fold cross-validation. For this training approach, the dataset is split
into 10 equal-size, disjoint subsets. During each of the 10 folds, a model is trained
using nine of the subsets, and that model is then used to make predictions for the
remaining subset. At the completion of this process, there is a predicted grade for
each data point. We characterize the performance of the models in terms of the Pear-
son correlation (r) between the predicted and actual grades, the root-mean-square
error (RMSE) of the predictions, and the mean-absolute error (MAE). The results are
listed in Table 4. The rows labeled “P:All” are the results for the six problems com-
bined, while the rows labeled “Ave” are the average performance measures for the
six individual problems.
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Table 4 Correlations between actual and predicted grades for SVM regression models trained using
problem-dependent training

Problem Statistic All FC Lexical Single Double Triple FP

r .404‡ .497‡ .414‡ .378‡ .478‡ .482‡ .447‡

P1 RMSE 4.00 3.58 3.95 4.03 3.68 3.65 3.75

MAE 3.33 2.98 3.30 3.38 3.02 3.03 3.10

r .342‡ .464‡ .341‡ .329‡ .451‡ .434‡ .492‡

P2 RMSE 3.57 3.14 3.57 3.59 3.18 3.20 3.11

MAE 2.69 2.51 2.67 2.61 2.52 2.58 2.47

r .565‡ .687‡ .552‡ .626‡ .629‡ .574‡ .728‡

P3 RMSE 3.81 3.24 3.90 3.55 3.56 3.73 3.03

MAE 3.03 2.51 3.06 2.84 2.71 2.95 2.45

r .202 −.131 .155 .319† .145 .025 −.110

P4 RMSE 4.00 3.81 4.11 3.57 3.76 3.89 3.78

MAE 3.34 3.04 3.43 2.87 2.99 2.93 2.97

r −.030 .152 −.009 .081 −.009 .199 .157

P5 RMSE 6.05 5.19 5.93 5.75 5.71 5.18 5.24

MAE 4.75 4.20 4.75 4.58 4.47 4.09 4.17

r .455† .403† .470‡ .446† .482‡ .320∗ .431†

P6 RMSE 4.38 4.10 4.31 4.08 4.03 4.25 4.12

MAE 3.47 3.44 3.35 3.25 3.24 3.61 3.25

r .456‡ .435‡ .433‡ .453‡ .440‡ .381‡ .451‡

P:All RMSE 4.10 4.11 4.16 4.09 4.11 4.22 4.08

MAE 3.28 3.32 3.33 3.29 3.34 3.44 3.29

r .323 .345 .321 .363 .363 .339 .357

Ave RMSE 4.30 3.84 4.29 4.10 3.99 3.98 3.84

MAE 3.43 3.11 3.43 3.26 3.16 3.20 3.07

P:All = all problems combined into one dataset. All = all features, FC = character count, Lexical = all
lexical features, Single = single item counts, Double = binary pattern counts, Triple = tripartite pattern
counts, FP = long pause count. ∗p < .05, †p < .01, ‡p < .001. Ave = averages for the six problems.
Significance not reported for average correlations

The “All” column in the Table 4 lists the correlations achieved using all of the
features: the 24 lexical features and the pause feature. For all problems combined,
the correlation with grade is .456 (p < .001), the RMSE is 4.10, and the MAE is
3.28. (When interpreting RMSE and MAE, note that grades range from 0.0 to 20.0).
Additionally, the models correlate positively and significantly with grade for four of
the six individual problems: P1 (r = .404, p < .001), P2 (r = .342, p < .001), P3 (r
= .565, p < .001), and P6 (r = .455, p < .001). The average correlation coefficient
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across all six individual problems is r = .323, the average RMSE is 4.30, and the
average MAE is 3.43.

To examine the relative predictive power of the various types of features, we
trained SVM regression models using subsets of them. We considered five subsets:
(A) FC which comprises the total number of characters, (B) Lexical features which
comprise the complete set of 24 lexical feature, (C) Single features which comprise
single item counts {FE , FD , FL, FM , FΣ , FC , FD/L, FD/M , FL/M , FU }, (D) Double
features which comprise binary pattern counts {FDD , FDM , FDL, FLD , FLM , FLL,
FMD , FMM , FML, F=D}, (E) Triple features which comprise tripartite pattern counts
{FDMD , FDML, FLMD , FLML}, and (F) FP which comprises the number of long
pauses. These results are listed in Table 4. All six subsets produce models that corre-
late positively and significantly (p < .001) with grade for the six problems combined.
For FC r = .435, for the Lexical features r = .433, for the Single features r = .453, for
the Double features r = .440, for the Triple features r = .381, and for FP r = .451.

All six feature subsets produce models that correlate positively and significantly
with grade for individual problems P1, P2, P3, and P6. Additionally, the models
trained with the Single feature subset also correlate positively and significantly with
grade for problem P4. For FC , the average correlation with grade across all six prob-
lems is r = .345, for the Lexical features it is r = .321, for the Single features it is r =
.363, for the Double features it is also r = .363, for the Triple features it is r = .339,
and for FP it is r = .357.

Note that the correlations for FC for the six individual problems listed in Table 4
are smaller than the correlations for FC listed in Table 3. The former are correla-
tions between predicted grades and actual grades using a cross-validation approach
in which the training and testing data are disjoint so as to reduce over-fitting. By
contrast, the latter are direct correlations between FC and grade.

The results in Table 4 characterize the performance of the models for problem-
dependent training. Here, to explore the robustness of the models, we evaluate
their performance using a problem-independent training approach. More specifically,
when testing a model on data from a particular problem, we train the model on data
from the other five problems. This training approach corresponds to a usage scenario
in which models trained from previous problems are used to estimate grades on a
new problem. The performance of these models is described in Table 5.

When using the problem-independent approach, the models trained using all fea-
tures as well as the Lexical, Single, and Double feature subsets correlate positively
and significantly with grade for problems P1, P2, P3, and P5. The models trained
using the FC , Triple, and FP feature subsets correlate significantly with grade for
all six problems: for problem P4 the correlations are negative and for the other five
problems they are positive. For all features, the average correlation with grade across
all six problems is r = .305, for FC it is r = .285, for Lexical features it is r = .302,
for Single features it is r = .336, for Double features it is r = .325, for Triple features
it is r = .240, and for FP it is r = .296. As is expected, the correlations are smaller,
and the RMSE and MAE are larger for the problem-independent training than for the
problem-dependent training.
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Table 5 Correlations between actual and predicted grades for SVM regression models trained using
problem-independent training

Problem Statistic All FC Lexical Single Double Triple FP

r .380‡ .431‡ .381‡ .422‡ .409‡ .358† .457‡

P1 RMSE 4.36 4.18 4.36 4.32 4.25 4.35 4.16

MAE 3.52 3.38 3.51 3.49 3.43 3.53 3.36

r .398‡ .415‡ .379‡ .387‡ .428‡ .357‡ .425‡

P2 RMSE 4.36 4.37 4.41 4.39 4.30 4.53 4.31

MAE 3.61 3.61 3.66 3.64 3.57 3.76 3.56

r .459‡ .410‡ .449‡ .437‡ .432‡ .342† .426‡

P3 RMSE 4.85 4.70 4.74 4.72 4.66 4.94 4.92

MAE 3.89 3.75 3.81 3.78 3.76 3.94 3.94

r .007 −.477‡ .008 .118 −.031 −.370‡ −.491‡

P4 RMSE 6.45 7.36 6.45 6.20 6.57 7.59 7.47

MAE 5.24 6.08 5.27 5.07 5.38 6.25 6.16

r .371‡ .494‡ .385‡ .441‡ .434‡ .383‡ .505‡

P5 RMSE 4.62 3.92 4.57 4.07 4.69 4.41 4.14

MAE 3.72 3.18 3.67 3.32 3.74 3.53 3.36

r .216 .438† .206 .209 .278 .367∗ .451†

P6 RMSE 5.66 4.18 5.73 5.01 4.80 4.32 4.20

MAE 4.47 3.33 4.51 3.96 3.87 3.51 3.35

r .305 .285 .302 .336 .325 .240 .296

Ave RMSE 5.05 4.79 5.04 4.79 4.88 5.02 4.87

MAE 4.07 3.89 4.07 3.88 3.96 4.09 3.96

All = all features, FC = character count, Lexical = all lexical features, Single = single item counts, Double
= binary pattern counts, Triple = tripartite pattern counts, FP = long pause count. ∗p < .05, †p < .01, ‡p
< .001. Ave = averages for the six problems. Significance not reported for average correlations

Using too many features in a model often results in over-fitting of the data. Here
we examine optimal subsets of the features. We exhaustively enumerated and evalu-
ated all possible models employing three lexical features and the pause feature. We
trained these models in a problem-dependent fashion using 10-fold cross validation.
Table 6 lists the optimal combination of features for each problem and the corre-
sponding correlation coefficient, RMSE, and MAE. Table 7 contains the coefficients
for the optimal regression models. Note that the models are computed using normal-
ized feature values. For all six problems, the correlations are positive and significant.
The average correlation across all six problems is r = .503, the average RMSE is
3.60, and the average MAE is 2.89. Figure 4 shows plots of residuals vs. predicted
grades for the optimal models.
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Table 6 Performance of optimal models constructed using three lexical features and the pause feature

Problem Optimal features r RMSE MAE

P1 FD/L FDD FMD FP .529‡ 3.50 2.90

P2 FLD FMD FDMD FP .534‡ 2.99 2.38

P3 FM FU FDMD FP .737‡ 3.00 2.33

P4 FE FL/M FDD FP .396‡ 3.33 2.66

P5 FE FD/L FLML FP .236∗ 5.07 4.15

P6 FD/M FL/M FMM FP .584‡ 3.68 2.90

P:All FD/M FU FDML FP .484‡ 4.00 3.23

Ave .503 3.60 2.89

SVM regression models trained using 10-fold cross-validation. ∗p < .05, †p < .01, ‡p < .001. P:All =
all problems combined. Ave = average for the six problems. Significance not reported for the average
correlation

Discussion and FutureWork

Our results support our prediction that the lexical properties of a student’s handwrit-
ten solution to a problem in a STEM course correlate with the correctness of the
solution. We found that all of the lexical features correlate positively and significantly
(p < .001) with grade for the six problems combined. Furthermore, for four of the six
individual problems (P1, P2, P3, and P6), nearly all of the lexical features correlate
positively and significantly with grade.

SVM regression models trained in a problem-dependent fashion (i.e., with training
and testing data comprising disjoint subsets of data from the same problem) demon-
strated that the lexical features, in combination, are predictive of the correctness of
a handwritten solution (Table 4). For example, models trained with the complete set
of lexical features, as well as those trained with four different subsets of the lexical

Table 7 Optimal SVM regression models for computing grade

Problem Grade=

P1 +0.2497 +0.4199FMD +0.2319FDD −0.1865FD/L +0.1560FP

P2 +0.4121 +0.5069FDMD +0.3603FLD +0.2238FP −0.1947FMD

P3 +0.0537 +0.7484FP +0.2145FU +0.1677FM −0.1304FDMD

P4 +0.7394 −0.6847FE +0.5548FDD +0.2843FL/M −0.1943FP

P5 +0.2521 −0.5216FE +0.4262FP +0.4220FLML +0.3925FD/L

P6 +0.1832 +0.4922FMM +0.2958FD/M −0.2618FL/M +0.1853FP

P:All +0.2319 +0.5427FP +0.3393FD/M +0.1494FU −0.0168FDML

The models use normalized feature values and are computed using the entire set of examples without
cross-validation
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Fig. 4 Residual vs. predicted grade for the optimal SVM models trained using three lexical features and
the pause feature. (See Table 6)
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features (the FC , Single, Double, and Triple subsets), all correlate positively and
significantly (p < .001) with grade for the six problems combined.

Prior work in (Stahovich and Lin 2016) demonstrated that the number of long
pauses in a student’s handwritten solution to a problem in a STEM course correlates
with correctness. Our results demonstrate that our lexical features provide informa-
tion beyond that provided by the pause feature. In fact, combining the lexical and
pause features produced the best performance. For example, the models in Table 6,
which each include three lexical features and the pause feature, performed better than
the models in Table 4, which comprised only subsets of the lexical features or only
the pause feature.

Because of their nature, the various lexical features are correlated with each other.
For example, as the total number of characters increases, the number of digits, letters,
and mathematical symbols each typically increase as well. Indeed, SVM regression
models trained in a problem-dependent fashion using only the number of characters
(FC) did correlate positively and significantly with grade for four of the six individual
problems (P1, P2, P3, and P6) and for all problems combined. However, the other
features do provide additional information as is evident from the optimal models in
Table 6. The feature FC was not selected in any of the optimal feature models. Thus,
beyond the number of characters, the number of occurrences of the various classes
of symbols and binary and tripartite sequences of them are important features for
assessing the correctness of a problem.

The correlations for problem-independent training (Table 5) are somewhat smaller
than the correlations for problem-dependent training (Table 4). Nevertheless, the fact
that problem-independent training produces significant correlations suggests that the
methods may be useful in scenarios in which models are trained on existing problems
are then used to estimate grades on new problems. However, there are clearly limits
to the generality of the models, and exploring this is left to future work.

For both problem-dependent and problem-independent training, models trained
using the full set of lexical features failed to produce significant correlations for
problem P4. (However, the optimal model did produce a significant correlation with
grade.) We suspect that this may be related to the nature of this particular exam
question. This problem had the highest average grade out of the six problems. On
average, students received 16.4 out of a possible 20 points. We suspect that the weak
correlations for this problem are a result of a large number of students performing
particularly well so that the distribution of grades was highly skewed. In total, 32%
of students received a perfect grade of 20.

For problem P5, problem-dependent training using the full set of lexical features
failed to produce a significant correlation. However, problem-independent training
with the full set of lexical features did produce a significant correlation, as did the
optimal model. This may suggest a problem with over-fitting.

Figure 4 shows plots of the residuals vs. predicted grades for the optimal models
from Table 6. For the most part, the residuals are unbiased. The residuals for problem
P2 are somewhat heteroscedastic, but this may be a result of the dearth of examples
with high grades. The diagonal band in the upper right of the residual plot for problem
P4 is a result of the high proportion of students who received perfect grades. Each of
these points represents a student who received a perfect grade, and thus the predicted
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values and residuals are linearly related. This same band appears in the plot for all
problems combined.

We believe that our features are predictive of correctness because they characterize
aspects of effective problem solving. For example, by characterizing the relative fre-
quency of non-numerical symbols vs. numbers, our featuresmay detect when a student
works symbolically and delays the use of numbers until the last step, which is an effec-
tive approach to problem solving. Nevertheless, we avoid attempting to interpret the
coefficients of the SVM regression models in Table 7 as their meaning is not clear.

Instead, our models are best evaluated in terms of their accuracy at making pre-
dictions. Our regression results characterize prediction accuracy as the training and
testing data for the models was distinct: the results in Table 4 describe the predic-
tion performance for problem-dependent training using cross-validation, while the
results in Table 5 describe performance for problem-independent training in which
the training and testing data are form different problems. Said differently, our results
characterize performance at extrapolation rather than interpolation.

The best prediction accuracy was achieved by the optimal models described
in Table 6, which were also trained in a problem-dependent fashion using cross-
validation. For the six individual problems, the models achieved an average correla-
tion coefficient r = .503, an average RMSE of 3.60 and an average MAE of 2.89. On
average, these models explained 25% of the variance in the grades (r2 = .253) and,
thus are capable of making useful predictions of grades. However, as the RMSE is
3.60 on a grading scale of zero to 20, the predictions are not yet sufficiently accurate
for automated grading. The models are best used for providing automated feedback
to students. For example, in cases where it is impractical to grade student homework
(which unfortunately occurs all too often in large STEM courses), the models could
be used to identify students who have poor predicted grades on multiple problems.
Those students could then be given additional support with the material. For this
application, erroneously low predicted grades would cause no harm.

While an average correlation coefficient of r = .503 is still insufficient for auto-
mated grading, these results are none the less surprising. The models do not attempt
to interpret a student’s equations or the final answer. In fact, the models do not even
consider if a final answer exists. The predictions are based solely on lexical charac-
teristics of the writing and the number of long pauses. We believe that there may be
other lexical properties of handwritten equations, not considered by our feature set,
that also correlate with correctness. Identifying these could improve prediction accu-
racy, but that is future work. Likewise, our work is complementary to that of Van
Arsdale and Stahovich (2012) who used features characterizing the temporal and spa-
tial organization of a student’s handwritten solution to predict correctness. We expect
that combining our features with theirs will produce even more accurate predictions.

It is useful to contrast our task with another automated grading task: automated
essay scoring (AES). AES techniques are quite mature. For example, Attali (2015)
reported correlations between machine generated scores and human generated scores
as high as r = .79. However, this task is considerably different from ours. AES sys-
tems work with machine interpretable text, while we work from handwritten pen
strokes. Recently, Sharma and Jayagopi (2018) developed a method for automated
grading of handwritten essays. They formulated the problem as the task of classifying
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an essay with one of five possible integer scores in the range from zero to four. Their
methods achieved an accuracy of only 38.1% at assigning the correct score, i.e., the
score assigned by a human grader. However, as described in Section “Related Work”,
even this task is considerably different from ours. For example, essays have a strong
spatial organization and a known lexicon, while the handwritten problem solutions
we consider do not. Thus, given the complexities of our problem domain, a correla-
tion of r = .503 between predicted and actual grades represents a reasonable level of
performance.

Evaluating the validity and reliability of automated grading methods is a com-
plicated matter. For example, Attali (2013) presents an analysis of the validity and
reliability of AES methods. He notes that because these methods cannot evaluate the
same aspects of writing that human graders do, many researchers evaluate the valid-
ity of AES methods simply in terms of their ability to match human-generated scores,
without concern for which aspects of the writing the methods actually evaluate. We
employ the same approach here. Understanding which aspects of problem solving
our methods measure is an interesting and challenging question which is beyond the
scope of our present work.

Similarly, we have not yet examined the reliability of our methods. We use the
methods in (Stahovich and Lin 2016) to locate and recognize characters and locate
equations groups. If these methods cannot interpret the writing, this will affect the
computation of the lexical and pause features, and thus could affect the predicted
grade. As result, two solutions that differ only in the legibility of the writing may be
assigned different grades. Examining this issue is left to future work. Nevertheless,
we believe that improving the accuracy of the underlying recognition methods we
use will increase our accuracy at predicting grade.

We found that subsets of the features produced the strongest predictions of grade.
We performed limited feature subset selection by enumerating all models containing
three lexical features and the pause feature and selecting the best-performing ones.
In future work, it will be necessary to employ more sophisticated subset selection
techniques such as those in (Kohavi and John 1997).

Some of the lexical features are domain-independent, while others like the number
of “Σ” characters may be specific to particular STEM subjects. Thus, future research
is needed to determine if these results generalize to other STEM courses. Further-
more, replication of these results with other cohorts of students will strengthen the
conclusions of this study.

Conclusion

This study demonstrated that the lexical properties of a student’s handwritten solu-
tion to an exam problem in an engineering course correlate with the correctness of the
work. We developed a set of 24 quantitative features characterizing the lexical prop-
erties of handwritten equations. These features include the number of occurrences of
various classes of symbols, binary sequences of symbols, and tripartite sequences of
symbols. We used these features to construct SVM regression models to predict the
correctness of the work, i.e., the grade a human grader would assign.
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We evaluated this approach on a dataset containing solutions to six exam problems
from an undergraduate engineering course in statics. Students completed the exam
problems using digital pens that recorded the work as time-stamped pen strokes.
SVM regression models trained using the complete set of lexical features achieved
a correlation of r = .433 (p < .001) on the six problems combined, and an average
correlation of r = .321 for the problems considered individually.

We also examined the performance of our lexical features in combination with a
pause feature that represents the number of long pauses in a student’s handwritten
solution (Stahovich and Lin 2016). We found that the two types of features provide
complementary information about correctness and that combining the two produced
the best performance. For example, SVM regression models trained using an opti-
mized subset of three lexical features and the number of long pauses achieved an
average correlation with grade across all six problems of r = .503. This is a surpris-
ing result given that our approach does not attempt to interpret the equations or even
the final numerical answer. Additionally, unlike more traditional automated grading
methods, such as automated exam scoring, our methods work from handwritten pen
strokes rather than machine interpretable text.

One important property of our techniques is that they do not require complete
semantic interpretation of equations, nor do they require knowledge of the subject
matter. Consequently, our techniques should be readily extensible to other subject
areas. In particular, we expect that our techniques will be useful for assessing student
learning in a variety of STEM subjects.

Our techniques are an important step toward creating systems that can automat-
ically grade handwritten coursework. While our current models cannot yet replace
a human grader, our techniques are attractive because of their generality and low
cost. By examining the steps used to solve a problem, our techniques complement
traditional online homework systems that consider only the final answer.
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