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Abstract
Let ðPnÞn� 0 be the sequence of Padovan numbers defined by P0 ¼ 0, P1 ¼ P2 ¼ 1,

and Pnþ3 ¼ Pnþ1 þ Pn for all n� 0. In this paper, we find all positive square-free

integers d such that the Pell equations x2 � dy2 ¼ N with N 2 f�1;�4g, have at

least two positive integer solutions (x, y) and ðx0; y0Þ such that both x and x0 are sums

of two Padovan numbers.

Keywords Padovan number � Pell equation � Linear form in logarithms � Reduction
method

Mathematics Subject Classification Primary 11B39 � 11D45 � Secondary
11D61 � 11J86

1 Introduction

Let ðPnÞn� 0 be the sequence of Padovan numbers defined by the linear recurrence

P0 ¼ 0; P1 ¼ 1; P2 ¼ 1; and Pnþ3 ¼ Pnþ1 þ Pn for all n� 0:

The Padovan sequence appears as sequence A000931 on the On-Line Encyclopedia

of Integer Sequences (OEIS) [20]. The first few terms of this sequence are
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0; 1; 1; 1; 2; 2; 3; 4; 5; 7; 9; 12; 16; 21; 28; 37; 49; 65; 86; 114; 151; 200; 265; 351. . .:

Let d� 2 be a positive square-free integer. It is well known that the Pell equations

x2 � dy2 ¼ �1; ð1Þ

and

X2 � dY2 ¼ �4; ð2Þ

have infinitely many positive integer solutions (x, y) and (X, Y) , respectively. By
putting ðx1; y1Þ and ðX1; Y1Þ for the smallest positive solutions to (1) and (2),

respectively, all the solutions ðxk; ykÞ and ðXk; YkÞ have the form

xk þ yk
ffiffiffi

d
p

¼ ðx1 þ y1
ffiffiffi

d
p

Þk for all k 2 Zþ;

and

Xk þ Yk
ffiffiffi

d
p

2
¼ X1 þ Y1

ffiffiffi

d
p

2

� �k

for all k 2 Zþ:

Furthermore, ðxkÞk� 1 and ðXkÞk� 1 are binary recurrent sequences. More exactly, the

following formulae

xk ¼
ðx1 þ y1

ffiffiffi

d
p

Þk þ ðx1 � y1
ffiffiffi

d
p

Þk

2
; ð3Þ

and

Xk ¼
X1 þ Y1

ffiffiffi

d
p

2

� �k

þ X1 � Y1
ffiffiffi

d
p

2

� �k

ð4Þ

hold for all positive integers k.
In the recent years, Luca et al. [17] considered the Diophantine equation

xk ¼ Tn; ð5Þ

where xk is given by (3) and ðTnÞn� 0 is the Tribonacci sequence defined by T0 ¼ 0,

T1 ¼ T2 ¼ 1, and Tnþ3 ¼ Tnþ2 þ Tnþ1 þ Tn for all n� 0. The Tribonacci sequence

appears as sequence A000073 on the OEIS [20]. The authors in [17] proved that

Eq. (5) has at most one solution (k, n) in positive integers for all d except for d ¼ 2

when Eq. (5) has the three solutions ðk; nÞ ¼ fð1; 1Þ; ð1; 2Þ; ð3; 5Þg and when d ¼ 3

case in which Eq. (5) has the two solutions ðk; nÞ ¼ fð1; 3Þ; ð2; 5Þg.
Inspired by the main result of Luca et al. [17], E. F. Bravo et al. [3, 4] studied the

Diophantine equation

xk ¼ Tm þ Tn: ð6Þ

They proved that for each square-free integer d� 2, there is at most one positive

integer k such that xk admits the representation (6) for some nonnegative integers
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0�m� n, except for d 2 f2; 3; 5; 15; 26g. Furthermore, they explicitly stated all the

solutions for these exceptional cases.

In the same spirit of the main result of Luca et al. [17], Rihane et al. [21] studied

the Diophantine equations

xk ¼ Pn and Xk ¼ Pn; ð7Þ

where xk and Xk are given by (3) and (4), respectively. They proved that for each

square-free integer d� 2, there is at most one positive integer x participating in the

Pell equation (1) and at most one positive integer X participating in the Pell equation

(2) that is a Padovan number with a few exceptions of d that they effectively

computed. Furthermore, the exceptional cases were d 2 f2; 3; 5; 6g and d ¼ 5 for

the the first and second equations in (7), respectively. Several other related problems

have been studied where xk belongs to some interesting positive integer sequences.

For example, see [8, 9, 11, 12, 14–16, 18].

2 Main results

In this paper, we study the same problem considered by E. F. Bravo et al.[3, 4] but

with Padovan numbers instead of Tribonacci numbers. We also extend the results

from the Pell equation (1) to the Pell equation (2). In both cases we find that there

are only finitely many solutions that we effectively compute. Since

P1 ¼ P2 ¼ P3 ¼ 1, we discard the situations when n ¼ 1 and n ¼ 2 and just count

the solutions for n ¼ 3. Similarly, P4 ¼ P5 ¼ 2, so we just count the solutions for

n ¼ 5.

The main aim of this paper is to prove the following results.

Theorem 1 For each square-free integer d� 2, there is at most one positive integer
k such that

xk ¼ Pn þ Pm ð8Þ

except when d 2 f2; 3; 6; 15; 110; 483g in the þ1 case and d 2 f2; 5; 10; 17g in the
�1 case.

Theorem 2 For each square-free integer d� 2, there is at most one positive integer
k such that

Xk ¼ Pn þ Pm ð9Þ

except when d 2 f3; 5; 21g in the þ4 case and d 2 f2; 5g in the �4 case.

For the exceptional values of d listed in Theorem 1 and Theorem 2, all solutions

(k, n, m) are listed at the end of the proof of each result. The main tools used in this

paper are lower bounds for nonzero linear forms in logarithms of algebraic numbers

‘‘á la Baker’’ and the Baker-Davenport reduction procedure, as well as the

elementary properties of the Padovan sequence and solutions to Pell equations.

Computations are done with the help of a computer program in Mathematica.
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3 Preliminary results

3.1 The Padovan sequence

Here, we recall some important properties of the Padovan sequence ðPnÞn� 0. The

characteristic equation

x3 � x� 1 ¼ 0;

has roots a; b; c ¼ �b, where

a ¼ r1 þ r2
6

; b ¼ �ðr1 þ r2Þ þ
ffiffiffiffiffiffiffi

�3
p

ðr1 � r2Þ
12

; ð10Þ

with

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

108þ 12
ffiffiffiffiffi

69
p3

q

and r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

108� 12
ffiffiffiffiffi

69
p3

q

: ð11Þ

Furthermore, a Binet-like formula for Padovan numbers is given by

Pn ¼ aan þ bbn þ ccn for all n� 0; ð12Þ

where

a ¼ aþ 1

ða� bÞða� cÞ ; b ¼ bþ 1

ðb� aÞðb� cÞ ; c ¼ cþ 1

ðc� aÞðc� bÞ ¼
�b: ð13Þ

Numerically, the following estimates hold:

1:32\a\1:33;

0:86\jbj ¼ jcj ¼ a�
1
2\0:87;

0:54\a\0:55;

0:28\jbj ¼ jcj\0:29:

ð14Þ

From (10), (11), and (14), it is easy to see that the contribution of the complex

conjugate roots b and c, to the right-hand side of (12), is very small. More exactly,

setting eðnÞ :¼ Pn � aan and taking into account the facts that jbj ¼ jcj ¼ a�
1
2 and

jbj ¼ jcj\0:29 (by (14)), it follows that, for any n� 1,

jeðnÞj ¼ bbn þ ccnj j � jbjjbjn þ jcjjcjn ¼ jbja�n
2 þ jcja�n

2\2 � 0:29 � a�n
2\

1

an=2
:

ð15Þ

Finally, one can prove by induction that

an�2 �Pn � an�1 holds for all n� 4: ð16Þ
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3.2 Linear forms in logarithms

Let g be an algebraic number of degree d with minimal primitive polynomial over

the integers

a0x
d þ a1x

d�1 þ � � � þ ad ¼ a0
Y

d

i¼1

ðx� gðiÞÞ;

where the leading coefficient a0 is positive and the gðiÞ’s are the conjugates of g.
Then, the logarithmic height of g is given by

hðgÞ :¼ 1

d
log a0 þ

X

d

i¼1

log maxfjgðiÞj; 1g
� �

 !

:

In particular, if g ¼ p=q is a rational number with gcdðp; qÞ ¼ 1 and q[ 0, then

hðgÞ ¼ logmaxfjpj; qg. The following are some of the properties of the logarithmic

height function hð�Þ, which will be used in the next sections of this paper without

reference:

hðg1 � g2Þ� hðg1Þ þ hðg2Þ þ log 2;

hðg1g�1
2 Þ� hðg1Þ þ hðg2Þ;

hðgsÞ ¼ jsjhðgÞ ðs 2 ZÞ:

We recall the result of Bugeaud et al. (see [6], Theorem 9.4), which is a modified

version of the result of Matveev [19], which is one of our main tools in this paper.

Theorem 3 (Matveev according to Bugeaud et al., [6, 19]) Let g1; . . .; gt be nonzero
elements of an algebraic number field K � R of degree DK over Q, b1; . . .; bt be
nonzero integers, and assume that

K :¼ gb11 � � � gbtt � 1;

is nonzero. Then

log jKj[ � 1:4� 30tþ3 � t4:5 � D2
Kð1þ logDKÞð1þ logBÞA1 � � �At;

where

B� maxfjb1j; . . .; jbtjg;

and

Ai � maxfDKhðgiÞ; j log gij; 0:16g; for all i ¼ 1; . . .; t:
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3.3 Reduction procedure

During the calculations, we get upper bounds on our variables which are too large,

thus we need to reduce them. To do so, we use some results from the theory of

continued fractions.

For the treatment of linear forms homogeneous in two integer variables, we use

the following well-known classical result in the theory of Diophantine approxima-

tion. For further details, we refer the reader to the books of Baker and Wüstholz [2]

and Cohen [7].

Lemma 1 (Legendre, [2, 7]). Let s be an irrational number, p0=q0; p1=q1; p2=q2; . . .
be all the convergents of the continued fraction expansion of s and M be a positive
integer. Let N be a nonnegative integer such that qN [M. Then putting
aðMÞ :¼ maxfai : i ¼ 0; 1; 2; . . .;Ng, the inequality

s� r

s

�

�

�

�

�

�
[

1

ðaðMÞ þ 2Þs2 ;

holds for all pairs (r, s) of positive integers with 0\s\M.

For a nonhomogeneous linear form in two integer variables, we use a slight

variation of a result due to Dujella and Peth}o (see [10], Lemma 5a) and itself is a

generalization of a result of Baker and Davenport [1]. In this paper, we use an

immediate variation of the result of Dujella and Peth}o [10] due to J.J. Bravo et al.

(see [5], Lemma 1). For a real number X, we write kXk :¼ minfjX � nj : n 2 Zg for
the distance from X to the nearest integer.

Lemma 2 (Dujella, Peth}o according to J. J. Bravo et al. [5, 10]) Let M be a
positive integer, p/q be a convergent of the continued fraction expansion of the
irrational number s such that q[ 6M, and A;B; l be some real numbers with A[ 0

and B[ 1. Furthermore, let e :¼ klqk �Mksqk. If e[ 0, then there is no solution
to the inequality

0\jus� vþ lj\AB�w;

in positive integers u, v, and w with

u�M and w� logðAq=eÞ
logB

:

At various occasions, we need to find a lower bound for linear forms in

logarithms with bounded integer coefficients in three and four variables. In this case,

we use the LLL algorithm that we describe below. Let s1; s2; . . .st 2 R and the

linear form

x1s1 þ x2s2 þ � � � þ xtst with jxij �Xi:

We put X :¼ maxfXig, C[ ðtXÞt and consider the integer lattice X generated by
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bj :¼ ej þ bCsjeet for 1� j� t � 1 and bt :¼ bCsteet;

where C is a sufficiently large positive constant.

Lemma 3 (LLL-algorithm, [7]) Let X1;X2; . . .;Xt be positive integers such that

X :¼ maxfXig and C[ ðtXÞt be a fixed sufficiently large constant. With the above
notation on the lattice X, we consider a reduced base fbig to X and its associated
Gram-Schmidt orthogonalization base fb	i g. We set

c1 :¼ max
1� i� t

kb1k
kb	i k

; h :¼ kb1k
c1

; Q :¼
X

t�1

i¼1

X2
i ; and R :¼ 1

2
1þ

X

t

i¼1

Xi

 !

:

If the integers xi are such that jxij �Xi, for 1� i� t and h2 �Qþ R2, then we have

X

t

i¼1

xisi

�

�

�

�

�

�

�

�

�

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 � Q
p

� R

C
:

For the proof and further details, we refer the reader to the book of Cohen (see

[7], Proposition 2.3.20).

Finally, the following Lemma is also useful. It is Lemma 7 in [13].

Lemma 4 (Gúzman Sánchez, Luca, [13]) Let r; H; and L be positive real numbers.

If r� 1, H[ ð4r2Þr, and H[ L=ðlog LÞr, then

L\2rHðlogHÞr:

4 Proof of Theorem 1

Let ðx1; y1Þ be the smallest positive integer solution to the Pell equation (1). We put

d :¼ x1 þ y1
ffiffiffi

d
p

and r :¼ x1 � y1
ffiffiffi

d
p

: ð17Þ

From which we get that

d � r ¼ x21 � dy21 ¼: N; where N 2 f�1g: ð18Þ

Then,

xk ¼
1

2
ðdk þ rkÞ: ð19Þ

Since d� 1þ
ffiffiffi

2
p

, it follows that the estimate

dk

a4
� xk � dk holds for all k� 1: ð20Þ

We assume that ðk1; n1;m1Þ and ðk2; n2;m2Þ are triples of integers such that
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xk1 ¼ Pn1 þ Pm1
and xk2 ¼ Pn2 þ Pm2

: ð21Þ

We assume that 1� k1\k2. We also assume that 3�mi\ni for i ¼ 1; 2. We set

ðk; n;mÞ :¼ ðki; ni;miÞ, for i ¼ 1; 2. Using the inequalities (16) and (20), we get

from (21) that

dk

a4
� xk ¼ Pn þ Pm � 2an�1 and an�2 �Pn þ Pm ¼ xk � dk:

The above inequalities give

ðn� 2Þ log a\k log d\ðnþ 3Þ log aþ log 2:

Dividing through by log a and setting c2 :¼ 1= log a, we get that

�2\c2k log d� n\3þ c2 log 2;

and since a3 [ 2, we get

jn� c2k log dj\6: ð22Þ

Furthermore, k\n, for if not, we would then get that

dn � dk\2anþ3; implying
d
a

� �n

\2a3;

which is false since d� 1þ
ffiffiffi

2
p

, a 2 ð1:32; 1:33Þ (by (14)), and n� 4.

Besides, given that k1\k2, we have by (16) and (21) that

an1�2 �Pn1 �Pn1 þ Pm1
¼ xk1\xk2 ¼ Pn2 þ Pm2

� 2Pn2\2an2�1:

Thus, we get that

n1\n2 þ 4: ð23Þ

4.1 An inequality for n and k

Using the Eqs. (8), (12), (19), and (21), we have

1

2
ðdk þ rkÞ ¼ Pn þ Pm ¼ aan þ eðnÞ þ aam þ eðmÞ:

Therefore,

1

2
dk � aðan þ amÞ ¼ � 1

2
rk þ eðnÞ þ eðmÞ;

and by (15), we have
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jdkð2aÞ�1a�nð1þ am�nÞ�1 � 1j � 1

2dkaðan þ amÞ
þ 2jbj
an=2aðan þ amÞ

þ 2jbj
am=2aðan þ amÞ

� 1

aan
1

2dk
þ 2jbj
an=2

þ 2jbj
am=2

� �

\
1:5

an
:

Thus, we have

jdkð2aÞ�1a�nð1þ am�nÞ�1 � 1j\ 1:5

an
: ð24Þ

Put

K1 :¼ dkð2aÞ�1a�nð1þ am�nÞ�1 � 1;

and

C1 :¼ k log d� logð2aÞ � n log a� logð1þ am�nÞ:

Since jK1j ¼ jeC1 � 1j\1=2 for n� 4 (because 1:5=a4\1=2), and the inequality

jyj\2jey � 1j holds for all y 2 �1=2; 1=2ð Þ, it follows that ejC1j\2 and so

jC1j\ejC1jjeC1 � 1j\ 3

an
:

Thus, we get that

jk log d� logð2aÞ � n log a� logð1þ am�nÞj\ 3

an
: ð25Þ

We apply Theorem 3 on the left-hand side of (24) with the data:

t :¼ 4; g1 :¼ d; g2 :¼ 2a; g3 :¼ a; g4 :¼ 1þ am�n;

b1 :¼ k; b2 :¼ �1; b3 :¼ �n; b4 :¼ �1:

Furthermore, we take the number field K :¼ Qð
ffiffiffi

d
p

; aÞ which has degree DK :¼ 6.

Since maxf1; k; ng� n, we take B :¼ n. First, we note that the left-hand side of (24)

is nonzero, since otherwise,

dk ¼ 2aðan þ amÞ:

The left-hand side belongs to the quadratic field Qð
ffiffiffi

d
p

Þ while the right-hand side

belongs to the cubic field QðaÞ. These fields only intersect when both sides are

rational numbers. Since dk is a positive algebraic integer and a unit, we get that to

dk ¼ 1. Hence, k ¼ 0, which is a contradiction. Thus, K1 6¼ 0 and we can apply

Theorem 3.

We have hðg1Þ ¼ hðdÞ ¼ ðlog dÞ=2 and hðg3Þ ¼ hðaÞ ¼ ðlog aÞ=3. Furthermore,
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2a ¼ 2aðaþ 1Þ
2aþ 3

:

The minimal polynomial of 2a is 23x3 � 20x� 8 and has roots 2a, 2b, 2c. Since
2jbj ¼ 2jcj\1 (by (14)), then

hðg2Þ ¼ hð2aÞ ¼ 1

3
ðlog 23þ logð2aÞÞ:

On the other hand,

hðg4Þ ¼ hð1þ am�nÞ� hð1Þ þ hðam�nÞ þ log 2

¼ ðn� mÞhðaÞ þ log 2 ¼ 1

3
ðn� mÞ log aþ log 2:

Thus, we can take A1 :¼ 3 log d,

A2 :¼ 2ðlog 23þ logð2aÞÞ; A3 :¼ 2 log a; A4 :¼ 2ðn� mÞ log aþ 6 log 2:

Now, Theorem 3 tells us that

log jK1j[ � 1:4� 307 � 44:5 � 62ð1þ log 6Þð1þ log nÞð3 log dÞ
� ð2ðlog 23þ logð2aÞÞð2 log aÞð2ðn� mÞ log aþ 6 log 2Þ

[ � 2:33� 1017ðn� mÞðlog nÞðlog dÞ:

Comparing the above inequality with (24), we get

n log a� log 1:5\2:33� 1017ðn� mÞðlog nÞðlog dÞ:

Hence, we get that

n\8:30� 1017ðn� mÞðlog nÞðlog dÞ: ð26Þ

We now return to the Diophantine equation (8) and rewrite it as

1

2
dk � aan ¼ � 1

2
rk þ eðnÞ þ Pm;

we obtain

jdkð2aÞ�1a�n � 1j � 1

aan�m

1

a
þ 1

amþn=2
þ 1

2dkam

� �

\
2:5

an�m
: ð27Þ

Put

K2 :¼ dkð2aÞ�1a�n � 1; C2 :¼ k log d� logð2aÞ � n log a:

We assume for technical reasons that n� m� 10. Therefore, jeK2 � 1j\1=2. It
follows that
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jk log d� logð2aÞ � n log aj ¼ jC2j\ejK2jjeK2 � 1j\ 5

an�m
: ð28Þ

Furthermore, K2 6¼ 0 (so C2 6¼ 0), since dk 62 QðaÞ by a previous argument.

We now apply Theorem 3 to the left-hand side of (27) with the data

t :¼ 3; g1 :¼ d; g2 :¼ 2a; g3 :¼ a; b1 :¼ k; b2 :¼ �1; b3 :¼ �n:

Thus, we have the same A1; A2; A3, as before. Then, by Theorem 3, we conclude

that

log jKj[ � 9:82� 1014ðlog dÞðlog nÞðlog aÞ:

By comparing with (27), we get

n� m\9:84� 1014ðlog dÞðlog nÞ: ð29Þ

This was obtained under the assumption that n� m� 10, but if n� m\10, then the

above inequality also holds as well. We replace n� m in (26) by its upper bound

that we obtained in (29) and use the fact that dk � 2anþ3, to obtain bounds on n and k
in terms of log n and log d. We now record what we have proved so far.

Lemma 5 Let (k, n, m) be a solution to the Diophantine equation (8) with
3�m\n, then

k\2:5� 1032ðlog nÞ2ðlog dÞ and n\8:2� 1032ðlog nÞ2ðlog dÞ2: ð30Þ

4.2 Absolute bounds

We recall that ðk; n;mÞ ¼ ðki; ni;miÞ, where 3�mi\ni, for i ¼ 1; 2 and 1� k1\k2.
Furthermore, ni � 4 for i ¼ 1; 2. We return to (28) and write

jCðiÞ
2 j :¼ jki log d� logð2aÞ � ni log aj\

5

ani�mi
; for i ¼ 1; 2:

We do a suitable cross product between Cð1Þ
2 ; Cð2Þ

2 and k1; k2 to eliminate the term

involving log d in the above linear forms in logarithms:

jC3j : ¼ jðk1 � k2Þ logð2aÞ þ ðk1n2 � k2n1Þ log aj ¼ jk2Cð1Þ
2 � k1C

ð2Þ
2 j

� k2jCð1Þ
2 j þ k1jCð2Þ

2 j � 5k2
an1�m1

þ 5k1
an2�m2

� 10n2
ak

;
ð31Þ

where k :¼ min
1� i� 2

fni � mig:

We need to find an upper bound for k. If 10n2=ak [ 1=2, we then get

k\
logð20n2Þ

log a
\4 logð20n2Þ: ð32Þ

Otherwise, jC3j\1=2, so
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jeC3 � 1j ¼ jð2aÞk1�k2ak1n2�k2n1 � 1j\2jC3j\
20n2
ak

: ð33Þ

We apply Theorem 3 with the data: t :¼ 2, g1 :¼ 2a, g2 :¼ a, b1 :¼ k1 � k2,
b2 :¼ k1n2 � k2n1. We take the number field K :¼ QðaÞ and DK :¼ 3. We begin by

checking that eC3 � 1 6¼ 0 (so C3 6¼ 0). This is true, because a and 2a are multi-

plicatively independent, since a is a unit in the ring of integers QðaÞ while the norm
of 2a is 8/23.

We note that jk1 � k2j\k2\n2. Furthermore, from (31), we have

jk2n1 � k1n2j\ðk2 � k1Þ
j logð2aÞj
log a

þ 10k2
ak log a

\11k2\11n2

given that k� 1. Therefore, we can take B :¼ 11n2. By Theorem 3, with the same

A1 :¼ log 23 and A2 :¼ log a, we have that

log jeC3 � 1j[ � 1:55� 1011ðlog n2Þðlog aÞ:

By comparing this with (33), we get

k\1:56� 1011 log n2: ð34Þ

Note that (34) is a better bound than (32), so (34) always holds. Without loss of

generality, we can assume that k ¼ ni � mi, for i ¼ 1; 2 fixed.

We set fi; jg ¼ f1; 2g and return to (25) to replace ðk; n;mÞ ¼ ðki; ni;miÞ:

jCðiÞ
1 j ¼ jki log d� logð2aÞ � ni log a� logð1þ ami�niÞj\ 3

ani
; ð35Þ

and also return to (28), with ðk; n;mÞ ¼ ðkj; nj;mjÞ:

jCðjÞ
2 j ¼ jkj log d� logð2aÞ � nj log aj\

5

anj�mj
: ð36Þ

We perform a cross product on (35) and (36) to eliminate the terms on log d:

jC4j : ¼ jðkj � kiÞ logð2aÞ þ ðkjni � kinjÞ log aþ kj logð1þ ami�niÞj

¼ jkiCðjÞ
2 � kjC

ðiÞ
1 j � kijCðjÞ

2 j þ kjjCðiÞ
1 j\ 5ki

anj�mj
þ 3kj

ani
\

8n2
am

ð37Þ

with m :¼ minfni; nj � mjg. As before, we need to find an upper bound on m. If
8n2=am [ 1=2, then we get

m\
logð16n2Þ

log a
\4 logð16n2Þ: ð38Þ

Otherwise, jC4j\1=2, so we have

jeC4 � 1j � 2jC4j\
16n2
am

: ð39Þ

To apply Theorem 3, first if eC4 ¼ 1, we obtain
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ð2aÞki�kj ¼ akjni�kinjð1þ a�kÞkj :

Since a is a unit, the right-hand side in above is an algebraic integer. This is a

contradiction, because k1\k2 so ki � kj 6¼ 0, and neither (2a) nor ð2aÞ�1
are

algebraic integers. Hence, eC4 6¼ 1. By assuming that m� 100, we apply Theorem 3

with the data:

t :¼ 3; g1 :¼ 2a; g2 :¼ a; g3 :¼ 1þ a�k;

b1 :¼ kj � ki; b2 :¼ kjni � kinj; b3 :¼ kj;

and the inequalities (34) and (39). We get

m ¼ minfni; nj � mjg\1:14� 1014k log n2\1:78� 1025ðlog n2Þ2:

The above inequality also holds when m\100. Furthermore, it also holds when the

inequality (38) holds. Therefore, the above inequality holds in all cases. Note that

the case ði; jÞ ¼ ð2; 1Þ leads to n1 � m1 � n1 � n2 þ 4 whereas ði; jÞ ¼ ð1; 2Þ leads to
m ¼ minfn1; n2 � m2g. Hence, either the minimum is n1, so

n1\1:78� 1025ðlog n2Þ2; ð40Þ

or the minimum is nj � mj and from the inequality (34), we get that

max
1� j� 2

fnj � mjg\1:78� 1025ðlog n2Þ2: ð41Þ

Next, we assume that we are in the case (41). We evaluate (35), for i ¼ 1; 2 and

make a suitable cross-product to eliminate the terms involving log d:

jC5j : ¼ jðk2 � k1Þ logð2aÞ þ ðk2n1 � k1n2Þ log a
þ k2 logð1þ am1�n1Þ � k1 logð1þ am2�n2Þj

¼ jk1Cð2Þ
1 � k2C

ð1Þ
1 j � k1jCð2Þ

1 j þ k2jCð1Þ
1 j\ 6n2

an1
:

ð42Þ

In the above inequality, we used the inequality (23) to conclude that

minfn1; n2g� n1 � 4 as well as the fact that ni � 4 for i ¼ 1:2. Next, we apply a

linear form in four logarithms to obtain an upper bound to n1. As in the previous

calculations, we pass from (42) to

jeC5 � 1j\ 12n2
an1

; ð43Þ

which is implied by (42) except if n1 is very small, say

n1 � 4 logð12n2Þ: ð44Þ

Thus, we assume that (44) does not hold, therefore (43) holds. Then, to apply

Theorem 3, we first justify that eC5 6¼ 1. Otherwise,

ð2aÞk1�k2 ¼ ak2n1�k1n2ð1þ an1�m1Þk2ð1þ an2�m2Þ�k1 :
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By the fact that k1\k2, the norm NQðaÞ=Qð2aÞ ¼ 8=23 and that a is a unit, we have

that 23 divides the norm NK=Qð1þ an1�m1Þ. The factorization of the ideal generated

by 23 in OQðaÞ is ð23Þ ¼ p21p2, where p1 ¼ ð23; aþ 13Þ and p2 ¼ ð23; aþ 20Þ.
Hence, p2 divides an1�m1 þ 1. Given that a 
 �20 ðmod p2Þ, then

ð�20Þn1�m1 
 �1ðmod p2Þ. Taking the norm NQðaÞ=Q, we obtain that

ð�20Þn1�m1 
 �1 ðmod 23Þ. If n1 � m1 is even, �1 is a quadratic residue modulo 23

and if n1 � m1 is odd then 20 is a quadratic residue modulo 23. But, neither �1 nor

20 are quadratic residues modulo 23. Thus, eC5 6¼ 1.

Then, we apply Theorem 3 on the left-hand side of the inequality (43) with the

data

t :¼ 4; g1 :¼ 2a; g2 :¼ a; g3 :¼ 1þ am1�n1 ; g4 :¼ 1þ am2�n2 ;

b1 :¼ k2 � k1; b2 :¼ k2n1 � k1n2; b3 :¼ k2; b4 :¼ k1:

Combining the right-hand side of (43) with the inequalities (34) and (41), Theo-

rem 3 gives

n1\3:02� 1016ðn1 � m1Þðn2 � m2Þðlog n2Þ\8:33� 1052ðlog n2Þ4: ð45Þ

In the above, we used the facts that

min
1� i� 2

fni � mig\1:56� 1011 log n2 and max
1� i� 2

fni � mig\1:78� 1025ðlog n2Þ2:

This was obtained under the assumption that the inequality (44) does not hold. If

(44) holds, then so does (45). Thus, we have that inequality (45) holds provided that

inequality (41) holds. Otherwise, inequality (40) holds which is a better bound than

(45). Hence, we conclude that (45) holds in all possible cases.

By the inequality (22),

log d� k1 log d� n1 log aþ log 6\2:38� 1052ðlog n2Þ4:

By substituting this into (30) we get n2\4:64� 10137ðlog n2Þ10, and then, by

Lemma 4, with the data r :¼ 10; H :¼ 4:64� 10137 and L :¼ n2, we get that

n2\4:87� 10165. This immediately gives that n1\1:76� 1063.

We record what we have proved.

Lemma 6 Let ðki; ni;miÞ be a solution to the Diophantine equation (8), with
3�mi\ni for i 2 f1; 2g and 1� k1\k2, then

maxfk1;m1g\n1\1:76� 1063; and maxfk2;m2g\n2\4:87� 10165:
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5 Reducing the bounds for n1 and n2

In this section, we reduce the bounds for n1 and n2 given in Lemma 6 to cases that

can be computationally treated. For this, we return to the inequalities for C3, C4, and

C5.

5.1 The first reduction

We divide both sides of the inequality (31) by ðk2 � k1Þ log a. We get that

logð2aÞ
log a

� k2n1 � k1n2
k2 � k1

�

�

�

�

�

�

�

�

\
36n2

akðk2 � k1Þ
with k :¼ min

1� i� 2
fni � mig: ð46Þ

We assume that k� 10. Below we apply Lemma 1. We put s :¼ logð2aÞ= log a,
which is irrational and compute its continued fraction

½a0; a1; a2; . . .� ¼ ½1; 3; 3; 1; 11; 1; 2; 1; 1; 1; 3; 1; 1; 1; 2; 5; 1; 15; 2; 19; 1; 1; 2; 2; . . .�;

and its convergents

p0
q0

;
p1
q1

;
p2
q2

; . . .

� 	

¼ 1;
4

3
;
13

10
;
17

13
;
200

153
;
217

166
;
634

485
;
851

651
;
1485

1136
;
2336

1787
;
8493

6497
; . . .

� 	

:

Furthermore, we note that taking M :¼ 4:87� 10165 (by Lemma 6), it follows that

q315 [M[ n2 [ k2 � k1 and aðMÞ :¼ maxfai : 0� i� 315g ¼ a282 ¼ 2107:

Thus, by Lemma 1, we have that

s� k2n1 � k1n2
k2 � k1

�

�

�

�

�

�

�

�

[
1

2109ðk2 � k1Þ2
: ð47Þ

Hence, combining the inequalities (46) and (47), we obtain

ak\75924n2ðk2 � k1Þ\1:75� 10336;

so k� 2714. This was obtained under the assumption that k� 10. Otherwise,

k\10\2714 holds as well.

Now, for each ni � mi ¼ k 2 ½1; 2714�, we estimate a lower bound for jC4j, with

C4 ¼ ðkj � kiÞ logð2aÞ þ ðkjni � kinjÞ log aþ kj logð1þ ami�niÞ ð48Þ

given in the inequality (37), via the procedure described in Sect. 3.3 (LLL-algo-

rithm). We recall that C4 6¼ 0. We apply Lemma 3 with the data:

t :¼ 3; s1 :¼ logð2aÞ; s2 :¼ log a; s3 :¼ logð1þ a�kÞ;
x1 :¼ kj � ki; x2 :¼ kjni � kinj; x3 :¼ kj:

We set X :¼ 5:4� 10166 as an upper bound to jxij\11n2 for all i ¼ 1; 2; 3, and
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C :¼ ð20XÞ5. A computer search usingMathematica allows us to conclude, together

with the inequality (37), that

2� 10�671\ min
1� k� 2714

jC4j\8n2a
�m; with m :¼ minfni; nj � mjg

which leads to m� 6760. As we have noted before, m ¼ n1 (so n1 � 6760) or

m ¼ nj � mj.

Next, we suppose that nj � mj ¼ m� 6760. Since k� 2714, we have

k :¼ min
1� i� 2

fni � mig� 2714 and v :¼ max
1� i� 2

fni � mig� 6760:

Now, returning to the inequality (42) which involves

C5 :¼ ðk2 � k1Þ logð2aÞ þ ðk2n1 � k1n2Þ log a
þ k2 logð1þ am1�n1Þ � k1 logð1þ am2�n2Þ 6¼ 0:

ð49Þ

We use again the LLL algorithm to estimate the lower bound for jC5j and thus, find

a bound for n1 that is better than the one given in Lemma 6.

We distinguish the cases k\v and k ¼ v.

5.2 The case k< v

We take k 2 ½1; 2714� and v 2 ½kþ 1; 6760� and apply Lemma 3 with the data:

t :¼ 4,

s1 :¼ logð2aÞ; s2 :¼ log a; s3 :¼ logð1þ am1�n1Þ; s4 :¼ logð1þ am2�n2Þ;
x1 :¼ k2 � k1; x2 :¼ k2n1 � k1n2; x3 :¼ k2; x4 :¼ �k1:

We also put X :¼ 5:4� 10166 and C :¼ ð20XÞ9. After a computer search in Math-
ematica together with the inequality (42), we can confirm that

8� 10�1342\ min
1� k� 2714

kþ 1� v� 6760

jC5j\6n2a
�n1 :

This leads to the inequality

an1\7:5� 101341n2:

Substituting for the bound n2 given in Lemma 6, we get that n1 � 12172.

5.3 The case k= v

In this case, we have

K5 :¼ ðk2 � k1Þðlogð2aÞ þ logð1þ am1�n1ÞÞ þ ðk2n1 � k1n2Þ log a 6¼ 0:

We divide through the inequality (42) by ðk2 � k1Þ log a to obtain
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logð2aÞ þ logð1þ am1�n1Þ
log a

� k2n1 � k1n2
k2 � k1

�

�

�

�

�

�

�

�

\
21n2

an1ðk2 � k1Þ
: ð50Þ

We now put

sk :¼
logð2aÞ þ logð1þ a�kÞ

log a
;

and compute its continued fractions ½aðkÞ0 ; a
ðkÞ
1 ; a

ðkÞ
2 ; . . .�, and its convergents

½pðkÞ0 =q
ðkÞ
0 ; p

ðkÞ
1 =q

ðkÞ
1 ; p

ðkÞ
2 =q

ðkÞ
2 ; . . .�, for each k 2 ½1; 2714�. Furthermore, for each case

we find an integer tk such that q
ðkÞ
tk [M :¼ 4:87� 10165 [ n2 [ k2 � k1 and

calculate

aðMÞ :¼ max
1� k� 2714

a
ðkÞ
i : 0� i� tk

n o

:

A computer search in Mathematica reveals that for k ¼ 321, tk ¼ 330 and i ¼ 263,

we have that aðMÞ ¼ a
ð330Þ
321 ¼ 306269. Hence, combining the conclusion of

Lemma 1 and the inequality (50), we get

an1\21� 306271n2ðk2 � k1Þ\1:525� 10338;

so n1 � 2730. Hence, we obtain that n1 � 12172 holds in all cases (m ¼ n1, k\v or

k ¼ v). By the inequality (22), we have that

log d� k1 log d� n1 log aþ log 6\3475:

By considering the second inequality in (30), we can conclude that

n2 � 9:9� 1039ðlog n2Þ2, which immediately yields n2\3:36� 1044, by a simple

application of Lemma 4. We summarise the first cycle of our reduction process as

follows:

n1 � 12172 and n2 � 3:36� 1044:

From the above inequalities, we note that the upper bound on n2 represents a very

good reduction of the bound given in Lemma 6. Hence, we expect that if we restart

our reduction cycle with the new bound on n2, then we get a better bound on n1.

Thus, we return to the inequality (46) and take M :¼ 3:36� 1044. A computer

search in Mathematica reveals that

q88 [M[ n2 [ k2 � k1 and aðMÞ :¼ maxfai : 0� i� 88g ¼ a54 ¼ 373;

from which it follows that k� 752. We now return to (48) and we put X :¼
3:36� 1044 and C :¼ ð10XÞ5 and then apply the LLL algorithm in Lemma 3 to

k 2 ½1; 752�. After a computer search, we get
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5:33� 10�184\ min
1� k� 752

jC4j\8n2a
�m;

then m� 1846. By continuing under the assumption that nj � mj ¼ m� 1846, we

return to (49) and put X :¼ 3:36� 1044, C :¼ ð10XÞ9 and M :¼ 3:36� 1044 for the

case k\v and k ¼ v. After a computer search, we confirm that

2� 10�366\ min
1� k� 752

kþ 1� v� 1846

jC5j\6n2a
�n1 ;

gives n1 � 3318, and aðMÞ ¼ a
ð205Þ
175 ¼ 206961, which leads to n1 � 772. Hence, in

both cases n1 � 3318 holds. This gives n2 � 5� 1042 by a similar procedure as

before, and k1 � 3125.

We record what we have proved.

Lemma 7 Let ðki; ni;miÞ be a solution to the Diophantine equation (8), with
3�mi\ni for i ¼ 1; 2 and 1� k1\k2, then

m1\n1 � 3318; k1 � 3125; and n2 � 5� 1042:

5.4 The final reduction

Returning to (17) and (19) and using the fact that ðx1; y1Þ is the smallest positive

solution to the Pell equation (1), we obtain

xk ¼
1

2
ðdk þ rkÞ ¼ 1

2
x1 þ y1

ffiffiffi

d
p� �k

þ x1 � y1
ffiffiffi

d
p� �k

� �

¼ 1

2
x1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 � 1

q

� �k

þ x1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 � 1

q

� �k
 !

:¼ Q�
k ðx1Þ:

Thus, we return to the Diophantine equation xk1 ¼ Pn1 þ Pm1
and consider the

equations

Qþ
k1
ðx1Þ ¼ Pn1 þ Pm1

and Q�
k1
ðx1Þ ¼ Pn1 þ Pm1

; ð51Þ

with k1 2 ½1; 3125�, m1 2 ½3; 3318� and n1 2 ½m1 þ 1; 3318�.
Besides the trivial case k1 ¼ 1, with the help of a computer search in

Mathematica on the above equations in (51), we list the only nontrivial solutions

in Table 1. We also note that 3þ 2
ffiffiffi

2
p

¼ ð1þ
ffiffiffi

2
p

Þ2, so these solutions come from

the same Pell equation when d ¼ 2.

From Table 1, we set each d :¼ dt for t ¼ 1; 2; . . .; 17. We then work on the

linear forms in logarithms C1 and C2, to reduce the bound on n2 given in Lemma 7.

From the inequality (28), for ðk; n;mÞ :¼ ðk2; n2;m2Þ, we write
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k2
log dt
log a

� n2 þ
logð2aÞ
logða�1Þ

�

�

�

�

�

�

�

�

\
5

log a

� �

a�ðn2�m2Þ; for t ¼ 1; 2; . . .; 17: ð52Þ

We put

st :¼
log dt
log a

; lt :¼
logð2aÞ
logða�1Þ and ðAt;BtÞ :¼

5

log a
; a

� �

:

We note that st is transcendental by Gelfond-Schneider Theorem (see [2], Theo-

rem 2.1). Thus, st is irrational. We can rewrite the inequality (52) as

0\jk2st � n2 þ ltj\AtB
�ðn2�m2Þ
t ; for t ¼ 1; 2; . . .; 17: ð53Þ

We take M :¼ 5� 1042 which is the upper bound on n2 according to Lemma 7 and

apply Lemma 2 to the inequality (53). As before, for each st with t ¼ 1; 2; . . .; 17,

we compute its continued fraction ½aðtÞ0 ; a
ðtÞ
1 ; a

ðtÞ
2 ; . . .� and its convergents

Table 1 Solutions to Q�
k1
ðx1Þ ¼ Pn1 þ Pm1

Qþ
k1
ðx1Þ

k1 x1 y1 d d

2 2 1 3 2þ
ffiffiffi

3
p

2 3 2 2 3þ 2
ffiffiffi

2
p

2 4 1 15 4þ
ffiffiffiffiffi

15
p

2 5 2 6 5þ 2
ffiffiffi

6
p

2 21 2 110 21þ 2
ffiffiffiffiffiffiffiffi

110
p

2 22 1 483 22þ
ffiffiffiffiffiffiffiffi

483
p

2 47 4 138 47þ 4
ffiffiffiffiffiffiffiffi

138
p

Q�
k1
ðx1Þ

k1 x1 y1 d d

2 1 1 2 1þ
ffiffiffi

2
p

2 2 1 5 2þ
ffiffiffi

5
p

2 3 1 10 3þ
ffiffiffiffiffi

10
p

2 4 1 17 4þ
ffiffiffiffiffi

17
p

2 5 1 26 5þ
ffiffiffiffiffi

26
p

2 9 1 82 9þ
ffiffiffiffiffi

82
p

2 10 1 101 10þ
ffiffiffiffiffiffiffiffi

101
p

2 17 1 290 17þ
ffiffiffiffiffiffiffiffi

290
p

2 42 1 1765 42þ
ffiffiffiffiffiffiffiffiffiffi

1765
p

2 47 1 2210 47þ
ffiffiffiffiffiffiffiffiffiffi

2210
p

2 63 1 3970 63þ
ffiffiffiffiffiffiffiffiffiffi

3970
p
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p
ðtÞ
0 =q

ðtÞ
0 ; p

ðtÞ
1 =q

ðtÞ
1 ; p

ðtÞ
2 =q

ðtÞ
2 ; . . .. For each case, by means of a computer search in

Mathematica, we find an integer st such that

qðtÞst [ 3� 1043 ¼ 6M and �t :¼ kltqðtÞk �MkstqðtÞk[ 0:

We finally compute all the values of bt :¼ blogðAtq
ðtÞ
st =�tÞ= logBtc. The values of bt

correspond to the upper bounds on n2 � m2, for each t ¼ 1; 2; . . .; 17, according to

Lemma 2. The results of the computation for each t are recorded in Table 2.

By replacing ðk; n;mÞ :¼ ðk2; n2;m2Þ in the inequality (25), we can write

k2
log dt
log a

� n2 þ
logð2að1þ a�ðn2�m2ÞÞÞ

logða�1Þ

�

�

�

�

�

�

�

�

\
3

log a

� �

a�n2 ; for t ¼ 1; 2; . . .; 17:

ð54Þ

We now put

st :¼
log dt
log a

; lt;n2�m2
:¼ logð2að1þ a�ðn2�m2ÞÞÞ

logða�1Þ and ðAt;BtÞ :¼
3

log a
; a

� �

:

With the above notations, we can rewrite the inequality (54) as

0\jk2st � n2 þ lt;n2�m2
j\AtB

�n2
t ; for t ¼ 1; 2; . . .; 17: ð55Þ

We again apply Lemma 2 to the inequality (55), for

Table 2 First reduction

computation results
t dt st qst �t [ bt

1 2þ
ffiffiffi

3
p

85 8:93366� 1043 0.3100 374

2 4þ
ffiffiffiffiffi

15
p

90 3:90052� 1043 0.3124 371

3 5þ 2
ffiffiffi

6
p

80 3:16032� 1043 0.0122 382

4 21þ 2
ffiffiffiffiffiffiffiffi

110
p

88 6:33080� 1043 0.2200 374

5 22þ
ffiffiffiffiffiffiffiffi

483
p

75 4:19689� 1043 0.2361 372

6 47þ 4
ffiffiffiffiffiffiffiffi

138
p

96 7:76442� 1043 0.3732 373

7 1þ
ffiffiffi

2
p

78 1:46195� 1044 0.3328 375

8 2þ
ffiffiffi

5
p

94 1:48837� 1044 0.2146 377

9 3þ
ffiffiffiffiffi

10
p

88 4:21425� 1043 0.1347 374

10 4þ
ffiffiffiffiffi

17
p

92 1:11753� 1044 0.2529 375

11 5þ
ffiffiffiffiffi

26
p

98 3:23107� 1043 0.1043 374

12 9þ
ffiffiffiffiffi

82
p

74 5:25207� 1043 0.2181 373

13 10þ
ffiffiffiffiffiffiffiffi

101
p

94 1:86122� 1044 0.2672 377

14 17þ
ffiffiffiffiffiffiffiffi

290
p

87 1:06422� 1044 0.0193 384

15 42þ
ffiffiffiffiffiffiffiffiffiffi

1765
p

78 3:81406� 1043 0.1768 373

16 47þ
ffiffiffiffiffiffiffiffiffiffi

2210
p

94 3:92482� 1043 0.4476 370

17 63þ
ffiffiffiffiffiffiffiffiffiffi

3970
p

85 6:00550� 1043 0.4056 371
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t ¼ 1; 2; . . .; 17; n2 � m2 ¼ 1; 2; . . .; bt; with M :¼ 5� 1043:

We take

�t;n2�m2
:¼ kltqðt;n2�m2Þk �Mkstqðt;n2�m2Þk[ 0;

and

bt ¼ bt;n2�m2
:¼ blogðAtq

ðt;n2�m2Þ
st

=�t;n2�m2
Þ= logBtc:

With the help of Mathematica, we obtain the results in Table 3.

Thus, maxfbt;n2�m2
: t ¼ 1; 2; . . .; 17 and n2 � m2 ¼ 1; 2; . . .btg� 408. So, by

Lemma 2, we have that n2 � 408, for all t ¼ 1; 2; . . .; 17, and by the inequality (23)

we have that n1 � n2 þ 4. From the fact that dk � 2anþ3, we can conclude that

k1\k2 � 133. Collecting everything together, our problem is reduced to search for

the solutions for (21) in the following range

1� k1\k2 � 133; 0�m1\n1 2 ½3; 408�; and 0�m2\n2 2 ½3; 408�:

After a computer search for the solutions to the Diophantine equations in (21) on the

range above, we obtained the following solutions, which are the only solutions for

the exceptional d cases we have stated in Theorem 1:

For the þ1 case:

ðd ¼ 2Þ x1 ¼ 3 ¼ P6 þ P0 ¼ P5 þ P3; x2 ¼ 17 ¼ P12 þ P3;

ðd ¼ 3Þ x1 ¼ 2 ¼ P3 þ P0 ¼ P3 þ P3; x2 ¼ 7 ¼ P9 þ P0 ¼ P7 þ P6;

x3 ¼ 26 ¼ P13 þ P8;

ðd ¼ 6Þ x1 ¼ 5 ¼ P8 þ P0 ¼ P7 þ P3 ¼ P6 þ P5;

x2 ¼ 49 ¼ P16 þ P0 ¼ P15 þ P12 ¼ P14 þ P13;

ðd ¼ 15Þ x1 ¼ 4 ¼ P7 þ P0 ¼ P6 þ P3 ¼ P5 þ P5; x2 ¼ 31 ¼ P14 þ P6;

ðd ¼ 110Þ x1 ¼ 21 ¼ P13 þ P0 ¼ P12 þ P8 ¼ P11 þ P10;

x2 ¼ 881 ¼ P26 þ P17 ¼ P25 þ P22;

ðd ¼ 483Þ x1 ¼ 22 ¼ P13 þ P3; x2 ¼ 967 ¼ P26 þ P20 ¼ P25 þ P23:

For the �1 case:

Table 3 Final reduction computation results

t 1 2 3 4 5 6 7 8 9

bt;n2�m2
388 389 394 394 393 394 396 392 392

t 10 11 12 13 14 15 16 17

bt;n2�m2
396 392 408 390 396 396 388 389
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ðd ¼ 2Þ x1 ¼ 1 ¼ P3 þ P0; x2 ¼ 7 ¼ P9 þ P0 ¼ P8 þ P5 ¼ P7 þ P6;

x3 ¼ 41 ¼ P15 þ P7 ¼ P14 þ P10 ¼ P13 þ P12;

ðd ¼ 5Þ x1 ¼ 2 ¼ P5 þ P0 ¼ P3 þ P3; x2 ¼ 38 ¼ P15 þ P3;

ðd ¼ 10Þ x1 ¼ 3 ¼ P6 þ P0 ¼ P5 þ P3; x2 ¼ 117 ¼ P19 þ P6;

ðd ¼ 17Þ x1 ¼ 4 ¼ P7 þ P0 ¼ P6 þ P3 ¼ P5 þ P5; x2 ¼ P22 þ P6:

This completes the proof of Theorem 1.

6 Proof of Theorem 2

The proof of Theorem 2 follows from similar steps, techniques, and arguments as

given in the proof of Theorem 1. So, we do not give the details here. Below, we give

the solutions to the Diophantine equation (9) for the exceptional d cases stated in

Theorem 2.

For the þ4 case:

ðd ¼ 3ÞX1 ¼ 4 ¼ P7 þ P0 ¼ P6 þ P3 ¼ P5 þ P5;

X2 ¼ 14 ¼ P11 þ P5 ¼ P10 þ P8; X3 ¼ 52 ¼ P16 þ P6;

ðd ¼ 5ÞX1 ¼ 3 ¼ P6 þ P0 ¼ P5 þ P3; X2 ¼ 7 ¼ P9 þ P0 ¼ P7 þ P6;

X3 ¼ 18 ¼ P12 þ P5;

ðd ¼ 21ÞX1 ¼ 5 ¼ P8 þ P0 ¼ P7 þ P3 ¼ P6 þ P5;

X2 ¼ 23 ¼ P13 þ P5 ¼ P12 þ P9; X3 ¼ 2525 ¼ P30 þ P11:

For the �4 case:

ðd ¼ 2ÞX1 ¼ 2 ¼ P5 þ P0 ¼ P3 þ P3; X2 ¼ 14 ¼ P11 þ P5 ¼ P10 þ P8;

ðd ¼ 5ÞX1 ¼ 1 ¼ P3 þ P0; X2 ¼ 4 ¼ P7 þ P0 ¼ P6 þ P3 ¼ P5 þ P5;

X3 ¼ 11 ¼ P10 þ P5 ¼ P9 þ P7; X4 ¼ 29 ¼ P14 þ P3:
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