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Abstract This paper argues that the research field of Artificial Intelligence in
Education (AIED) can benefit from integrating recent technological advances
(e.g., wearable devices, big data processing, 3D modelling, 3D printing, ambient
intelligence) and design methodologies, such as TORMES, when developing
systems that address the psychomotor learning domain. In particular, the acquisi-
tion of motor skills could benefit from individualized instruction and support just
as cognitive skills learning has over the last decades. To this point, procedural
learning has been considered since the earliest days of AIED (dating back to the
1980’s). However, AIED developments in motor skills learning have lagged
significantly behind. As technology has evolved, and supported by the do-it-
yourself and quantified-self movements, it is now possible to integrate emerging
interactive technologies in order to provide personal awareness and reflection for
behavioural change at low cost and with low intrusion. Many activities exist that
would benefit from personalizing motor skills learning, such as playing a musical
instrument, handwriting, drawing, training for surgery, improving the technique in
sports and martial arts, learning sign language, dancing, etc. In this context, my
suggestions for AIED research in the coming 25 years focus on addressing
challenges regarding 1) modelling the psychomotor interaction, and 2) providing
appropriate personalized psychomotor support.

Keywords Procedural learning .Motor skills learning . Psychomotor learning domain .

Artificial intelligence .Education . Internetofme .Quantified-self .Wearabledevices .Big
data . 3Dmodelling . 3D printing . Ambient intelligence . TORMESmethodology

Int J Artif Intell Educ (2016) 26:730–755
DOI 10.1007/s40593-016-0103-2

* Olga C. Santos
ocsantos@dia.uned.es

1 aDeNu Research Group. Artificial Intelligence Dept. Computer Science School, UNED, Madrid,
Spain

http://orcid.org/0000-0002-9281-4209
http://crossmark.crossref.org/dialog/?doi=10.1007/s40593-016-0103-2&domain=pdf


Introduction

Research in Artificial Intelligence in Education (AIED) aims to develop flexible
systems that will increase access to effective, personalized and engaging, anytime,
anywhere learning throughout lifetimes across the full range of knowledge do-
mains and skills and employing varied pedagogical approaches (Underwood and
Luckin 2011).

Under this umbrella, this paper focuses on the psychomotor learning domain, which
deals with physical movement, coordination and the use of the motor skills areas
(Harrow 1972). Motor skills refer to bodily movements involving muscular activity
(Gagné and Briggs 1979). More precisely, motor skills involve goal-oriented physical
actions or tasks requiring voluntary body and/or limb movements to achieve the goal
(Magill 1993). Thus, motor skills learning can be defined as achieving the ability to
perform a function acquired with practice that requires body and/or limb movement to
accomplish the goal of an action or task (Christensson 2005). It is about Bdoing^
through imitation, practicing and habituating new skills (Penney 2011). Motor skills
can be classified in three dimensions (Magill 1993):

1) precision of the movement, which considers i) gross motor skills that involve large
musculatures and a goal where the precision of movement is not as important, and
ii) fine motor skills that require control of small muscles of the body to achieve the
goal of the skill and generally including hand-eye coordination;

2) defining the beginning and end points of the movement, which considers i) discrete
motor skills that have clearly defined beginning and end points, ii) serial motor
skills that put together several discrete motor skills, and iii) continuous motor skills
in which the performer of the skill determines the beginning and end points; and

3) stability of the environment, which in a four category system combines i) the
change or not from one execution to the next one, with ii) the execution either
stationary or in motion.

Consolidating specific motor tasks into memory through repetition (thus, creating
long-term muscle memory for a given task), is very relevant in diverse scenarios that
support learning processes involving not only brain activity, but also physical activity,
such as playing a musical instrument, handwriting, drawing, training for surgery,
improving the technique in sports and martial arts, learning sign language, dancing.
In these situations, learners have to train by repeating very specific movements till they
learn the best way to carry them out effectively without conscious effort (Krakauer and
Shadmehr 2006). The automatization of skills is very much shared between cognitive
and motor skills, so in essence, all of the work being done in AIED over the last
30 years on cognitive skills acquisition, that can go back to (Anderson 1982), is worthy
of reinvestigation with motor skills.

For that matter, learning motor skills goes beyond mere muscle memory, blending
motor skills with cognitive (including meta-cognitive) and affective skills. Hence,
research in AIED must build on existing cognitive (i.e., tell what to do when the
learner answers something wrong), meta-cognitive (make learners aware of their
learning process and thus, produce their own learning strategies) and affective research
(turning negative emotional states into productive learning experiences). The cognitive,
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meta-cognitive and affective dimensions are popular focus areas in AIED. However, as
discussed in this paper, there have not yet been corresponding AIED developments
addressing the psychomotor learning domain, thus supporting the personalized learning
of motor skills. Therefore, the focus of this paper is mainly on how the physical part
related to muscle training can be supported from an AIED perspective, both in the
modelling of the learner’s physical interaction and in the provision of personalized
support during the training. This implies that the physical actions carried out while
training are to be monitored in real-time, compared with experts’ performance and,
when needed, corrected through appropriate feedback, in order to achieve successful
motor skills learning (i.e., skills learning at a physical level).

Feedback is crucial in motor skills learning (Swinnen 1996). For example, learners
do not often recognize motion errors, and experts need to provide objective advice to
learners (Iwasako et al. 2014). Traditionally, a human instructor or coach is used to
support motor skills learning (Wulf et al. 2010) following the apprenticeship model
(i.e., learning by observation of an expert) (Christensson 2005), which can also be done
using multimedia content (Kwon and Gross 2005). Methods include (van der Linden
et al. 2011): i) verbal instructions, ii) physically guiding the learner’s limb movements,
and iii) allowing learners to observe themselves in a mirror. This training approach
requires a high degree of expertise in identifying how close the movement performed
resembles the ideal one, especially when movements are complex and can be per-
formed with different level. There are also several limitations when a human attempts
to provide feedback (Rauter et al. 2011): i) a human cannot hold the same level of
attention and concentration over a longer period of time, ii) a human is not able to
observe all important physiological and biomechanical variables characterizing the
movement, neither at the same time nor at high precision, and iii) a human can hardly
provide augmented concurrent feedback (i.e., external stimulus during the movement in
real-time). In addition, the process of learning by imitation can be improved with
multimodal feedback systems (Portillo-Rodriguez et al. 2008), which are systems that
provide feedback through different sensorial channels (i.e., visual, auditory and haptic).

Moreover, according to (Christensson 2005), personalized motor skills learning
environments that follow a learner-centric and constructivist (learn-by-doing) approach
are needed. In this way, the system can be challenging and supporting at the same time
in order to properly engage and motivate the learner. Hence, it can adapt to each
individual needs and progress, providing personalized feedback meanwhile the learner
is performing the tasks, and changing the instructional strategy when needed (e.g.,
guide, teach, iterate, challenge).

Because there are multiple novel interactive technologies that can help make
personalized motor skills learning possible, this paper argues that now is a good time
to introduce motor skills learning as a main research direction in the AIED community.
A variety of emerging resources are primed to support this new direction, including:

& novel types of quantified-self1 wearable devices from the so called BInternet of Me^
that allow collecting data from the user in a non-intrusive way, such as with smart
bracelets, watches, t-shirts, etc.,

1 A movement to incorporate technology into data acquisition on aspects of a personâ€™s daily life (i.e., self-
knowledge through self-tracking with technology) (Wolf 2010).
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& techniques for big data analysis that deal with volume, variety, velocity, variability
and veracity,

& 3D modelling of living physical objects by developing a mathematical representa-
tion of their three-dimensional surface,

& 3D printing of exoskeletons for motor control rehabilitation, and
& augmented sensorial output with ambient intelligence (i.e., environments that are

sensitive and responsive to the presence of people).

These technologies can enrich AIED research in order to develop procedural
learning environments that can physically support -and when appropriate guide- the
particular way each individual learner should move her body in order to achieve
specific motor learning goals (i.e., learning goals that are related to improving motor
skills acquisition). As these technologies are of much interest in the do-it-yourself
(DIY) movement,2 the AIED research community can take advantage of the resources
and support already available online, thus reducing the learning curve for their inte-
gration in AIED systems. In addition, educators need to be involved in what is known
as an elicitation process to help them identify the personalized support to be provided to
learners training their motor skills. TORMES methodology (Santos and Boticario
2015) can facilitate this elicitation process.

The rationale for pursuing this new approach in the AIED field is that the learning of
motor skills would benefit from the individualized instruction and support that it is the
purpose of AIED to provide. The acquisition of motor skills poses familiar AIED
problems, but in novel and challenging new forms, such as i) modelling correct (expert)
motor movements, ii) diagnosing students’ movements, and iii) deciding the personal-
ized intervention (i.e., what feedback to give and when and in what form, etc.).
Emerging novel interaction technologies seem to fill the technological gap to make
personalization possible in motor skills learning. In addition, service-oriented architec-
ture approaches aimed to extend learning environments with adaptive navigation
support (Santos and Boticario 2011) need to take into account recent trends in
service-oriented and ubiquitous computing, moving to an ecosystem of standard-
based interactive learning tools (Nye 2015). Figure 1 depicts aforementioned elements
that are foreseen to frame the AIED research in the coming 25 years aimed to develop
systems that can provide individualized instruction and support in motor skills training.

As preliminary work to this paper, a discussion on how the training of the Aikido
martial art can benefit from an AIED procedural learning environment for personalized
motor skills training (Santos 2015) was presented at the workshop BLes Contes du
Marriage: Should AI stay married to ED?^ that was organized during the AIED 2015
conference to examine the current and future identity of the AIED field.

The contents of this paper are structured as follows. First, a review of papers from
the International Journal of AIED (IJAIED) is provided, which reveals a dearth of
AIED research on personalized motor skills learning (despite a few examples that
tackle related issues) inside the community. Next, a non-exhaustive list of motor skills
learning systems from outside the AIED field are reviewed, revealing a lack of attention
to personalization features. After that, challenges and opportunities for the AIED

2 The do-it-yourself movement encourages people in creating things by their own, such as those that involve
physical objects connected to the Internet, the so called BInternet of Things^ (De Roeck et al. 2012)
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research community are identified, when considering emerging interactive technologies
to build personalized systems for motor skills learning.

Motor Skills Learning Inside the AIED Community

Limited attention to physical and motor aspects of learning has been carried out in the
AIED community so far. This is likely due to the lack of appropriate technological support
available in the past for movement detection at low cost and with low intrusion. In order to
provide some background of the AIED field regarding personalized support for motor
skills learning (and since no specific IJAIED papers addressing motor skills personalized
learning were found in the review), this section compiles articles published in IJAIED that
tackle related issues from the procedural learning perspective. In particular, the acquisition
of procedural skills has been addressed since the eighties and early nineties in the AIED
field, primarily in the context of Intelligent Tutoring Systems (ITS) in closed domains
(Andriessen and Sandberg 1999). Typically, these approaches involved comparisons
between learner answers and experts’ by (Ohlsson 1993): 1) observing learners’ actions,
2) measuring progress in terms of correct problem solving steps, and 3) applying existing
and well-founded theoretical notions on skill acquisition.

This review of IJAIED papers starts with some historical issues regarding procedural
learning that arose during the discussion carried out among Schank and Edelson (1989/
1990) and Eggert (1990) on their different viewpoints regarding the role for AIED, and
how technology can be used to reshape education. In particular, Schank and Edelson
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Fig. 1 Elements for providing individualized instruction and support in motor skills training
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proposed and discussed the benefits of simulation as a relevant instructional approach
for computer-based education since it is realistic enough to facilitate learning-by-doing
(through failure-driven learning) in domains that are too risky or expensive to be
trained in, allowing also the learner to revise her hypothesis based on her observations.
In addition to engaging the learner in the learning process thanks to the direct
experience while acquiring knowledge, these authors highlighted that simulation envi-
ronments encourage learners to formulate hypotheses in the form of actions in the
simulation and then observe the effects of their hypothesis. In turn, the environment can
respond immediately to the actions of the learners (with several levels of intervention)
providing instant feedback. Eggert did not doubt on the educational value of the
simulators and agreed on the benefits for learners from being able to make errors
without the pressure of a human judging them. However, he considered that simula-
tions were too expensive to build in a way that could allow true independent learning
and avoid learners pushing system boundaries while wandering around materials that
they do not fully understand.

Following this Blearning-to-do-by-doing^ approach, IJAIED papers in the same
period discussed the usefulness of robots for procedural learning. The robot-based
pedagogy (Nonnon and Theil 1990) was proposed to take advantage of computers to
transform learning activities that are often very abstract into others that are more
concrete and hands-on. The goal of this approach was to let learners discover by
themselves the methods of experimental inquiry. For this, the learner can stock
incrementally the procedural instructions pertaining to an experimental schema. When
needed, the robot-aid can take over from the learner the step-by-step procedural
details of the experiment under study, look after the collection of data and give back
a (graphical) representation of the dynamics of the whole process. This pedagogical
concept of managing via robot-aid the data collection and the graphical representation
of the experimental process in real-time was named Bbi-focal cognitive lenses^ by the
authors, as it provided the learner with the opportunity to simultaneously perform an
action and receive a representation of it for consultation. In turn, Howell and Hay
(1989) proposed robotics manipulators to support learners with motor impairments to
transform their desired actions into purposeful manipulations through the robot
movements. In this way, learners with functional diversity were also able to experi-
ence learning processes and educational concepts. In a different approach, Rabardel
(1991) reported the effect on the cognitive activity of using a training robot for
learning through discovery, integrating the role of physical action in the construction
of knowledge. The goal here was to guide the conceptualization process in relation to
the action to be used for the development of skills.

A decade later, AIED evolved to more directly address issues related to modelling
(of natural phenomena) and to elevate dynamic aspects of learning as an essential
feature (Andriessen and Sandberg 1999). In this context, the roles of models in AIED
research were discussed (Baker 2000). Within the first role (i.e., models as a scientific
tool for understanding and predicting some aspect of an educational situation), Baker
proposed extending the notion of cognition to embrace action and perception, and
suggested to consider for instance, the need for Bunderstanding the coordination
between hand, eye, brain, pencil and paper required when a child learns to write^.
His concern was to avoid leaving out any significant phenomena (as purely cognitive
models of teaching practice do). This author argued that models integrating cognition,
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perception and action could be elaborated. In this context, he posed the question of
whether these integrated models are useful in solving important problems.

Recently, in 2015, a few papers that focus on procedural learning of motor
skills have emerged. Alvarez et al. (2015) designed and evaluated a virtual
training application built with an ITS to simulate complex scenarios and realistic
behaviours that controls events using real-time task recognition. Another ITS
combined with augmented reality (i.e., a live direct or indirect view of a physical,
real-world environment whose elements are augmented -or supplemented- by
computer-generated sensory input) has also been built and evaluated in a different
system (Westerfield et al. 2015) with the purpose of training for manual assembly
tasks. In particular, this research suggests that combining abstract concepts and 3D
spatial information in the context of real-world objects makes augmented reality
an approach for training tasks which require manipulation of objects. These tasks
are inherently spatial in nature and can be difficult to teach without close instruc-
tion and supervision. In this way, hands-on training that provides more intuitive,
interactive and efficient training is supported, and this can provide new possibil-
ities for motor skills development. This work has also showed the benefit of the
personalized support provided by the ITS (in terms of domain, student and
pedagogical models) in order to learn and retain the skills under study in a more
effective way (i.e., better learning outcome in the corresponding post-test).

Above selected and commented papers provide some insight on how procedural
learning has been considered along IJAIED history. Although motor skills training has
not been addressed explicitly in IJAIED literature, signs of its potential interest for the
AIED field have been identified in this review, such as 1) diverse technology (e.g.,
robots, augmented reality) has been considered to improve learning through manipu-
lations, 2) simulation environments have been used for training in realistic situations
that preclude real-life rehearsals, and 3) awareness of activities, such as learning to
write, which involve physical actions that need to be analysed in order to understand all
the phenomena related to the learning process. Regarding the first point, a question that
can be posed is which other emerging technologies might be leveraged to improve
learning through movement and what kind of learning can be benefited from that.
Another question that can be posed addressing the second point asks whether it is
possible to make rehearsals in real-life environments under certain circumstances,
supporting full immersion in the learning task and going beyond the limitations of
simulated environments. Finally, in relation to the last point, the question to be posed is
whether modelling the physical activities involved in the learning process is useful.
With the aim to answer these issues, the next section reviews motor skills training
systems reported in literature that has been published outside the AIED community.

Motor Skills Learning Ouside the AIED Community

With the aim to open the way for AIED researchers to develop procedural learning
ecosystems that support physical practice, a non-exhaustive literature review has been
carried out to identify systems outside the AIED community that support motor skills
learning. As a result, 17 works have been analysed in terms of the following four
aspects, as compiled in Table 1:
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1. Sensing the learner’s corporal movement as specific skills are acquired, and the
context in which this movement takes place.

2. Modelling the interactions to allow comparing the learner movement against the
accurate movement (e.g., how an expert would carry the movement out).

3. Designing the feedback to be provided (i.e., what kind of support, and when and
how to provide it).

4. Delivering the feedback in an effective non-intrusive way to advice the learner on
how the body and limbs should move to achieve the motor learning goal.

In addition, each system compiled in Table 1 includes in the first column its name
(when available), the bibliographical reference that has been analysed, the learning
activity involved and the number of participants who took part in the evaluation of the
system (when reported). In the analysis carried out, personalization issues (when
implemented) have been identified and highlighted in Table 1 with bold face to
facilitate its identification, as those are the relevant parts where AIED research can
make relevant contributions. Works have been ordered chronologically (from oldest to
most recent).

The review compiled in Table 1 shows diverse systems aimed to support motor skills
learning. Following Magill’s classification (1993) in terms of precision most of the
activities imply gross motor skills, although there are also examples of fine motor skills
(e.g., hand writing, playing a musical instrument), beginning and end points of the
movement are arbitrary (continuous motor skills) except for (Oakes et al. 2015;
Lieberman and Breazeal 2007) and the stability of the environment involves changes
in the response of the participant from one execution to the next one (except for sign
language or handwriting), some stationary (playing a musical instrument) and others in
motion (practicing a sport or martial art technique).

Many of these systems are intended for a diverse range of activities (Lieberman
and Breazeal 2007; Miaw and Raskar 2010; Dancu 2012), although studies are
usually carried out in a specific one. When user studies are carried out (in 12 of
the 17 systems analysed), they are usually done so with a limited number of
participants, and with the goal to show that the system functions as expected.
Some aspects of the users experience are also analysed, such as whether users
have positive views of the system (Takahata et al. 2004; Iwasako et al. 2014;
Kikukawaa et al. 2014), whether they improve their performance while using the
system (Kwon and Gross 2005; van der Linden et al. 2011; Ghasemzadeh et al.
2009; Portillo-Rodriguez et al. 2008), or how users respond to different feedback
alternatives (Dancu 2012; Lieberman and Breazeal 2007). In another vein, most of
the learning environments reviewed here address novice users. However, some
works suggests that motor skills acquisition is also relevant, and even more
appropriate, for advanced users (Spelmezan and Borchers 2008). Advanced users
have different needs (Van der Linden et al. 2011) and/or behaviours (e.g., expert
users are more consistent with the movement and the action is more controlled)
(Ahmadi et al. 2006). In fact, as users might evolve from novice to experts with
training, the system should also personalized its support and provide it accord-
ingly (Takahata et al. 2004; Miaw and Raskar 2010; Van der Linden et al. 2011).

Next, the 17 systems analysed are discussed in relation to the four aspects
considered in the review.
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Sensing Movement in Motor Skills Learning Systems

The sensing of the movement is done i) through wearable devices on the body or the
instrument used -when it exists (i.e., golf club, musical instrument, oar, etc.)- such as in
(Oakes et al. 2015; Amma et al. 2014; James et al. 2011; Kikukawaa et al. 2014;
Ghasemzadeh et al. 2009; Iwasako et al. 2014; Baca and Kornfeind 2006; van der
Linden et al. 2011; Takahata et al. 2004; Spelmezan and Borchers 2008), ii) though optical
motion capture devices placed in the environment (which usually require markers on the
participants body, except for the Kinect sensor) such as in (Bloomfield and Badler 2008;
Lieberman and Breazeal 2007; Dancu 2012; Miaw and Raskar 2010), or iii) combining
both, that is within the user and instruments and from outside such as in (Rauter et al. 2011;
Kwon and Gross 2005; Portillo-Rodriguez et al. 2008).

It has been suggested to move sensing outside the laboratory because participants
need to be supported in situ (Oakes et al. 2015), since laboratory settings cannot
reproduce the usual training (James et al. 2011), and there might be differences in
usage when they are used in long term real practice (Hoggan and Brewster 2010). In
addition, sensing in the wild allows a variety of context factors to be taken into account
(Van der Linden et al. 2011). Wearable devices (which usually include accelerometers)
eliminate the need that experiments are carried out solely inside the laboratory to obtain
real-time feedback, and can be run in the real-world (Ahmadi et al. 2006). They can
measure activity and effort levels and are usually small and light enough to be placed
on any part of the body without hindering performance (Baca and Kornfeind 2006). In
addition, and in contrast to optical devices, accelerometers provide precise angles and
speed changes which are not visible to the eye (Kwon and Gross 2005). In any case, it
is very important that wearable devices do not inhibit the user, and are easy to put on
and remove, and are lightweight and unobtrusive (Miaw and Raskar 2010).

Many of the works reported in Table 1 show that wearables can provide straight-
forward information and do not hamper users’ movement (Kwon and Gross 2005). In
much work, the requirement of low cost is also stated (Kwon and Gross 2005; Baca and
Kornfeind 2006). However, expensive equipment is sometimes considered as proof of
concept for initial experiments, with the expectation that the technology considered in
them will have lower cost in the future (Lieberman and Breazeal 2007).

Beside the need to move outside the laboratory, some work claims the relevance of
virtual environments to first practise physical skills (Bloomfield and Badler 2008).
These virtual reality systems have been used to check how a trainee follows an avatar
(Yang 1999). They use visual sensors to reconstruct the user’s posture and check how
the trainee imitates the trainer’s motion by matching to a skeleton model to measure
how learner mimics avatar motions (Kwon and Gross 2005). Virtual reality environ-
ments can provide augmented feedback by overlaying learners’ performance with
desired movement, emphasizing the difference between subject and reference move-
ment, and thus, highlighting desired trajectories (Lieberman and Breazeal 2007).

Modelling Movement in Motor Skills Learning Systems

Regarding the type ofmodelling, approaches are diverse. Some approaches focus on gesture
recognition (Amma et al. 2014; Kikukawaa et al. 2014; Portillo-Rodriguez et al. 2008),
others on physical features (Oakes et al. 2015; James et al. 2011) which can be modelled
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with 3D techniques (Bloomfield andBadler 2008; Iwasako et al. 2014; Van der Linden et al.
2011; Lieberman and Breazeal 2007), still others construct themodels with diverse machine
learning algorithms (Amma et al. 2014; Rauter et al. 2011; Kwon and Gross 2005).

Comparison is usually done against the movement carried out by an expert (Rauter
et al. 2011; Ghasemzadeh et al. 2009; Miaw and Raskar 2010; Kwon and Gross 2005).
When comparing expert’s movements with learner’s movements, a threshold is usually
taken into account, and only when the threshold is overcome, is the feedback activated
(Miaw and Raskar 2010; Bloomfield and Badler 2008). When the movement is
complex, it is usually suggested to break the movement into less complicated actions
(Ghasemzadeh et al. 2009; Kwon and Gross 2005; Portillo-Rodriguez et al. 2008). Very
few systems mention the existence of a user model that records participants’ perfor-
mance (Rauter et al. 2011; Lieberman and Breazeal 2007).

Designing Feedback in Motor Skills Learning Systems

In most of the papers, the design of the support provided is not described, as it seems to
be considered a straight forward approach either i) to report the actual performance,
usually as compared with an accurate performance and reporting when an error is made
(Rauter et al. 2011; Kikukawaa et al. 2014; Ghasemzadeh et al. 2009; Iwasako et al.
2014), or ii) to show when the correct movement has been made (Oakes et al. 2015).
Nonetheless, there are some works that aim to guide the learners’ movements in the
appropriate way (Bloomfield and Badler 2008). In some cases, user centred design
methods such as interviews have been followed to understand the feedback require-
ments (Oakes et al. 2015; Spelmezan and Borchers 2008).

Delivering Feedback in Motor Skills Learning Systems

When providing feedback, the focus of attention should be taken into account. It seems
that if the focus is external (that is, on the movement’s effects rather than on body
movements themselves, which are internal) such as it has been suggested in (Dancu
2012), it enhances motor performance and learning (Wulf 2013). However, in most of
the work, the focus considered is internal.

The modalities for delivering the support can consist of visual, auditory and/or tactile
cues. Humans have a natural parallel multimodal communication and interaction and
prefer to interact multimodally (Portillo-Rodriguez et al. 2008). When humans learn a
new motor skill from a teacher, they learn using multiple channels (Lieberman and
Breazeal 2007): i) high level information about the skill received orally (abstract
behavioural instructions), ii) visual information about how others perform the skill
(demonstrating the motion themselves and requiring the learner to replicate the teacher’s
performance), and iii) tactile information through the teacher’s physical guidance.
However, some systems still rely only on visual feedback (Kwon and Gross 2005;
James et al. 2011; Kikukawa et al. 2014; Iwasako et al. 2014). Sound, which was used in
(Takahata et al. 2004; Baca and Kornfeind 2006; Portillo-Rodriguez et al. 2008; Rauter
et al. 2011; Dancu 2012) can extend human perception, and feedback information can be
provided by changing shape, tone and volume (Hollander and Furness 1994). The third
type of feedback (i.e., haptic) is unique in motor skills learning environments, as it can
only be applied when physical movements are considered in the learning process.
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Haptic or tactile feedback presents the most direct form of motion information and
directly engages the motor learning system, but it is the most difficult for a teacher to
give (Lieberman and Breazeal 2007). It is provided exclusively for the user, which has
advantages (it does not disturb others), but also disadvantages (it cannot be used to
provide external assistance) (Oakes et al. 2015). It was originally developed for sensory
substitution (e.g., to transmit information to deaf and/or blind people) rather than
sensory augmentation (Lieberman and Breazeal 2007). Tactile feedback not only
physically engages learners in the learning process, but might be the appropriate
sensorial channel when learners require the visual and hearing senses for the learning
tasks, such as when playing a musical instrument (Van der Linden et al. 2011). This
kind of feedback is more effective when it points out mistakes learners regularly make
(Van der Linden et al. 2011). Anyway, when experiencing and testing the feasibility of
physical access in fully immersive experiences that can support learning new motor
skills that require fairly precise physical body posture, visual realism might not
sufficient and haptic support aimed for sensory substitution needs to be provided
(Bloomfield and Badler 2008).

Tactile feedback can be provided in three different ways (Miaw and Raskar 2010;
Lieberman and Breazeal 2007): i) vibrations with lightweight vibrating motors or tactors
(tactile actuators), ii) physical movement (torque) produced with motors, and iii) electri-
cal stimulation of muscles. This third option is often dangerous and painful, and in fact,
no work has been found using it. The other two options distinguish between haptic
feedback on movement (first option) and haptic guidance (second option). As for the first
option, vibrotactile feedback can be provided using a small buzz in key moments, thus
consolidating (touch to reward) or correcting (push or pull a limb, joint or other part of the
body) a movement (Van der Linden et al. 2011). However, vibrotactile feedbackmight be
ignored or undetected when cognitive demands are high and tasks are complex (Van der
Linden et al. 2011). Anyway, an acclimation period is required, but that might still not be
sufficient and participants may still not know how to respond to vibration signals at times
(Lieberman and Breazeal 2007). Regarding the second option, haptic guidance prompts
when a movement should be made, giving the opportunity to experience the feel or
correcting the current posture or movement (Van der Linden et al. 2011). This physical
guidance can be provided either with exoskeletons (force feedback on large body areas)
(Bloomfield and Badler 2008) or torques. Torques require higher power and usually
imply lower portability (Lieberman and Breazeal 2007).

From Neuroscience, it is reported that patients that have lost their ability to form new
long-termmemories still can build newmotor skills, which shows that the brain processes
motor learning differently from other conscious types of learning (Scoville and Milner
1957). This suggests that it may be possible to eventually train users to accept tactile
feedback subconsciously to learn motor skills, turning corrections into automatic muscle
reflex instead of a conscious mediation (Lieberman and Breazeal 2007).

Challenges and Opportunities to Personalize Motor Skills Learning
in AIED Systems

As reported in the previous sections, systems aimed to support learners in motor skills
acquisition have been developed outside the AIED community. Thus, it is not surprising

Int J Artif Intell Educ (2016) 26:730–755 745



that their personalization support is very limited. From all the systems reviewed in Table
1, those that describe higher personalization capabilities are M3-trainer (Rauter et al.
2011) and the MusicJacket (Van der Linden et al. 2011). Anyway, from the analysis of
those 17 systems, some personalization opportunities for AIED research have been
identified in Table 1 (and have been bolded there to facilitate its identification). The
main personalization issues identified are the following: 1) take into account the specific
capabilities of each learner (Oakes et al. 2015; Bloomfield and Badler 2008; Rauter et al.
2011; Takahata et al. 2004; Kwon and Gross 2005) and/or physical features (Iwasako
et al. 2014; Van der Linden et al. 2011; Lieberman and Breazeal 2007; Miaw and Raskar
2010; Spelmezan and Borchers 2008; Portillo-Rodriguez et al. 2008), and 2) select the
delivery of feedback depending on the learner’s preferences and/or context (Bloomfield
and Badler 2008; Rauter et al. 2011; Van der Linden et al. 2011), or level of ability
(Takahata et al. 2004; Miaw and Raskar 2010).

Therefore, there are challenges and opportunities for AIED researchers to build
procedural learning ecosystems that personalize motor skills learning. As compiled in
Table 2, AIED directions can be classified into: 1) modelling and representing the
movements of the learner by building a learner psychomotor interaction model as well
as an accurate movement model, and 2) providing the appropriate personalized psy-
chomotor support in the most effective way for each learner in each training context.
Regarding the first direction (i.e., modelling psycho-motor interaction), several AIED
issues have to be addressed: i) to detect the physical interaction carried out by the
learners by collecting data of their movements; ii) to model the accurate movements to
be trained, which are those performed by experts; and iii) to diagnose the mismatch
between the movements carried out by the learner and the expert’s way. Regarding the
second direction (i.e., providing appropriate personalized psychomotor support), the
issues involved are: iv) to model the intervention to be applied; v) to decide the
intervention strategy to provide (e.g., showing performance, guiding, etc.), and when
to apply it; and vi) to deliver the personalized intervention.

Each of these issues poses several challenges and opportunities for AIED
research in terms of representation and interaction issues, which might be ad-
dressed by applying novel interactive technologies such as wearable devices, big
data processing, 3D modelling, 3D printing, ambient intelligence, as well as
holistic design approaches such as TORMES methodology. These are compiled
in Table 2 and discussed next.

Challenges and Opportunities in Sensing Movement in Motor Skills Learning
Systems

Sensing the movement of a learner implies detecting and tracking the learner’s corporal
movement as she learns specific skilled movements as well as the context in which this
movement takes place.

Low cost and non-intrusive wearable sensors can collect, without interrupting the
person’s movements, electronic inputs (rather than just collecting interaction data in the
computer and observing problem solving steps as done in a pure cognitive domain)
about pressure applied, gesture, speed, acceleration, angle, etc. from devices attached to
the body (or the part(s) of the body that are involved in the movement) as well as on
any object used by the learner. Novel interactive technologies, such as those provided
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by quantified-self wearable devices, can be used to gather dynamic indicators while
making the movement. This can help to understand how the movements are performed
and improve training. For instance, the movements carried out by a person can be
monitored using diverse types of sensors (inertial, positional, physiological, etc.)
(Schneider et al. 2015) for real-time motion studies outside the laboratory (Fong and
Chan 2010).

In addition, as reported in Fleury et al. (2015) e-textile research already
provides several solutions that allow remote and mobile measurement of function-
al movement and posture with low intrusiveness by using some sort of technology
embedded directly into the fabric on clothes and objetcs worn by the learner and
which allows tracking complex movement patterns (Bonato 2005). In particular,
phenomena that can be sensed are strain (Gioberto and Dunne 2013; Giorgino
et al. 2009; Preece et al. 2011; Tormene et al. 2012; Yamada et al. 2011),
acceleration (Harms et al. 2010; Zysset et al. 2013), joint movements (Lee et al.
2011), bend angle (Lorussi et al. 2013), posture (Di Rienzo et al. 2009), and
pressure (Shu et al. 2010).

The processing of the data collected needs to be carefully considered. It
might be possible to do some processing within the tracking device, but at
some point the device needs to wirelessly send its data streams to a cloud
environment where multimodal data integration can take place in order to be
able to obtain useful indicators that describe the physical interaction carried out.
The interaction data streams continuously collected by these sensors become
very difficult to make sense of on the fly. Due to its size, variability, and speed
that are due to the continuous collection of information from diverse kinds of
sensors, big data mining techniques need to be explored (Fan and Bifet 2013).
The goal here is to extract movement indicators at the same rate that data are
being processed, so the modelling can support just-in-time feedback to the
learner.

Table 2 AIED directions, research issues and challenges and opportunities, as well as novel approaches to be
considered (interactive technologies and design methodologies)

AIED directions AIED research issues Challenges & Opportunities
for AIED

Novel Approaches

Modelling psychomotor
interaction

Detect learner physical interaction Sensing the movement
performed by the learner

Wearable devices

Big data processing

Model accurate movements to be
trained (expert)

Modelling to allow comparing
learner and expert movements

3D modelling

Diagnose mismatch between
movements (learner vs. expert)

Providing personalized
psychomotor
support

Model the intervention Designing the required support to
give (when, what, how)

TORMES methodology

Decide the intervention strategy,
and when to apply it

Deliver the personalized
intervention

Delivering the personalized
support (e.g., augmented
sensorial feedback including
vibrotactile, haptic guidance)

Ambient intelligence
3D printing (and also 4D)
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Challenges and Opportunities in Modelling Movement in Motor Skills Learning
Systems

Modelling a learner’s movements implies comparing the learner’s movements against
accurate movements, such as the one that an expert with similar physical capabilities of
the learner would perform. For a given activity, the movements for which personalized
support needs to be provided have to be identified, in a way that they can be isolated
from one another. Depending on the kind of activity, this can be already defined in the
domain, or it might imply extracting this information from domain experts. For each of
these movements, the accurate way to carry out the movement has to be modelled. This
can be done by recording the physical interaction performed by experts in the field.
Since it is not possible for any person to perform a given movement in the same exact
way each time, the model of the accurate movement should be built from several
recordings that should involve not only a series of movements by the same expert, but
also by other experts. From this set of recordings, the Baccurate^ movement should be
extrapolated in terms of the relevant parameters that characterize it.

In the field of virtual reality, there is work that builds virtual skeletal models for
videogames from the information collected using wearable technology (e.g., biome-
chanical or inertial sensors), which both map the movement as well as recognize
gestures with artificial intelligence techniques (Arsenault 2014). The movement con-
trolled by sensors can also be represented in 3D models of the human body (Kifayat
et al. 2010; Bae et al. 2012). The biometric function that represents the human body can
parameterize the human posture (DellaGrotte et al. 2008) as well as gestures produced
by the body limbs, such as the hands (Marcel 2002). The parameter should make
possible to identify when a movement fits in the Baccurate^ model (i.e., it is equivalent
to a movement that would be produced by an expert), and when not (i.e., it is produced
by someone with less expertise who is trying to learn the movement), despite the
inherent variability in the replication of a given movement commented upon above.

In addition, a learner model is needed to describe the learners’ body build as well as
her psychomotor skills, level of ability and progress towards mastering the various
movements. For this, the model should i) describe the learner’s physical features, such
as hand length, maximum shoulder opening, etc.; ii) provide information about her
interaction capabilities, such as force, speed, etc.; and iii) contain indicators regarding
the way she can perform the different kinds of movements to be learnt (e.g., level of
performance).

Challenges and Opportunities in Designing Feedback in Motor Skills Learning
Systems

When the movement does not fit into the accurate movement model, an intervention
might be necessary and needs to be designed. Thus, a key area where AIED has a big
role to play is designing the feedback to be provided. In particular, whether it is
appropriate to provide support at this moment and, if so, what kind of support to
provide. In a personalized system, this implies deciding when to interact with the
learner as well as what to ask her to do and how to advise her on how to do it. The focus
in personalizing motor skills learning has to be put on identifying what is the most
appropriate intervention in each case (considering cognitive, affective and psychomotor
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dimensions) and when and how it should be delivered in order to make a positive
impact on the learning process. It should go beyond traditional intervention approaches
which are based on giving instructions that describe what to do and how to do it. In fact,
procedural learning in terms of motor skills is usually difficult to explain by the
instructor and to understand by the learner. And it turns out that this procedural tutoring
support is of major relevance in the case of novice learners, as they might get into a
wrong habit if no timely feedback is provided to themwhile practicing on their own and,
thus, they cannot understandwhy the movement is not accurate (Kikukawaa et al. 2014).

In acquiring motor skills there is a trade-off between learning (i.e., relatively
permanent changes in behaviour that support long-term retention and transfer) and
performance (i.e., temporary fluctuations in behaviour that are observed and measured
during training or immediately thereafter) that should also be taken into account
(Soderstrom and Bjork 2015). In particular, decisions that have a positive effect on
long-term learning (such separating practice with time and other activities, varying
conditions in practice, and making self-produced movements) introduce more perfor-
mance errors, and thus, might frustrate the learner. Thus, when at some point the learner
is frustrated with the practice, it might be better to support short-term performance by
externally guiding the learner rather than forcing self-produced movements that would
improve her long-term progress. Short-term performance (but not long-term learning) is
also improved practicing the same thing over and over, and without varying the
conditions, but that increases boredom. Such frustration and boredom mean that
motivation needs to be strongly supported considering the state of the art in affective
computing (Santos 2016a). Anyway, when a skill is acquired, feedback should be
reduced to avoid a dependency on it (Sigrist et al. 2013).

Another issue of major importance is the selection of the feedback modality. Visual
feedback can be used to understand the movement (Sigrist et al. 2013) and improve
motor skills without the aid of a live instructor. In motion capture systems, feedback
can be provided comparing the user movements with the body positions of an avatar
performing expert movements. In addition to presenting sensor data to the learner, this
allows supporting awareness and self-reflection of how movements carried out by the
learner are aligned with the accurate version of the movements. 3D representations are
of relevance here. Haptic feedback is a new modality that can take advantage of the
physical interactions, but it might not always be the most appropriate approach. For
instance (Marchal-Crespo et al. 2013) found that haptic guidance was especially
suitable for less-skilled subjects and in especially difficult discrete tasks, while visual
feedback seemed to benefit more skilled subjects. Additionally, haptic guidance seemed
to promote learning in a time-critical tracking task.

Therefore, instructors need to be involved in an elicitation process in order to
design the most effective feedback approaches that suit particular learners’ needs
and their context. The knowledge to be elicited is tacit and implicit in the
educators’ head, as it has been acquired through years of teaching, and typically
never made explicit in a systematic way. In order to identify appropriate interven-
tions that produce a positive impact in the learning process, TORMES elicitation
methodology can be applied (Santos and Boticario 2015). TORMES combines
user centred design methods with data mining techniques and extends the design
cycle of interactive systems as defined by ISO 9241–210 (ISO 2010) with the life
cycle of e-learning (Van Rosmalen et al. 2004) and the layered evaluation of
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adaptive systems (Paramythis et al. 2010). Resulting interventions are semantical-
ly described in terms of i) what is to be recommended, ii) how and where the
recommendation is to be communicated, iii) when and to who the recommenda-
tion is to be offered, iv) why the recommendation is to be delivered, and v) which
features characterize the recommendations themselves (Santos and Boticario
2011). In order to address the particularities required by the psychomotor learning
domain and the requirements to model psychomotor interaction and provide
appropriate support, an extension to TORMES might be needed. In any case,
TORMES can be used by educators to apply appropriate user centred design
methods to gather tacit knowledge through qualitative descriptions from psycho-
motor experts while analysing performance indicators of learners regarding move-
ments carried out while training. These indicators can be computed with (big) data
mining techniques in order to gather quantitative information from data collected
in learning experiences with wearable devices. As a result, this elicitation process
can facilitate the identification of the psychomotor support to be provided as the
qualitative analysis on quantitative indicators can rise up unaware opportunities
for motor skills personalization support that should improve training performance.

Challenges and Opportunities in Delivering Feedback in Motor Skills Learning
Systems

Different types of feedback (either positive or negative) can promote motor skills
acquisition (Ashby and O’Brien 2007). Feedback can be provided in several ways
(e.g., visual, auditory, haptic), although a multimodal approach might produce better
results (Sigrist et al. 2013; Portillo-Rodriguez et al. 2008). For instance, ambient
intelligence can make the environment sensitive and responsive to the presence of
people, hence it can be an interesting approach to provide multimodal sensorial
feedback through different sensorial channels, as provided by the AICARP system that
has been discussed elsewhere (Santos et al. 2015, 2016). In that approach, the learner
configures her preferred sensorial channel(s) for feedback delivery, which could be
stored in the learner model and even learnt by the system.

The main novelty in motor skills learning environments is the delivery of haptic
support. This support can be provided with vibrotactile feedback or with haptic guidance.
The former can be delivered through diverse actuators such as resistance, force, vibration,
etc. to tell the learner when her movement does not reflect the accurate movement that is
used as reference, or to reward a good movement to consolidate it. Actuators can be
sewed on clothes to be worn by the learner, such as on the sleeve of a jacket. Sewable
electronic modules controlled by Lilypad Arduino can be used for prototyping the
system. An extended review on systems that deliver vibrotactile feedback is compiled
elsewhere (Santos and Revilla 2016). In turn, haptic guidance can be delivered in terms of
a tangible support that scaffolds the learner through an exoskeleton attached on the body
on how the body and limbs should move to achieve the learning goal. As an example, the
exoskeleton robotics developed by Datta (2014) can move the fingers of the learner to
make the movement considered to be accurate by the system. The technology for 3D
modelling combined with 3D printing make feasible the building of physical prototypes
of tangible objects that can create such exoskeletons to physically scaffold the learner
movement, as discussed in (Santos 2016b). In addition, the very emerging 4D technology
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(which produces physical objects that can change with time) can be an interesting option
to explore in order to dynamically personalized the exoskeleton used for the guiding.

Conclusions

There exist many and diverse types of activities (e.g., playing a musical instrument,
handwriting, drawing, training for surgery, improving the technique in sports and
martial arts, learning sign language, dancing, etc.) that require long-term physical
training to learn how to perform the movements in the most efficient way. The training
process is based on the learning-by-doing approach and involves correcting the
learner’s movements till her optimal movements (considering the own learner’s corpo-
ral features, specific physical abilities, performance to date as well as the particularities
of the motor skills to be learnt) is achieved. Defining the accurate movement and when
and how to provide the physical support is not trivial at all, but is indeed a modelling
challenge for AIED.

No specific work on motor skills learning has been found in the review of IJAIED
papers reported here (although some signs of their potential interest have been detected
and commented upon in this paper). In turn, outside the AIED community, diverse
learning environments for motor skills learning have been developed, but have almost
no personalization features, which are clearly specific of AIED systems. This shows a
gap in AIED research that can become an opportunity thanks to emerging novel
interaction technologies and design methodologies.

In fact, the review of IJAIED papers has shown that AIED research has historically
reflected the technology of the times (Schank and Edelson (1989/1990); Eggert
(1990)). Following this, I concur that AIED systems should take advantage of those
technological advances that can make the field progress, although there is a need to
carefully analyse the best way to apply them. At this point in time, my vision for the
future of the AIED field in the psychomotor learning domain is that the synergy of
artificial intelligence techniques with novel interaction technologies such as quantified-
self wearable devices from the BInternet of Me^, 3D modelling and 3D printing, big
data streams processing on the fly and ambient intelligence sensorial support, among
others, can breathe new life into the AIED research and open new opportunities for
building procedural AIED ecosystem of standard-based interactive learning tools that
can personalize motor skills learning by providing intelligent real-time feedback to
scaffold learning in the psychomotor domain. Moreover, design methodologies such as
TORMES can guide the elicitation of appropriate psychomotor interventions supported
by models of expert and learner behaviour to underpin this personalization effort.

The selection and reporting of research and technologies in this paper does not aim
to be exhaustive, but to suggest some technological directions to be explored by the
AIED research community in the coming years. In particular, the work reported here
suggests that there exists a technological context that can support the AIED research in
developing systems that sense the learner’s corporal behaviour as she learns specific
skilled movements and when needed, provide the appropriate support aimed to make
the learner acquire new motor skills (or refine existing skills) aided by developing a
muscle memory experience along the way. This requires novel forms of expert as well
as learner modelling, novel forms of personalized support suitable for each learner in
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each training context, etc., so this is indeed a potential new research frontier in AIED.
There are four main issues to be addressed: i) sensing the movement performed by the
learner, ii) modelling and comparing learners’ and experts’ movements, iii) designing
the required support to give, and iv) delivering the personalized support. Interestingly,
by putting motor skills learning in the AIED research agenda for the next years, the
field is somehow also going back to its roots due to the need to revisit many of our
fundamental and driving questions, but in the context of motor skills. Substantial
evidence exists to suggest that important similarities exist between motor and cognitive
learning (Bjork and Bjork 1992).

Given the enormous amount of resources spent every year on motor skills training
throughout society, this research area might turn out to be extremely important, and
thus, it can turn into a good opportunity for the AIED field. The added value of AIED is
to provide the personalization support required to build procedural learning ecosystems
that can individualize the learning of motor skills.
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