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Abstract Reciprocal tutoring, as reported in BExploring the design of computer
supports for reciprocal tutoring^ (Chan and Chou 1997), has extended the meaning
and scope of intelligent tutoring originally implemented in standalone computers. This
research is a follow-up to our studies on a learning companion system in the late 1980s
and its network version, Distributed West, in the early 1990s. In this commentary paper,
we first provide the history of and rationale behind our research. We pose and discuss
six design dimensions that comprise 12 design questions. This is done on the basis of
our previous experience and current knowledge as well as by reexamining the design
approach, cognitive load sharing, in the original paper. Our purpose is to shed light on
the future design of reciprocal tutoring. One-to-one classrooms, in which students learn
with their personal computing devices (Chan et al. 2006), are becoming prevalent in
practice; therefore, we expect that reciprocal tutoring—learning-by-tutoring and
learning-by-being-tutored—will also become widespread.
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From Learning Companion to Reciprocal Tutoring and Beyond

Examining the foundations of prior research may facilitate future research. Reciprocal
tutoring systems (RTSs; Chan and Chou 1997) were an intermediate outcome of a
sequence of research that began with the development of learning companion systems
(LCSs; Chan and Baskin 1988) in the late 1980s, when Chan was working on his PhD
project. An LCS, considered an alternative breed of intelligent tutoring systems
(ITSs) in the late 1980s, was modeled after two virtual agents—a virtual
learning companion (as a peer student) and a virtual tutor—while interacting with
a student (Fig. 1).

Conceptually, the goal of the virtual tutor in the traditional ITS is Bto try to alter the
student’s evolving interpreted knowledge so that it converges to the tutor’s own, which
is a much higher level but rather static one^ (Chan 1991, page 4). The virtual tutor
mainly monitors learning activities and supports the student to enable Bthe convergence
to be effective^. Different from traditional ITS, when students engaged in identifying
and evaluating emerging ideas in addition to planning and developing solutions in
LCS, they may be challenged by peer students. Hence, students have to defend,
unfold, examine, and reflect on their own ideas while identifying possible
mistakes of their peers. BSuch a process of mutual justification may not easily
happen in a student-tutor situation because of different social status and knowl-
edge levels, and thus different expectations. Thus, learning, in an LCS envi-
ronment, is the merging of two evolving versions of interpreted knowledge into
the tutor’s one^ (Chan 1991, page 4) (Fig. 2).

In the general research area of technology enhanced learning, the paper on learning
companion published in 1988 was possibly the first paper adopting Vygotsky’s
theory (1978) on the proximal zone of development and scaffolding. From
Vygotsky’s perspective, scaffolding is a temporary form of social assistance
where a more capable peer assists a student by providing feedback to the
student or sharing part of the learning task; this assistance fades gradually as the
student masters the task.

How does a student interact with a learning companion? Three Bprotocols^ of
learning activities (presently are termed as Bscripts^ in the area of computer supported
collaborative learning, Kobbe et al. 2007) were designed in a prototype system called
Integration-Kid (Chan and Baskin 1988) (Fig. 3). The first protocol involved using Bthe

Fig. 1 Intelligent tutoring system and learning companion system
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companion as a competitor^; in this system, the student and companion compete when
solving a set of problems independently, where the teacher judges the students’ work
and offers hints. The second and third protocols involved collaborative learning: Bone
works while the other watches^ and Bworking on the same problem through
responsibility sharing.^ In these two collaborative learning protocols, the stu-
dent and companion alternate roles when solving problems, whereas the teacher
issues problems, demonstrates examples, and offers retrospective comments.
The LCS paradigm actually represents a broad spectrum of studies Bbecause of
possible variations in the number and identities of agents.^ For example, the student
serves as a tutor and Blearns how to learn by teaching the learning companion^
(Chan and Baskin 1988, page 199).

Distributed West was developed to explore the spectrum of the learning companion
studies. In Distributed West, two students used their personal computers connected by a
network cable to collaborate with or compete against each other with or without a
computer simulated companion (Chan et al. 1992) (Fig. 4). Thus, it extended the first
LCS—Integration-Kid—from a standalone system to a networked system and from
interacting with two virtual agents (virtual tutor and virtual learning companion) to with
more than two agents (including the human agent on another connected computer).
Although Distributed West was a natural extension of the first LCS, it is interesting to

Fig. 2 Dynamic cognitive changes (Chan 1991)

Fig. 3 Three protocols of Integration-Kid
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note that it was also possibly the first network learning system dedicatedly developed
for students to interact in real time. It supported students to learn collaboratively and
competitively with a learning game.1 When a student played the Distributed West
game for learning binary number computation, a virtual tutor was available on
each student’s computer to offer hints for the learning task if necessary. After
implementing the prototype system, we conducted a trial experiment in which,
we connected all of the computers in a personal computer lab in pairs to enable
a class of freshmen undergraduate students to learn and use the system in pairs
(RTSs were a sequel to Distributed West in which two students had a tutor–
tutee relationship for one task and switched roles for another task). We foresaw
that this computer lab might resemble a classroom in the future, thus we called
it a futuristic intelligent classroom (Chan et al. 1992). It also indicated that
such a classroom with connected computers might represent a network learning
community. Currently, we refer to these classrooms as one-to-one (1:1) class-
rooms (Chan et al. 2006), in which every student learns with a personal
computing device, such as notebook, tablet PC, or smart phone. It enables all
students to work with their own computers. Notably, in Chinese, the word
Bcomputer^ is literally translated as Belectronic brain.^ In a classroom with 30
students (thus 30 human brains), if all students are working with their own com-
puters (Belectronic brains^), then, as designers, we must evaluate how every student’s
brain can derived the highest benefit from the other 59 brains: 30 Belectronic brains^ in
addition to 29 human brains. Another perspective on human companions and class-
rooms with connected computers is to build a network learning society. EduCity, started
in 2000, was the first attempt to realize this vision. It overcame the confines of school
walls and was comprised of a hierarchy of communities that reached more than 1.5
million students, in 15,000 classrooms, within 1800 schools (Chan et al. 2001; Chan
2010; Chang et al. 2003; Atkins et al. 2010).

Another perspective of the learning companion studies is to explore the time span of
a student’s relationship with their learning companion. This relates to the notion of a
Blifelong learning companion,^ which accompanies a student from childhood to
adulthood (Chan et al. 2001; Chou et al. 2003). Cloud computing and storage technol-
ogy enables storing a student’s lifelong learning profiles, hence, establishing students’
lifelong learning companions. Furthermore, with the advancement in robot technology,
such a companion may become a lifelong robot companion.

1 West was a classic computer learning game (Burton and Brown 1979). Distributed West, developed based on
West, was a network version of West.

Fig. 4 A protocol of Distributed West

Int J Artif Intell Educ (2016) 26:512–535 515



Emerging Design Problems

LCS research has expanded ITS research by introducing variations on the number,
roles, relationships, and knowledge levels of the agents (Chan and Baskin 1988; Chan
et al. 1992; Chou et al. 2002a). An agent can be either a human or a computer-simulated
character. The agent’s role can be a tutor, peer competitor, peer tutor, peer tutee, or
collaborator (Chou et al. 2003). An LCS may contain multiple companions, while the
agents’ levels can be weak or strong as well as similar or different when compared with
the human student (Hietala and Niemirepo 1998; Chou et al. 2002a; Uresti and Boulay
2004). We enumerated 768 possible LCS learning protocols by assessing various
possible numbers and roles of human students and computers as well as other possible
factors affecting student interactions (Chan et al. 1992). One possible protocol involves
two agents that have a tutor–tutee relationship for one task and switch roles for another
task. The protocol has become the basic form of an RTS. We further explored the design
space of RTSswith various combinations of six design dimensions: task partition, social
scaffolding (virtual, robot, and human agents), scaffolding tools, scaffolding and fading,
student modeling, and benefit-cost-tradeoffs (Chan and Chou 1997) (Fig. 5).
Scaffolding talks about how students are assisted or supported to perform a task beyond
their abilities as well as how the assistance fades to enable them to perform a task by
themselves (Pea 2004). There are two types of scaffolding: social scaffolding and
technological scaffolding. Social scaffolding refers to the assistance offered by agents,
which may be virtual, robot, or human. Technological scaffolding denotes
computer-enabled scaffolding tools to assist learning. The design space of RTSs is
similar to the components of a collaboration script: participants, activities, roles, re-
sources, and groups (Kobbe et al. 2007). In RTSs, the main sub-tasks or activities are
tutoring (learning-by-tutoring, also termed as learning-by-teaching) and tuteeing
(learning-by-being-tutored); the activities are dispatched to multiple agents (participants
and group), where humans or computer-simulated characters play such roles as tutor,
tutee, collaborator, and competitor. Some RTSs provide scaffolding tools (resources) to
assist students in role-playing to complete sub-tasks. Student modeling supports adap-
tivity to optimize student learning. Benefit-cost-tradeoffs concern the tradeoffs of the
benefits and implementation costs of the design. The problems encountered in the
design space of RTSs are subsequently discussed.

Fig. 5 Design space of RTSs
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As defined in the original paper: BReciprocal tutoring is a form of cooperative
learning by adopting the ‘divide and conquer’ strategy. A learning task is partitioned
into sub-tasks of tutoring and ‘tuteeing’ where tuteeing is learning by working on the
solution while being tutored. These sub-tasks are distributed to different agents and
each agent is responsible for a sub-task, while the rest of the work is taken care of by
other agents^ (Chan and Chou 1997, page 3). Figure 6 illustrates a reciprocal tutoring
example scenario, where a student plays the role of a tutor who tutors a student tutee,
where the system plays the role of the tutor’s tutor. We can also phrase such as follows:

BThe tutor’s tutor tutors the tutor who tutors the tutee.^

That is, the dyad takes turns playing the roles of tutor and tutee in various learning
tasks. Thus, reciprocal tutoring is a type of peer tutoring that enables peer students to
tutor other students (Delquadri et al. 1986; Topping 1996; King 1998; King et al. 1998;
Rittschof and Griffin 2001). The scope of this paper is to design protocols and
computer supports for reciprocal tutoring, such as sub-task partition, roles of agents,
virtual agents, and computer scaffolding tools.

An RTS designer must access four Bbrains^ (two students and two computers)
involved in a single learning task. The designer must analyze how the learning task
is decomposed, which Bbrain^ performs which part of the learning task, and how these
Bbrains^ should interact. Students may not engage in a collaborative learning activity
sufficiently by themselves (Barron 2003); therefore, collaborative scripts are
generally designed as instructions and scaffolds to improve collaboration by
scripting learning objectives, types of activities, sequencing, role distribution,
and types of representation in order to structure the interactive processes among
collaborators (Kollar et al. 2006). In designing scripts or protocols for RTSs,
learning objectives are learning-by-being-tutored and learning-by-tutoring. The
activities are tuteeing and tutoring. Agents, virtual or human, serve as tutors or
tutees. Sequencing involves determining whether the roles of the agents are
reciprocal. The type of representation involves determining how scripts are
presented to students, such as in textual, oral, or graphical presentations. We
proposed a cognitive load sharing (CLS) approach for designing RTSs (Chan and
Chou 1997).

Fig. 6 Reciprocal tutoring example scenario (Chan et al. 2001)
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Cognitive Load Sharing Approach

A complex learning task (activity) generally involves many sub-tasks (sub-activities).
For instance, solving a problem is a learning task, and comprises sub-tasks such as
searching for approaches, constructing a solution, diagnosing a solution if it is not
effective, considering alternatives or correcting possible errors, and modifying or
reconstructing a solution. As described in the BConditions of Learning^ by Gagne
(1985), as parts of a learning task, various factors may be evaluated such as how to
draw attention, arouse curiosity, and activate prior knowledge before undertaking the
task as well as how to sustain motivation after finishing the task to encourage students to
complete another task within the same domain. Gagné suggested that the learning
prerequisites that must be completed by a student can be identified by analyzing a
learning task. This task analysis process is intended to decompose a learning task and
identify which actions or cognitive processes must be undertaken by a student; the
analysis process can help a designer gain a reasonable understanding of a learning task.
Therefore, to design an RTS, wemust conduct a task analysis process in order to identify
the actions of the tutor, tutee, and their computers. We referred to this process as CLS.

If the learning task is too complex, students may not be able to address all sub-tasks.
For instance, writing a Lisp program is complicated, where students may not be able to
understand why their programs are ineffective. When we designed RTSs, we consid-
ered, Bcognitive load sharing is a salient feature of most of the systems … (Chan and
Chou 1997, page 7)^. The design rationale of the CLS approach is to Bdivide and
conquer^ and which entails distributing sub-tasks to computer scaffolding tools or
various agents, such as human student tutors, human companions, virtual tutees, or
virtual tutors; this enables students to focus on their own sub-tasks, while other agents
and computer scaffolding tools address other sub-tasks (e.g., identifying errors and
suggesting corrections). Cognitive load, in this context, is the cognitive process that
students must use to learn their own assigned sub-tasks. In reciprocal tutoring, students
are assumed to do complex learning tasks; additionally, it is assumed that the cognitive
load on a single student to complete an entire task is too heavy. Therefore, a learning
task must be divided into sub-tasks and distributed to various agents and computer tools
in order to share the cognitive load. In the CLS approach, scaffolding is provided in
social and technological dimensions by providing real agents, virtual agents, and
scaffolding tools (Pea 2004). Csikszentmihalyi’s flow thoery (1975) suggests that the
challenge associated with a task and a student’s skills should be matched to prevent the
student from becoming anxious or bored. Specifically, to remain engaged in their tasks,
students should undertake tasks with appropriate cognitive loads. Therefore, after
becoming proficient in their assigned sub-tasks, students are asked to immediately
undertake additional sub-tasks to maintain an appropriate challenge, which constitutes
fading.

As we investigated the CLS approach, we were unaware that other researchers were
also investigating into the Bcognitive load^ topic mainly from the working memory
perspective, which was reported in the book by Sweller et al. (2011). These researchers
proposed cognitive load theory and two types of cognitive load: Intrinsic cognitive
load, imposed by the intrinsic nature of a material, and extraneous cognitive load,
imposed by the manner in which a material is presented and can be reduced. An
excessive cognitive load leads to ineffective learning. Researchers have thus proposed
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many instructional principles for reducing extraneous cognitive load to improve learn-
ing. However, if a learning task is fixed and student knowledge levels remain constant,
intrinsic cognitive load remains constant. From the perspective of cognitive load theory,
the objective of CLS is to alter the intrinsic cognitive load of students by adaptively
dividing learning tasks among various agents.

To explore the RTS design, we developed and compared seven RTS variations
presented in our previous study (Chan and Chou 1997). Table 1 lists a comparison of
the designs of related RTSs according to RTS design space. The configuration includes
the number and roles of agents and whether agents are virtual characters or real
humans. Companion(s) indicates the agent(s) that interact with a human student.

Upon reexamining our CLS approach, we pose and discuss 12 research questions or
concerns that may emerge in the design of reciprocal tutoring. These research questions
assist developers in adopting the CLS approach to designing RTSs. They are divided
into six design dimensions: task partition (questions #1 and #2), social scaffolding
(questions #3 and #4), scaffolding tools (questions #5 and #6), scaffolding and fading
(questions #7, #8, and #9), student modeling (questions #10 and #11), and
benefit-cost-tradeoffs (question #12)(Table 2). Although we focus on reciprocal tutoring,
the questions and principles we address can be applied to other learning activities.

Task Partition Dimension

This dimension consists of two questions: the ‘when’ question and the ‘how’ question.
The premise question is the ‘when’ question, concerning whether the task is appropriate
for being partitioned into sub-tasks. The How-To-Partition question is the ‘how’
question, dealing with how a task is to be partitioned into sub-tasks so that they can
be distributed to and undertaken by different agents.

#1 Premise Question: Is the CLS Approach Effective? What Are the Premises?

The effectiveness of the CLS approach depends on some premises. The first premise is
that a learning task (activity) can be partitioned into several sub-tasks (sub-activities)
for various agents. Partitioning some learning tasks into sub-tasks shared among
various agents may be difficult. The second premise is that the benefit of the cognitive
load reduced by sharing should be greater than the damage of the increased effort
resulting from sharing sub-tasks and collaboration among agents. Dillenbourg (2002)
argued that over-scripting may force students to interact and solve problems through
non-natural methods, thereby increasing their cognitive load. Agents are responsible for
parts of sub-tasks, but must collaborate with others to combine sub-tasks in order to
complete entire learning tasks. Communicating and working with other agent(s) in-
creases effort and may offset the reduction in cognitive load through sharing. Individual
differences exist in this premise. Some students are proficient in collaboration, whereas
others are not. The third premise is that other agents must be able to complete their
sub-tasks. To explain CLS, consider, for example, a task involving moving a piano. A
piano may be too heavy for a single person to move. Four persons can move a piano if
they move the piano together. If they lack coordination or if some persons do not
contribute to the strength of the group, the group cannot move the piano.
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Issues of how to distribute sub-tasks to different agents involve two questions: how
to partition a learning task (activity) into several sub-tasks (sub-activities) for various
agents (Question #2) and how to appropriately assign roles of agents for sub-tasks or
sub-activities (Question #3).

#2 How-To-Partition Question: How Can a Learning Task (Activity)
Be Partitioned into Several Sub-Tasks (Sub-Activities) for Various Agents?

First, some learning activities include several sub-activities. For example, the reciprocal
teaching method, which entails training students in comprehension, includes four
activities: summarizing, questioning, clarifying, and predicting (Palinscar and Brown
1984). These sub-activities can be distributed to various agents. Second, if a learning
task covers several topics, the task can be partitioned into sub-tasks of mastering
various topics, such as the Jigsaw method (Aronson et al. 1978).

In reciprocal tutoring, learning tasks are generally partitioned into tuteeing and
tutoring for two agents. However, the types of tuteeing and tutoring vary among
different domains and tutoring approaches. For examples, tuteeing in the Distributed
Reciprocal Tutoring system involves designing and implementing a program to solve a
problem (Chan and Chou 1997). Tuteeing in DwestAgent involves composing an
arithmetic expression with three specific numbers to progress forward toward the goal
(Chou et al. 2002a). Tutoring involves activities, such as critiquing, detecting and
fixing errors, hinting, and demonstrating. However, there are different tutoring ap-
proaches involving different activities. For example, tutoring in DENISE involves
demonstrating a causal qualitative model of economics (Nichols 1994). Tutoring in
the Distributed Reciprocal Tutoring system involves diagnosing and providing hints to
assist tutees (Chan and Chou 1997). RTSs are intended to help student tutees learn by
being tutored by tutors (learning-by-being-tutored) and help student tutors learn by
tutoring tutees (learning-by-tutoring). One design problem is determining the type of
tutoring approach that can help student tutees to learn effectively. Vanlehn (2011)
compared the effectiveness of human tutoring and ITSs with various granularities of
tutoring interaction: answer-based, step-based, and substep-based tutoring. The results
revealed that step-based, substep-based, and human tutoring are more effective than

Table 2 Research questions of
six dimensions of RTS design
space in CLS approach

Dimension Questions

Task partition #1 Premise Question
#2 How-To-Partition Question

Social scaffolding #3 Role-Assignment Question
#4 Agent-Genus Question

Scaffolding tools #5 Scaffolding-Tool-Type Question
#6 Agent-Tool-Combination Question

Scaffolding and fading #7 Scaffolding-Effect Question
#8 Fading-Effect Question
#9 Combined-Scaffolding-Effects Question

Student modeling #10 Student-Modeling-Benefit Question
#11 Big Data Question

Benefit-cost-tradeoffs #12 Benefit-cost-tradeoffs
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answer-based tutoring. Another design problem is determining the type of tutoring
approach that can help student tutors effectively learn by teaching. Researchers have
reported that students benefit from learning-by-teaching through preparing to teach,
presenting learning materials, monitoring tutees’ tasks and finding errors, and observ-
ing recursive feedback from tutees as well as demonstrating, explaining, and
responding to tutee’s questions (Bargh and Schul 1980; Renkl 1995; Roscoe and Chi
2007, 2008; Okita and Schwartz 2013; Okita 2014). If an RTS involves student tutor(s)

Social Scaffolding Dimension

After partitioning the task into sub-tasks, we have to consider how to design social
scaffolding. There are two design questions in this dimension. The role-assignment
question refers to how these sub-tasks are being assigned to different agents. In order to
match the natures of different sub-tasks to assignees, the assignment has to take into
account the number and roles of the agents as well as whether the roles of the agents are
fixed or reciprocal. For agents, we also have to consider whether an agent is virtual,
robot, or human—the agent-genus question.

#3 Role-Assignment Question: How Are Agents Appropriately Assigned Roles
for Sub-Task(s) or Sub-Activities?

When sub-tasks are assigned to various agents, collaboration scripts should be clearly
defined. This also applies to specifications and relationships among agents, in addition
to learning sub-tasks, such as the roles of agents and sequences of activities. Doing so
enables agents to be responsible for their learning sub-tasks and collaborate to complete
the entire learning task. This question involves the number and roles of agents and
whether the roles of the agents are reciprocal or fixed.

Number and Roles of Agents

Sub-task(s) may be assigned to agents through various methods. A sub-task can be
dispatched to an agent or group of agents. In contrast, an agent can be responsible for
several sub-tasks. For instance, a student is assigned to play the role of designing a
solution, while another student as translator to implement the solution in the Distributed
Responsibility Sharing system; meanwhile, a student is assigned to play the role of
tutee to design and implement a solution in the Distributed Reciprocal Tutoring system
(Chan and Chou 1997). The agent’s role can be a tutor, peer competitor, peer tutor, peer
tutee, or collaborator (Chou et al. 2002a, 2003). The competence of the agents also
influences agent roles, such as weak companion and strong companion (Hietala and
Niemirepo 1998). Researchers have found that students have various preferences
regarding the roles and competencies of agents (Hietala and Niemirepo 1998; Chou
et al. 2002a; Uresti and Boulay 2004). The appropriate number and roles of agents
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and tutee(s), tutoring interactions should be designed for help student tutor(s) and tutee
(s). Determining the type of tutoring approach may involve a trade-off between helping
student tutors and helping student tutees. The trade-off can be solved by providing
virtual agents (Question #4).



depend on the amount and difficulty of sub-tasks and capabilities of students. A higher
number of sub-tasks, greater difficulty of sub-tasks and lower ability among students
may necessitate sharing sub-tasks among higher number of agents; such may lead to a
higher complexity and effort regarding communication and collaboration. A protocol is
required to assist agents in playing their roles to complete their sub-tasks and to
collaborate in completing the entire learning task. For example, a student plays the
role of solution designer; then a student plays the role of translator to implement the
designed solution in the Distributed Reciprocal Tutoring system (Chan and Chou
1997). Simultaneously, a student plays the role of tutor to tutor the designer and
translator.

Reciprocal or Fixed

Agent roles can be reciprocal or fixed (see Table 1). A reciprocal protocol enables
students to alternate between learning various sub-tasks in order to understand all

tasks. However, some sub-tasks may be more difficult than others. For example, a
student may be able to solve a problem (sub-tasks for a tutee), however, unable to tutor
other students (sub-tasks for a tutor). Students with different capabilities can be
assigned to various roles for sub-tasks involving various difficulty levels. For example,
students with higher capabilities can be assigned to tutor those with lower capabilities.
The roles can be changed according to the advances in the capability levels of students.
For instance, novice students can be assigned to play the role of tutee, intermediate
students can be assigned to reciprocally play the roles of tutee and tutor, and expert
students can be assigned to play the role of tutor. Evans and Moore (2013) proposed
variable reciprocity in which students play the roles of tutor and tutee for various
problems depending on whether or not they accurately solve the problems. Students are
tutors for problems they solved and are tutees for problems they do not solve. Students
who accurately solve a problem gain authority to be tutors for the problem in order to
help other students (tutees for the problem) solve the problem.

#4 Agent-Genus Question: What Types of Agents Can Share Cognitive Load
(Sub-Tasks)?

Two types of agents can share cognitive load: human and artificial agents. Artificial
agents are computer simulated characters, including virtual and robot agents. Although
most of the artificial agents in existing RTSs are virtual agents (see Table 1), robot
agents exhibit benefits in enriching interactions between a system and students, while
increasing a student’s engagement (Hsu et al. 2007; Chen et al. 2014). RTSs generally
involve both human and virtual agents, however, may only involve human agents, such
as in a Distributed Responsibility Sharing system (Chan and Chou 1997). Human
agents can be recruited from classmates, senior students, and teachers. Teachers can be
recruited as effective tutors (Chi et al. 2001), however, such increases teachers’ loads.
Providing virtual agents as teaching assistants can therefore serve to benefit teacher
load (Shindo and Matsuda 2001; Chou et al. 2011). Students can be recruited as peer
tutors or collaborators; however, they may not be able to complete their sub-tasks,
sufficiently collaborate with other agents, or satisfy the demands of roles, such as strong
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companions. Evans and Moore (2013) proposed variable reciprocity to better ensure
that tutors for a program have correctly solved the problem. Some systems provide
scaffolding tools for remedying these problems (Question #5).

Virtual agents, which share cognitive load, are simulated by computers, such as
virtual tutors and tutees (see Table 1). Providing virtual agents can eliminate the
problem of lacking appropriate human agents; additionally, they can solve the tradeoffs
of determining a tutoring approach to assist both student tutors (learning-by-tutoring)
and student tutees (learning-by-being-tutored). Adaptive virtual agents can be devel-
oped to meet individual requirements of students by such methods as creating adaptive
collaboration scripts (Diziol et al. 2010), providing adaptive scaffolding feedback
(Kinnebrew et al. 2013), and playing various roles with different knowledge levels
(Chou et al. 2002a). Intelligent virtual tutors have been proven to be effective in helping
students (Anderson et al. 1995; Koedinger and Corbett 2006; Vanlehn 2011).
Researchers have also reported that virtual agents’ adaptive prompts for
self-regulated learning strategies (Kinnebrew et al. 2013) and recursive feedback
(Okita and Schwartz 2013) were helpful for learning-by-teaching. However, develop-
ing such virtual educational agents is complex and labor-intensive (Murray 1999; Chou
et al. 2002b, 2003). Generally, interaction data among real agents must be collected to
develop virtual agents.

Artificial agents can be presented not only on screens as virtual agents (Johnson
et al. 2000) but also as physical robot agents (Hsu et al. 2007; Chen et al. 2014). The
physical robots enrich interactions between a system and students by enabling tangible
inputs, such as physical manipulation and touch, and by providing outputs through
robots, such as sounds, motions, and light. An augmented reality technique similarly
enables students to manipulate physical objects, however, receive outputs from screens
(Oh and Woo 2008; Chen et al. 2014). Physical robots and an augmented reality
technique can enhance a variety of artificial agents; this approach can enrich student
learning experiences and increase student engagement by combining multiple sensorial
media, such as visual, auditory, kinesthetic, and tactile.

In CLS, agents are used to share cognitive load and to increase student motivation.
When students collaborate with other agents, students may feel responsible and make
efforts to complete their sub-tasks. Agents may also encourage, criticize, or praise
students to enhance student motivation and, consequently, learning performance. For
example, the My-Pet system provides a trainable animal companion to enhance student
motivation (Chen et al. 2012, 2013). Studies have also revealed that various students
prefer different levels of agents (Hietala and Niemirepo 1998; Chou et al. 2002a; Uresti
and Boulay 2004). Regarding CLS, the effects of agents on student motivation may
vary among students and should be investigated further.

Scaffolding Tools Dimension

After being dispatched a sub-task, the human agent may need some scaffolding tools to
accomplish the sub-task. There are two design questions in this dimension. The
scaffolding-tool-type question is about what types of scaffolding tools are needed by
the human agent. The agent-tool-combination question is about seeking the most
appropriate combination of agents and tools in order to assist the student.
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#5 Scaffolding-Tool-Type Question: What Types of Scaffolding Tools Can Be
Applied for Reciprocal Tutoring or Other Learning Activities Involving CLS?

Computer-enabled scaffolding tools help students in completing learning tasks and
sharing cognitive load. Two types of scaffolding tools are generally used for reciprocal
tutoring or other learning activities involving CLS: (1) cognitive tools for assisting agents
in completing learning sub-tasks, such as tuteeing tools for tutees and tutoring tools for
tutors; (2) tools for assisting agents in communication and collaboration, such as
mechanisms for finding and suggesting potential peer helpers in the PHelpS system
(Greer et al. 1998) and dialogue templates in the Reciprocal Tutoring System (Wong et al.
2003). These scaffolding tools provide scaffolding to reduce the cognitive load of
students playing various roles. For instance, the Distributed Reciprocal Tutoring system
provides a tuteeing tool, PLS (Petal-Like-System), to assist human tutees in constructing
a recursive Lisp programwithout making syntax errors and a tutoring tool; further a DHT
(Diagnosis-Hint-Tree) is offered to assist human tutors in locating errors and providing
hints via an interactive diagnosis interface and several adaptive hints (Chan and Chou
1997). PHelpS enables peer helper selection and mediates communication (Greer et al.
1998). OPAL includes the mechanisms of a tutor pool and a tutoring ticket list for
enabling students to find available tutors with verifiable skills (Evans and Moore 2013).
The APTA system provides adaptive support to enhance the tutoring ability of peer tutors
(Walker et al. 2011, 2014). Reiser (2004) proposed two scaffolding mechanisms of tools:
structuring and problematizing. The structuring mechanism Breduces complexity and
choice by providing additional structure to the task.^ The problematizing mechanism
Bincreases the utility of the problem solving experience for learning^ by helping students
Bview something as requiring attention and decision-making.^ For instance, PLS, as a
tuteeing tool, provides code chunks as a structure, and DHT, as a tutoring tool, has an
interactive diagnosis structure to reduce complexity (Chan and Chou 1997). In PLS and
DHT, students are required to indicate whether each line of a recursive Lisp program
code is a recursive or base case. The indication is a problematizing mechanism to focus
attention by marking critical features of a recursive program.

Cognitive tools should also be faded to enable students to complete sub-tasks
without cognitive tools, if this is the learning goal. Some tools are domain-specific,
and some are domain-general. Domain-specific tools generally provide more in-depth
assistance than other tools do; however, they are applicable only to specific domains.
By contrast, domain-general tools are applicable to several domains, however, may
provide only limited assistance. Some tools are adaptive to students and are thus more
helpful than non-adaptive tools; however, developing adaptive tools involves student
modeling (Question #10) and is complex.

#6 Agent-Tool-Combination Question: Which Combinations of Agents and Tools
Are Helpful for Learning?

Numerous combinations of agents and tools can be used in CLS designs. Which
combinations are helpful for learning? In the original paper, the learning effectiveness
of seven systems was compared with various combinations of types and roles of agents
and tools (Chan and Chou 1997). The preliminary results revealed that students who
reciprocally played the roles of tutor and tutee with the assistance of a tutoring and
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tuteeing tool registered higher posttest scores than did students who maintained the role
of tutor with the assistance of a tutoring tool and who were not supported by the
scaffolding of load sharing. This may because those student tutors who maintained the
role of tutor with the assistance of a tutoring tool did not solve problems by themselves.
However, the preliminary experimental trial included few participants; this problem
must be investigated further. This problem leads to the next question regarding how to
evaluate various types of CLS designs.

Scaffolding and Fading Dimension

The mechanisms of scaffolding and fading must be coupled together. There are three
questions in this dimension. The scaffolding-effect question concerns whether the
scaffolding provided can really assist students in learning as well as whether or not
students are able to learn by themselves after scaffolding has been removed. The
fading-effect question deals with when and how fading should be carried out. The
combined-scaffolding-effects question discusses about planning and monitoring how
and when various scaffoldings should be provided to the student while some of the
scaffoldings are fading.

#7 Scaffolding-Effect Question: What Are the Effects with and of Various Types
of CLS Designs?

Traditionally, scaffolding comprises two phases: cognitive process support and fading
of support, which can be expressed as follows:

scaffolding ¼ cognitive process supportþ fading

CLS is a form of cognitive support. Therefore, scaffolding involving CLS can be
expressed as follows:

scaffolding ¼ CLSþ fading

CLS provides students with scaffolding by offering social scaffolding (real agents,
virtual agents, and robot agents) and technological scaffolding (scaffolding tools) in
order to share cognitive load. Furthermore, CLS fades scaffolding by gradually reduc-
ing sharing cognitive load. The total effects of CLS designs includes those with (i.e.
with scaffolding) and of (i.e. after the removal of scaffolding) the designs. The effects
with CLS are concerned with whether students can complete learning tasks under the
scaffolding condition. The effects of CLS are concerned with whether or not students
still complete learning tasks without the scaffolding (i.e., after fading). A perfect result
is that students can complete learning tasks with scaffolding and after the removal of
scaffolding. However, the effect of CLS can be diminished under specific conditions.
For example, researchers have reported that some students may be Bgaming^ an ITS by
excessively asking for help from the system in order to complete the problems (Baker
et al. 2008). Although these students may complete learning tasks with the help of the
system, they may not learn the material, which leads to Question #8.
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#8 Fading-Effect Question: How Can CLS Scaffolding Be Appropriately Faded?

When students become proficient in their assigned sub-tasks, the tools should be
removed, or more sub-tasks should be distributed to these students in order to maintain
appropriate difficulty levels; this is called a fading mechanism. The question pertains to
when and how fading should be carried out. The objective of fading mechanisms is to
make students responsible for more sub-tasks when they show improved skill levels
until such students can complete all sub-tasks by themselves. However, fading too
slowly might hinder students from learning sub-tasks whereas fading too rapidly might
frustrate students. An appropriate fading of scaffolding guides students to learn and
prevents them from excessively depending on scaffolding. Designing a protocol or
some rules might enable students to perform fading processes by themselves. For
example, an RTS applies a scoring mechanism, which calculates scores according to
a tutee’s help requests; further, tutors receive assistance from tutoring tools; such is
offered in order to prevent tutees from excessively depending on tutors and to
prevent tutors from excessively depending on the scaffolding of tutoring tools
(Chou et al. 2002b; Wong et al. 2003). However, fading can be conducted
adaptively by systems per each student. Establishing student models of student
knowledge and behavior is crucial in appropriately fading scaffolding, which leads to
Question #11. For instance, Del Solato and Du Boulay (1995) implemented an ITS to
model student performance, confidence, effort, and independence in order to provide
adaptive instruction.

#9 Combined-Scaffolding-Effects Question: How Can a CLS Be Designed to Be
Effective With Combinations of Various Scaffolding and Fading Mechanisms?

A complete CLS design includes combinations of various scaffolding and fading
mechanisms in order to manage appropriate cognitive load. Many possible combina-
tions of scaffolding and fadingmechanisms can be used. The combined-scaffolding-effects
question is concerned with planning and monitoring how and when various scaffoldings
should be provided to the student while some of the scaffoldings are fading. Sub-tasks
may have different difficulty levels or order relationship; hence, the
combined-scaffolding-effects question is concerned with how to organize sequences of
sub-tasks and scaffoldings in order to maintain manageable cognitive load for students.
For instance, Table 3 lists an example of scaffolding and fading mechanisms within
different learning stages for a novice student. A novice student is initially assigned as a
tutee with the scaffolding of a tuteeing tool, with a virtual tutor in stage 1. The

Table 3 An example of scaffolding and fading mechanisms within different learning stages

Stage 1 Stage 2 Stage 3 Stage 4

Student subtasks Tuteeing Tuteeing Tuteeing/Tutoring Tuteeing/Tutoring

Student roles Tutee Tutee Tutee/Tutor Tutee/Tutor

Social scaffolding Virtual tutor Virtual tutor Virtual tutor/Virtual tutee Virtual tutor/Virtual tutee

Scaffolding tools Tuteeing tools Tutoring tools
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scaffolding of the tuteeing tool fades when the student performs adequately as a tutee in
stage 2. Thereafter, the student is assigned to play the roles of tutee and tutor
reciprocally, in order to become more effective via learning-by-tutoring in stage 3.
The cognitive load of the student increases when the student is asked to play the role
of tutor. A tutoring tool can be provided as a scaffolding to lessen the increased
cognitive load. Thereafter, the tutoring tool fades in stage 4. Finally, students serve as
tutees and tutors by themselves. The changes of different scaffoldings can be designed
within an obvious change of learning stages or as an imperceptible change during
student learning.

Student Modeling Dimension

Student modelling supports adaptivity and optimization of student learning, which are
desirable in the social scaffolding, scaffolding tools, and scaffolding and fading
dimensions. There are two questions in this dimension. The student-modeling-benefit
question handles how student modeling can be applied in these dimensions for two
purposes. Another question is the big data question. Since big data can be obtained in a
networked learning community, the question pertains to how big data can be used for
building student modeling and virtual agents as well as assessing and improving CLS
designs.

#10 Student-Modeling-Benefit Question: What Are the Roles and Benefits
of Applying Student Modeling in CLS?

Student modeling entails using several techniques to detect student domain cognition,
meta-cognition, affection, cognitive and learning style, and interaction in groups; such
is key to providing students with individual, adaptive, and intelligent instructions or
support (Greer and McCalla 1994). The student model question in CLS involves how
to apply student modeling to adapt and optimize sub-task partition, agents, tools, and
scaffolding and fading mechanisms to the needs of students. However, adaptation and
optimization are difficult challenges needing evaluative results from various CLS
designs, which lead to Question #11. Student modeling can be applied to building
virtual tutors (ITSs) for providing adaptive tutoring (Woolf 2008), and to providing
adaptive support for collaborative and peer assisted learning, such as finding potential
peer helpers (Greer et al. 1998), group formation, domain-specific support, and peer
interaction support (Magnisalis et al. 2011). Student modeling can also be used to
simulate virtual tutees (Chou et al. 1999), and to provide adaptive scaffolding tools,
such as DHT, a tutoring tool for peer tutors (Chou et al. 2002b). Student models can be
open for students to raise self-reflection and interaction among students (Bull 2004;
Bull and Kay 2007). In addition, open student models can be applied to portray
animal companions or avatars in order to motivate students to learn and help
others (Chen et al. 2007, 2012). Open student models can also be applied in
CLS. Student models can also serve as a clone (virtual avatar) of a student,
which can interact with other students when the student is off-line or unavailable
(Chen 2014). In summation, the possible roles and applications of student modeling in
CLS are diverse and require further investigation.
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#11 Big Data Question: How Can Big Data Be Used for Implementing Student
Modeling and Virtual Agents As Well As Evaluating and Refining CLS Design?

Implementing virtual agents and student models is complex and labor-intensive.
Computer systems can collect, in real-time, a large quantity of user data in a runtime
stream (big data); therefore, big data regarding interactions among agents can be used
for designing and implementing virtual agents as well as providing adaptation to
optimize student learning in real-time. For example, big data can be collected and
analyzed in real-time in order to identify possible problems when students play
various roles, to provide useful assistance for students, and to offer virtual
agents in various roles. However, real agents and big data regarding real agents
can also be used to complement machine intelligence (virtual agents and
adaptive tools) and human intelligence (assistance from real agents) in order
to share cognitive load and reduce the complexity of creating virtual agents and
student models (Chou et al. 2003, 2011). Machine intelligence can be applied
to extend or reuse human intelligence in order to reduce the load on humans;
conversely, human intelligence can be used to share the load on machines. For
instance, a virtual teaching assistant system collects a teacher’s hint for a specific
student problem situation and reuses the hint for students in the same situation (Chou
et al. 2011). PHelpS applies student modeling to determine appropriate peer helpers to
assist students (Greer et al. 1998).

Designing appropriate RTSs to adapt to different students and to optimize student
learning is challenging because the design space of RTSs contains many possibilities
and students have various preferences, personalities, and knowledge levels. The CLS
provides an approach to design RTSs by considering previous research questions.
However, answering previous research questions and developing adaptation of CLS
in RTSs require evaluative results from different CLS designs in RTSs. Because RTSs
extend the meaning and scope of ITSs, evaluation methodologies for ITSs (Mark and
Greer 1993) can also be applied in evaluating CLS designs in RTSs. Researchers
suggest the emerging trends of applying big data in evaluations (Greer and Mark
2015) and individual izat ion of computer assis ted learning systems
(Mayer-Schönberger and Cukier 2014). Big data can be used to evaluate the effective-
ness of CLS, offer answers to the previous research questions, refine CLS schemes, and
adapt CLS in RTSs. For example, big data can be used to determine whether or not a
design works, task partition and role assignment are suitable for students, scaffolding
and fading are appropriate, tools are helpful, and virtual agents are necessary. The big
data question concerns data that should be collected, how such data should be analyzed,
and how this analysis can be used to refine the design, implementation, and individ-
ualized adaptations of RTSs.

Benefit-Cost-Tradeoffs Dimension

The gaining of benefits of social scaffolding, scaffolding tools, scaffolding and fading,
and student modeling are usually at the expense of the implementation cost. Designers
have to consider the tradeoffs of the benefits and costs. There is only one question in
this dimension.
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#12 Benefit-Cost-Tradeoffs Question: What Are the Tradeoffs of Benefits
and Implementation Costs of Various Types of CLS Designs?

The benefits and costs of CLS designs should be evaluated. For example, although
scaffolding tools and virtual agents may be useful and adaptive, their development
procedures are complex and labor-intensive. In addition, developing virtual agents
generally requires using data collected from real agents. Human agents are easier to
find, however, might be incapable of performing sub-tasks. Although domain-specific
tools may be more helpful than domain-general tools, they require considerable
implementation effort. Therefore, designers must balance the costs and benefits of
various types of CLS designs.

In summary, applying the CLS approach to designing an RTS involves the practical
issues of analyzing and partitioning sub-tasks (Questions #1 and #2), determining agent
roles and agent genuses for social scaffolding (Questions #3 and #4), selecting scaf-
folding tools (Questions #5 and #6), planning scaffolding and fading mechanisms
(Questions #7, #8, and #9), applying student modeling to support adaptivity in order
to optimize student learning (Questions #10 and #11), and considering
benefit-cost-tradeoffs of the design (Question #12).

Final Remarks

As argued by Chan (2010), when we talk about pedagogical models for deep and
complex learning, we usually relate them to inquiry-based learning, collaborative prob-
lem learning, reflective learning, group competition games, and multimedia storytelling,
among others. Learning-by-tutoring could actually incorporate most elements of these
models. For example, a comprehensive implementation of learning-by-tutoring demands
Blearning about the material which means learning and re-learning to ensure full under-
standing of the materials; searching for supplementary material on the web; composing
teaching materials by designing and constructing expository exercises, problems, ques-
tions, and answers; negotiating with peers when synthesizing their different constructed
lectures into one; and conducting instruction through expository instruction, demonstra-
tions, explanations, and asking or answering questions^ (Chan 2010, page 40).

Also, from the design point of view, learning-by-tutoring, to some extent, subsumes
learning-by-being-tutored. This means that if we design learning-by-tutoring first, then
some elements developed in learning-by-tutoring can be reused in the design of
learning-by-being-tutored, thereby making the design of the later simpler.

In this paper, we explore the design space of RTSs in six dimensions and propose
related design questions. The design space exhibits a variety of RTSs from a basic form to
complex forms. The basic form of RTSs is partitioning a learning task into several
sub-tasks and dispatching these sub-tasks to different agents, without including scaffold-
ing tools, student modeling, and fading mechanisms. The basic form works to share
cognitive load although it is simple. Scaffolding tools, student modeling, and fading
mechanisms enrich the design of RTSs and enable RTSs to assist students further in
learning. However, the enrichment increases the complexity, which may increase student
effort to engage in learning, thus, leads to the Premise Question. The enrichment also
increases implementation costs, which lead to the Benefit-Cost-Tradeoffs Question. The
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design space provides designers with various possible configurations of RTSs with
different CLS mechanisms; however, involving as many CLS mechanisms as possible
may not lead to a good RTS. Designers can create a RTS initially in a basic form, assess
the effect of the basic form, and evaluate the necessity of adding scaffolding tools, student
modeling, and fadingmechanisms. If the evaluation reveals such a necessity, the designers
can determine to add more CLS mechanisms in the RTS. After adding more CLS
mechanisms, the new version of the RTS must be compared to the previous version of
the RTS in order to evaluate the effect of the added mechanisms. In sum, the design space
of RTSs provides a framework for designing and investigating RTSs in the CLS approach.

In this paper, we explain the background and rationale behind our investigation into
computer support for reciprocal tutoring. On the basis of the CLS approach, we
identified 12 design questions for future RTS design tasks. When we researched LCS
in the late 1980s, the world was dominated by standalone computers. In the mid-1980s,
some researchers explored asynchronous learning through the Internet (the term
BInternet^ became popular in the late 1980s) developed by the U.S. government. The
Virtual Classroom (Hiltz 1994) project implemented at the New Jersey Institute of
Technology is an example. Distributed West development initiated in 1990, was
perhaps the first dedicated network system developed for synchronous learning; in
other words, this system enabled students to learn with their own computers while
interacting with one another in real time. Within Distributed West, students were
collaborators or competitors; while in RTSs, they engaged in tutor-tutee relationships
with one another. Currently, mobile, cloud, and big data computing are prevalent;
regarding learning, we are entering the one-to-one educational computing, seamless
learning, and game-based learning era (Chan et al. 2006; Chan 2010) that will soon be
pervasively adopted in real world education. As described in the CLS approach, when a
student is working with a computer, the roles of the computer mainly fall into one of
four categories: cognitive tools, virtual agents (called non-player characters in computer
games), communication mediators with other online human agents (which may appear
as avatars), or clones (virtual avatars) that represent human agents who are off-line or
unavailable. Additionally, peer relationships mainly fall into one of three categories:
collaborators, competitors, or tutor-tutee relationships. Furthermore, numerous studies
in our field have proven that learning-by-being-tutored and learning-by-tutoring are
effective and valuable (Anderson et al. 1995; Bargh and Schul 1980; Koedinger and
Corbett 2006; Okita and Schwartz 2013; Okita 2014; Renkl 1995; Roscoe and Chi
2008; Vanlehn 2011). Therefore, we expect reciprocal tutoring to become widespread
in one-to-one classrooms over the next 10 years.

Currently, our perspective on our field has broadened as the world has undergone
rapid changes over the past 25 years. When we worked on LCS and Distributed West
between the late 1980s and early 1990s, researchers in our field considered our work as
Balternatives to one-to-one tutoring.^ For example, our paper on Distributed West in the
proceedings of the ITS 1992 conference was placed in the category of Balternatives to
one-to-one tutoring.^ This view reflected the domain of standalone computers.
However, the picture is clearer now as reciprocal tutoring is a natural extension of
intelligent tutoring, from the standalone-computer world to the current networked
world. Principally, reciprocal tutoring may be a form of classroom learning that
potentially helps to resolve Bloom’s two-sigma problem (Bloom 1984), considered
by many as the ‘Holy Grail’ of ITS research.
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This paper reexamines the CLS approach for deigning RTSs and poses 12 design
questions. The answers, however, to most of these design questions remain unclear and
demand further exploration. The key objective of the CLS approach is to enable
students to learn effectively under adaptive scaffolding in order to maintain appropriate
cognitive load. Cognitive load theory (Sweller et al. 2011) provides approaches to
measure students’ cognitive load in learning and principles to design effective learning
systems; it is helpful for examining the CLS approach and provides answers to design
questions. From the perspective of cognitive load theory, the aim of the CLS approach
is to alter the intrinsic cognitive load of students by adaptively dispatching learning
tasks to various agents and tools. The CLS approach, however, may lead to an increase
in extraneous cognitive load. The search for answers of the design questions posed in
this paper may lead to the establishment of the principles of the CLS approach that can
be used to design effective RTSs. Nevertheless, we hope that this paper paves a road for
future research on learning-by-tutoring and learning-by-being-tutored in the era of the
connected and robotic world.
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