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Abstract

Let (P,,)n - be the sequence of Padovan numbers defined by Py =0, Py = P, =1,
and P,,3 = P,y + P, for all n>0. In this paper, we find all positive square-free
integers d such that the Pell equations x> — dy?> = N with N € {£1,44}, have at
least two positive integer solutions (x, y) and (x’,y’) such that both x and x" are sums
of two Padovan numbers.
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1 Introduction
Let (P,), > be the sequence of Padovan numbers defined by the linear recurrence
P() = O, P| = 1, P2 = 1, and Pn+3 :Pn+l —|—Pn for all I’lZO

The Padovan sequence appears as sequence A0O00931 on the On-Line Encyclopedia
of Integer Sequences (OEIS) [20]. The first few terms of this sequence are
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0,1,1,1,2,2,3,4,5,7,9,12,16,21,28,37,49, 65, 86, 1 14, 151,200,265, 351. . ..

Let d > 2 be a positive square-free integer. It is well known that the Pell equations
X —dy* = +£1, (1)
and
X? —dy? = +4, (2)

have infinitely many positive integer solutions (x, y) and (X, Y) , respectively. By
putting (x;,y;) and (X;,Y;) for the smallest positive solutions to (1) and (2),
respectively, all the solutions (xx,yx) and (Xy, ¥;) have the form

X+ yeVd = (x1 +y1\/2)k forall keZ",

and

k
X + Yievd X, +Y1vd
+Yvd _(Xit Vv forall k€ Z".
2 2
Furthermore, (x;), -, and (X;), -, are binary recurrent sequences. More exactly, the

following formulae

(1 +3Vd)' + (0 —yiVa) (3)
2 )

X =

and

Xi— (ﬂ%(ﬂ) @)

hold for all positive integers k.
In the recent years, Luca et al. [17] considered the Diophantine equation

Xk = Tn, (5)

where x; is given by (3) and (75,),,~ , is the Tribonacci sequence defined by T = 0,
T, =T,=1,and T,43 = T2 + Tyy1 + T, for all n>0. The Tribonacci sequence
appears as sequence A000073 on the OEIS [20]. The authors in [17] proved that
Eq. (5) has at most one solution (k, n) in positive integers for all d except for d = 2
when Eq. (5) has the three solutions (k,n) = {(1,1),(1,2),(3,5)} and when d =3
case in which Eq. (5) has the two solutions (k,n) = {(1,3),(2,5)}.

Inspired by the main result of Luca et al. [17], E. F. Bravo et al. [3, 4] studied the
Diophantine equation

They proved that for each square-free integer d > 2, there is at most one positive
integer k such that x; admits the representation (6) for some nonnegative integers
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0 <m<n,except ford € {2,3,5, 15,26}. Furthermore, they explicitly stated all the
solutions for these exceptional cases.

In the same spirit of the main result of Luca et al. [17], Rihane et al. [21] studied
the Diophantine equations

xx =P, and X, = P, (7)

where x; and X; are given by (3) and (4), respectively. They proved that for each
square-free integer d > 2, there is at most one positive integer x participating in the
Pell equation (1) and at most one positive integer X participating in the Pell equation
(2) that is a Padovan number with a few exceptions of d that they effectively
computed. Furthermore, the exceptional cases were d € {2,3,5,6} and d =5 for
the the first and second equations in (7), respectively. Several other related problems
have been studied where x; belongs to some interesting positive integer sequences.
For example, see [8, 9, 11, 12, 14-16, 18].

2 Main results

In this paper, we study the same problem considered by E. F. Bravo et al.[3, 4] but
with Padovan numbers instead of Tribonacci numbers. We also extend the results
from the Pell equation (1) to the Pell equation (2). In both cases we find that there
are only finitely many solutions that we effectively compute. Since
Py = P, = P3 = 1, we discard the situations when n = 1 and n = 2 and just count
the solutions for n = 3. Similarly, Py = Ps = 2, so we just count the solutions for
n=>,.
The main aim of this paper is to prove the following results.

Theorem 1 For each square-free integer d > 2, there is at most one positive integer
k such that

Xy =P, + P, (8)

except when d € {2,3,6,15,110,483} in the +1 case and d € {2,5,10, 17} in the
—1 case.

Theorem 2  For each square-free integer d > 2, there is at most one positive integer
k such that

Xk:Pn+Pm (9)
except when d € {3,5,21} in the +4 case and d € {2,5} in the —4 case.

For the exceptional values of d listed in Theorem 1 and Theorem 2, all solutions
(k, n, m) are listed at the end of the proof of each result. The main tools used in this
paper are lower bounds for nonzero linear forms in logarithms of algebraic numbers
“a la Baker” and the Baker-Davenport reduction procedure, as well as the
elementary properties of the Padovan sequence and solutions to Pell equations.
Computations are done with the help of a computer program in Mathematica.
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3 Preliminary results

3.1 The Padovan sequence

Here, we recall some important properties of the Padovan sequence (P,),~ . The

characteristic equation
¥©-x—1=0,
has roots «, f,7 = f§, where

(r+nr)+ \/——3(1’1 — )
12 ’

ri+nr —
o = =
B

with

1=\ 108 +12v69 and r = 1/108 — 12v/69.

Furthermore, a Binet-like formula for Padovan numbers is given by
P, = ad" +bp" + )" for all n>0,
where

%41 B+1 y+1

a=-—- bzi C:—:E

(= B)(a =)’ (B=o)(B=2) (v =)y = B)
Numerically, the following estimates hold:
1.32<a<1.33,
0.86<|p| = |y| = o 2<0.87,
0.54 <a<0.55,

0.28<|b| = |¢|<0.29.

(14)

From (10), (11), and (14), it is easy to see that the contribution of the complex
conjugate roots f§ and 7, to the right-hand side of (12), is very small. More exactly,

setting e(n) := P, — ao" and taking into account the facts that || = || = o2 and

|b| = |c| <0.29 (by (14)), it follows that, for any n > 1,

le(n)| = [bF" + cy"| < |B||BI" + |c||y|" = |ble 2 4 |c|la 2<2-0.29 - a2 <

Finally, one can prove by induction that

"2 <P, <o ! holds forall n>4.

W Birkhauser
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3.2 Linear forms in logarithms

Let 1 be an algebraic number of degree d with minimal primitive polynomial over
the integers

d
apx’ + aix + - ag = ap [ J(x — 1),
i=1

where the leading coefficient aq is positive and the 1)’s are the conjugates of 7.
Then, the logarithmic height of n is given by

d
h(n) := 5 (logao + Zlog(max{|;7<i>|, 1}))

In particular, if # = p/q is a rational number with ged(p,q) =1 and ¢ > 0, then
h(n) = log max{|p|, ¢}. The following are some of the properties of the logarithmic
height function 4(-), which will be used in the next sections of this paper without
reference:

h(ny £np) <h(ny) + h(n,) + log2,
h(mny") < h(ny) + hin,),
h(n*) = [s|h(n) (s € Z).

We recall the result of Bugeaud et al. (see [6], Theorem 9.4), which is a modified
version of the result of Matveev [19], which is one of our main tools in this paper.

+
+

Theorem 3 (Matveev according to Bugeaud et al., [6, 19]) Let v, . . ., , be nonzero
elements of an algebraic number field K C R of degree Dy over Q, by, ...,b, be
nonzero integers, and assume that

A=y = 1,
is nonzero. Then
log|A| > — 1.4 x 30" x £*° x D (1 + log Dk )(1 + log B)A; - - - A,,
where
B> max{|bi|,. .., |b|},
and

A; > max{Dh(n;),|logn,|,0.16}, for all i=1,..,t

T Birkhauser
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3.3 Reduction procedure

During the calculations, we get upper bounds on our variables which are too large,
thus we need to reduce them. To do so, we use some results from the theory of
continued fractions.

For the treatment of linear forms homogeneous in two integer variables, we use
the following well-known classical result in the theory of Diophantine approxima-
tion. For further details, we refer the reader to the books of Baker and Wiistholz [2]
and Cohen [7].

Lemma 1 (Legendre, [2,7]). Let T be an irrational number, py/qo, p1/q1,P2/q2, - - -
be all the convergents of the continued fraction expansion of T and M be a positive
integer. Let N be a nonnegative integer such that qy > M. Then putting
a(M) :=max{a; : i =0,1,2,...,N}, the inequality

r 1

> Gan e

holds for all pairs (r, s) of positive integers with 0 <s <M.

For a nonhomogeneous linear form in two integer variables, we use a slight
variation of a result due to Dujella and Petho (see [10], Lemma 5a) and itself is a
generalization of a result of Baker and Davenport [1]. In this paper, we use an
immediate variation of the result of Dujella and Peth6 [10] due to J.J. Bravo et al.
(see [5], Lemma 1). For a real number X, we write ||X|| := min{|X — n| : n € Z} for
the distance from X to the nearest integer.

Lemma 2 (Dujella, Pethé according to J. J. Bravo et al. [5, 10]) Let M be a
positive integer, p/q be a convergent of the continued fraction expansion of the
irrational number t such that g > 6M, and A, B, u be some real numbers with A > 0
and B > 1. Furthermore, let ¢ :== ||uq|| — M||zq||. If ¢ > 0, then there is no solution
to the inequality

0<|ut — v+ u|<AB™",
in positive integers u, v, and w with

log(Ag/¢)

u<M and w>
log B

At various occasions, we need to find a lower bound for linear forms in
logarithms with bounded integer coefficients in three and four variables. In this case,
we use the LLL algorithm that we describe below. Let 7;,75,...7, € R and the
linear form

Xt +x0n+ -+ x5t with x| <X

We put X := max{X;}, C > (tX)" and consider the integer lattice Q generated by

W Birkhauser



On the x-coordinates of Pell equations Page 7 of 23 4

b, :=e¢;+ [Crjle, for 1<j<r—1 and b,:=[C1]le,
where C is a sufficiently large positive constant.

Lemma 3 (LLL-algorithm, [7]) Let X1,Xz,...,X; be positive integers such that
X := max{X;} and C > (tX)' be a fixed sufficiently large constant. With the above
notation on the lattice Q, we consider a reduced base {b;} to Q and its associated
Gram-Schmidt orthogonalization base {b;}. We set

¢1 := max b | 0:= b Q:= lil:x'z and R =1 1+ XI:X
- tsise|by]l’ Coal = 2 =)
If the integers x; are such that |x;| <X;, for | <i<t and 0 > 0 + R?, then we have

\/ R

1

E XiTi

For the proof and further details, we refer the reader to the book of Cohen (see
[7], Proposition 2.3.20).
Finally, the following Lemma is also useful. It is Lemma 7 in [13].

Lemma 4 (Guzman Sdanchez, Luca, [13]) Let r, H, and L be positive real numbers.
Ifr>1,H > (4r*)", and H > L/(logL)", then

L<2"H(logH)".

4 Proof of Theorem 1

Let (x1,y1) be the smallest positive integer solution to the Pell equation (1). We put
d:=x1+ywVd and o:=x —yVd. (17)
From which we get that
d-0=x> —dy} =N, where N € {+1}. (18)
Then,
P k
=3 (0" + o). (19)
Since 6 > 1 + /2, it follows that the estimate
Sk

G <ms 5% holds for all  k>1. (20)

We assume that (ky,ny,m;) and (kp,n,,m;) are triples of integers such that

T Birkhauser
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Xy = P,,l +Pm1 and Xk, = Pn2 +Pm2- (21)

We assume that 1 <k; <k,. We also assume that 3 <m; <n; for i = 1,2. We set
(k,n,m) := (k;,n;,m;), for i = 1,2. Using the inequalities (16) and (20), we get
from (21) that

k
FSx=PytPy <24"' and o"2<P,+ P, =x <5

The above inequalities give
(n—2)loga<klogo<(n+3)loga+ log2.
Dividing through by log o and setting ¢, := 1/loga, we get that
—2<crklogd —n<3+ cylog2,
and since o > 2, we get
|n — c2klog d| <6. (22)

Furthermore, k <n, for if not, we would then get that
n k n+3 : . 5 " 3
0" < <24", implying -] <2a,

o

which is false since 6> 1+ /2, o € (1.32,1.33) (by (14)), and n > 4.
Besides, given that k; <k,, we have by (16) and (21) that
"2 <P, <Py + Py =X, <Xy, = Py, + Py, <2P,, <2071
Thus, we get that

4.1 An inequality for n and k
Using the Eqgs. (8), (12), (19), and (21), we have

1
(0F + %) =P, + P, = ao" + e(n) + ad™ + e(m).

|

Therefore,

1 k n m 1 k

55 —a(o" 4+ o™) = —50 +e(n) + e(m),
and by (15), we have

W Birkhauser



On the x-coordinates of Pell equations Page 9 of 23 4

1 o 1 2|b‘
Fa) a1+ ) = 1] <
| ( ) ( ) |— 25ka(oc" OCm) OCn/ZCI(O(n O(m)

2|b|
om/2a (o + om)

S L (L 2 2y _1s
= ao® 25/( a2 gm/2 on

Thus, we have

1.5
|0°(2a) o (1 + o) — 1] < - (24)
Put
Ap =0 2a) (1 + o) -1,
and

Iy :=klogd —log(2a) — nlog o — log(1 + ™).

Since |A;| = |ef" — 1| <1/2 for n>4 (because 1.5/0* <1/2), and the inequality
ly| <2|e* — 1] holds for all y € (—1/2,1/2), it follows that ¢!l <2 and so

3
Ty <elllel — 1)< =.
Ocn

Thus, we get that

3
lklog 6 — log(2a) — nlogo — log(1 + o ™")| < —. (25)
an
We apply Theorem 3 on the left-hand side of (24) with the data:

m—n

t::4a N ::57 ’72::2‘17 N3 ==, }’]42:1+O( ’
by:=k, by:=-1, by:=-n, by:=—1.

Furthermore, we take the number field K := Q(+/d, «) which has degree Dy := 6.
Since max{1, k,n} <n, we take B := n. First, we note that the left-hand side of (24)
is nonzero, since otherwise,

ok = 2a(a" + o).

The left-hand side belongs to the quadratic field @(1/d) while the right-hand side
belongs to the cubic field @(o). These fields only intersect when both sides are
rational numbers. Since & is a positive algebraic integer and a unit, we get that to

o = 1. Hence, k = 0, which is a contradiction. Thus, A, # 0 and we can apply
Theorem 3.
We have h(n;) = h(d) = (logd)/2 and h(n;) = h(a) = (log o) /3. Furthermore,

T Birkhauser
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20000+ 1)
20+3

The minimal polynomial of 2a is 23x3 — 20x — 8 and has roots 2a, 2b, 2¢. Since
2|b| = 2|c| <1 (by (14)), then

h(n,) = h(2a) = (log 23 4 log(2a)).

W |

On the other hand,

h(ny) = h(1 + o) <h(1) + ") +log2

h(a™
= (n—m)h(a )+10g27%( m)log o + log 2.
Thus, we can take A} := 3logd,
Ay :=2(log23 + log(2a)), Az :=2logo, A4:=2(n—m)loga—+ 6log2.
Now, Theorem 3 tells us that

log |Aj] > — 1.4 x 307 x 4*° x 6*(1 +10og6)(1 + logn)(31og d)
X (2(log23 + log(2a))(2loga)(2(n — m)loga + 61og2)
> —2.33 x 10" (n — m)(logn)(log ).

Comparing the above inequality with (24), we get
nlogo —log1.5<2.33 x 10" (n — m)(log n)(log d).
Hence, we get that
n<8.30 x 10" (n — m)(log n)(log d). (26)
We now return to the Diophantine equation (8) and rewrite it as
%5" —ad" = —%ak +e(n) + Py,

we obtain

1 1 1 1 2.5
k -1 _—n
—11< — .
|5 (2@) o 1| = qot—m (OC + om+n/2 + 25"&’") < oi—m (27)

Put
Ay :=02a)'a " =1, T, :=klogd —log(2a) — nloga.

We assume for technical reasons that n — m > 10. Therefore, |e* —1]<1/2. Tt
follows that

W Birkhauser
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lklog & — log(2a) — nloga| = || <e™ljet — 1] < (28)

a}‘l —m

Furthermore, A, # 0 (so I, # 0), since & ¢ Q(«) by a previous argument.
We now apply Theorem 3 to the left-hand side of (27) with the data

t:=3, 5, =0, Ny =2a, ny:=0, b=k by:=-1, by:=—n

Thus, we have the same A, A, A3, as before. Then, by Theorem 3, we conclude
that

log |A| > —9.82 x 10" (log 6)(log n)(log «).
By comparing with (27), we get
n—m<9.84 x 10(log 6)(logn). (29)

This was obtained under the assumption that n — m > 10, but if n — m < 10, then the
above inequality also holds as well. We replace n — m in (26) by its upper bound
that we obtained in (29) and use the fact that ok < 2013, to obtain bounds on n and k
in terms of logn and log §. We now record what we have proved so far.

Lemma 5 Let (k, n, m) be a solution to the Diophantine equation (8) with
3<m<n, then

k<2.5x 102 (logn)*(logd) and n<8.2 x 10(logn)*(logd)>.  (30)

4.2 Absolute bounds

We recall that (k,n,m) = (k;,n;,m;), where 3 <m; <n;, fori = 1,2 and 1 <k <k,.
Furthermore, n; >4 for i = 1,2. We return to (28) and write

i 5
\r(2>| := |kilog & — log(2a) — n;loga|< ——, for i=1,2.

ot —mi

We do a suitable cross product between F(Zl), r (22> and ki, k; to eliminate the term
involving log d in the above linear forms in logarithms:

T3] : = |(ky — ka) log(2a) + (kyny — kony)loga| = [koTS) — kTS|
5k, Sk _ 10m (31)

o —m g—m T A

<k T |+ k| T5Y | <

where A:= min {n; — m;}.
1<i<2
We need to find an upper bound for A. If 10n,/o* > 1/2, we then get

< log(20n;)

41og(20n;). 32
oy <*lox(20m) (32

Otherwise, |T'3|<1/2, so

T Birkhauser
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20112

ki —ky —
€7 — 1] = |a)t Rahrm T | <2l < =2,

(33)

We apply Theorem 3 with the data: t:=2, 5, :=2a, n,:=0a, by :=k —kp,
by := kiny — kpn;. We take the number field K := Q(«) and Dy := 3. We begin by
checking that e'> — 1 # 0 (so I's # 0). This is true, because « and 2a are multi-
plicatively independent, since o is a unit in the ring of integers @ (o) while the norm
of 2a is 8/23.

We note that |k; — ky| <k, <ny. Furthermore, from (31), we have

|log(2a)| 10k,

kony —k ko —k
i = k| < (ks = k1) log o o’ log o

<llky<l1ln,

given that /> 1. Therefore, we can take B := 11n,. By Theorem 3, with the same
A :=10g23 and A, := loga, we have that

logle™ — 1| > —1.55 x 10" (log n) (log o).
By comparing this with (33), we get
1.<1.56 x 10" log n,. (34)
Note that (34) is a better bound than (32), so (34) always holds. Without loss of

generality, we can assume that 2 = n; —m;, for i = 1,2 fixed.
We set {i,j} = {1,2} and return to (25) to replace (k,n,m) = (k;, n;,m;):
i . 3
0| = ki log & — log(2a) — nilog ot — log(1 + &™) <~ (35)
ot

and also return to (28), with (k,n,m) = (k;, n;, m;):

|Fg>| = |kjlog 6 — log(2a) — n;log a| < e (36)
We perform a cross product on (35) and (36) to eliminate the terms on log J:
|T4| : = |(k; — ki) log(2a) + (kjn; — kinj) log oo + k;log(1 + o™ ")
= T — kT | < kT 4 kT < 2y 8 7

oM ol o’

with v := min{n;,n; — m;}. As before, we need to find an upper bound on v. If
8ny /0’ > 1/2, then we get

log(16
b og(16n,)

<4log(16n,). 38
oo o <dlog(16m) (38)
Otherwise, |T'4| <1/2, so we have
1
T — 1] <2|Ty| < 1072 (39)
aV

To apply Theorem 3, first if e'* = 1, we obtain

W Birkhauser
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(2a>k;—k/ — akjn;—k;nj(l + O(—)v)kj.

Since o is a unit, the right-hand side in above is an algebraic integer. This is a
contradiction, because kj <k, so k; —k; # 0, and neither (2a) nor (Za)_] are
algebraic integers. Hence, e'* # 1. By assuming that v > 100, we apply Theorem 3
with the data:

t:=3, n:=2a, M=o ny:=1+a"
b1 = kj — k,‘, b2 = kjn,' — k,nj, b3 = kj,
and the inequalities (34) and (39). We get
v = min{n;, n; — m;} <1.14 x 10" logn, <1.78 x 10 (logny)*.

The above inequality also holds when v < 100. Furthermore, it also holds when the
inequality (38) holds. Therefore, the above inequality holds in all cases. Note that
the case (i,j) = (2, 1) leads to n; — my <n; <n, + 4 whereas (i,j) = (1,2) leads to
v = min{n;,n, — my}. Hence, either the minimum is ny, so

ny <1.78 x 10% (log ny)?, (40)
or the minimum is n; — m; and from the inequality (34), we get that

max {n; — m;} <1.78 x 10% (logn,)*. (41)

1<j<2

Next, we assume that we are in the case (41). We evaluate (35), for i = 1,2 and
make a suitable cross-product to eliminate the terms involving log J:

|F5| L= |(k2 — k1> ]0g(20> + (kzl”ll — kll’lg) log o

+ ko log(1 +o™™") — ki log(1 + o™ ™) (42)
6
= T? — o T < kg TP 4 kT < 222
o

In the above inequality, we used the inequality (23) to conclude that
min{n;,n,} >n; — 4 as well as the fact that n; >4 for i = 1.2. Next, we apply a
linear form in four logarithms to obtain an upper bound to n;. As in the previous
calculations, we pass from (42) to

12
el — 1< —2, (43)
O(ﬂl
which is implied by (42) except if n; is very small, say
ny <4log(12n,). (44)

Thus, we assume that (44) does not hold, therefore (43) holds. Then, to apply
Theorem 3, we first justify that e's # 1. Otherwise,

(2a)k1—kz _ dk2’1'7k1n2(1 + oMM )k2(1 + angfmz)—k] )

T Birkhauser
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By the fact that k; <k, the norm Ng,)/q(2a) = 8/23 and that « is a unit, we have
that 23 divides the norm Ny /g (1 + o' ~™). The factorization of the ideal generated
by 23 in Ogq, is (23) = pip,, where p; = (23, a+ 13) and p, = (23, « + 20).
Hence, p, divides o™ ™ + 1. Given that o= —20(modp,), then
(=20)""™ = —1(mod p,). Taking the norm Ngu)g, Wwe obtain that
(=20)"™™ = —1 (mod 23). If n; — m; is even, —1 is a quadratic residue modulo 23
and if n; — m, is odd then 20 is a quadratic residue modulo 23. But, neither —1 nor
20 are quadratic residues modulo 23. Thus, e's # 1.

Then, we apply Theorem 3 on the left-hand side of the inequality (43) with the
data

mp—ny Ny —ny
) )

t:=4, n:=2a, n:=oa n3:=1+4+ua N =14+uao
b1 = kz—kl, b2 = kgl’ll —klnz, b3 = kz, b4 = kl.

Combining the right-hand side of (43) with the inequalities (34) and (41), Theo-
rem 3 gives

ny <3.02 x 10'°(n; — my)(ny — my)(logny) <8.33 x 10%(log ny)*. (45)
In the above, we used the facts that

. R 11 R 25 2
11§11l}1<12{n, m;}<1.56 x 10" logn, and lr%lla;(z{n, m;} <1.78 x 107 (logny)”.

This was obtained under the assumption that the inequality (44) does not hold. If
(44) holds, then so does (45). Thus, we have that inequality (45) holds provided that
inequality (41) holds. Otherwise, inequality (40) holds which is a better bound than
(45). Hence, we conclude that (45) holds in all possible cases.

By the inequality (22),

log 6 < ky log & < ny log o + log 6 <2.38 x 10°(log ny)*.

By substituting this into (30) we get n, <4.64 x 10137 (logn,)'®, and then, by
Lemma 4, with the data r:= 10, H := 4.64 x 10'%7 and L :=n,, we get that
ny <4.87 x 10'%, This immediately gives that n; <1.76 x 109,

We record what we have proved.

Lemma 6 Let (k;,n;,m;) be a solution to the Diophantine equation (8), with
3<mi<n; fori€ {1,2} and 1 <k, <k, then

max{ky,m} <n; <1.76 x 109, and max{ky,my} <n, <4.87 x 10",
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5 Reducing the bounds for n, and n,

In this section, we reduce the bounds for n; and n, given in Lemma 6 to cases that
can be computationally treated. For this, we return to the inequalities for I'3, I'4, and
Is.

5.1 The first reduction

We divide both sides of the inequality (31) by (k, — k;) log . We get that

log(2a) _kony —kiny - 36n,
log o ky — ky ot (ky — ki)

with A:= 1I§ni11§12{n,- —m;}. (46)

We assume that 4> 10. Below we apply Lemma 1. We put 7 := log(2a)/ log o,
which is irrational and compute its continued fraction

[ao,a1,az,...] =11,3,3,1,11,1,2,1,1,1,3,1,1,1,2,5,1,15,2,19,1,1,2,2,.. ],
and its convergents

CIO’CI17612"”

371071371537 166°4857651 1136178776497 " '|’

[po P P2 } { 4 13 17 200 217 634 851 1485 2336 8493

Furthermore, we note that taking M := 4.87 x 10'®> (by Lemma 6), it follows that

qszis > M >ny > ko —k; and (l(M) = max{ai : O§l§315} = axgp = 2107.

Thus, by Lemma 1, we have that

1
2109(ky — ky)*

kgl’ll — k1n2
ky — ky

Hence, combining the inequalities (46) and (47), we obtain
o <75924ny(ky — k) <1.75 x 10%%,

so A<2714. This was obtained under the assumption that 4> 10. Otherwise,
2<10<2714 holds as well.
Now, for each n; — m; = A € [1,2714], we estimate a lower bound for |I'4|, with

Iy = (kj — ki) log(2a) + (kjn; — kin;) log o + kjlog(1 4 o™ ~"™) (48)

given in the inequality (37), via the procedure described in Sect. 3.3 (LLL-algo-
rithm). We recall that T'y # 0. We apply Lemma 3 with the data:

t:=3, 1 :=log(2a), 1 :=loga, t3:=log(l+ o),

X1 = kj — ki, Xy = kjl’l,' — k,-nj, X3 1= kj.

We set X := 5.4 x 10'% as an upper bound to |x;|<11n, for all i = 1,2,3, and
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C = (20X )5. A computer search using Mathematica allows us to conclude, together
with the inequality (37), that

2x 107 < min T4/ <8mpa ", with v :=min{n;,n; —m;}
1<2<2714

which leads to v<6760. As we have noted before, v =n; (so n; <6760) or
V= I’lj — mj.
Next, we suppose that n; — m; = v <6760. Since 1 <2714, we have

— mi )< = —mr<
A 1211122{”’ mi} <2714 and y: 11%1?%(2{}1, m;} < 6760.

Now, returning to the inequality (42) which involves

I's := (ky — k1) log(2a) + (kany — kiny) log o

N _ (49)
+ kylog(l + o™ ™) — ky log(1 + ™ ™"™) £ 0.

We use again the LLL algorithm to estimate the lower bound for |I's| and thus, find
a bound for n; that is better than the one given in Lemma 6.
We distinguish the cases A<y and 4 = y.

5.2 The case A<y

We take A € [1,2714] and y € [A+ 1,6760] and apply Lemma 3 with the data:
t:=4,

71 :=1log(2a), 1, :=loga, 713:=1log(l—+o™™), 14:=log(l+a™"™),
X1 = k2 — kl, Xy 1= k2n1 — kllflz7 X3 1= kz, X4 1= —kl.

We also put X := 5.4 x 10'% and C := (20X)’. After a computer search in Math-
ematica together with the inequality (42), we can confirm that

8§ x 10713 < min |Ts| <6myo ™.
1<).<2714

A+ 1<y<6760
This leads to the inequality
oM <7.5 x 10341 p,.

Substituting for the bound n, given in Lemma 6, we get that n; < 12172.

5.3 The case A=y

In this case, we have
As = (ky — ki) (log(2a) +log(1 + o™ ™™)) + (kany — kino) log o0 # 0.

We divide through the inequality (42) by (k, — k;) log o to obtain
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log(2a) +log(1 + o™~™)  kyny — kiny - 21n, (50)
log o ky — ki o (ke — ki)
We now put
. log(2a) +log(1 + o)
s log o '
and compute its continued fractions [a(l), a(li),a(;), ...], and its convergents

[pé’t) / q((f), pw / q(ll), py) / qg“), ...], for each 4 € [1,2714]. Furthermore, for each case
we find an integer #; such that qg/) >M:=4.87 x 10" > ny > ky —k; and

calculate

a(M) := max {a()‘):OSigt;y}.
1<i<2714 U

A computer search in Mathematica reveals that for 4 = 321, t; = 330 and i = 263,

we have that a(M) :agO) = 306269. Hence, combining the conclusion of

Lemma 1 and the inequality (50), we get
o <21 x 30627 1ny(ky — k) <1.525 x 10338,

so n; <2730. Hence, we obtain that n; < 12172 holds in all cases (v = nj, A<y or
A = y). By the inequality (22), we have that

log d <k;logd <njloga+log6<3475.

By considering the second inequality in (30), we can conclude that

ny <9.9 x 10¥(logn,)?, which immediately yields 7, <3.36 x 10™, by a simple
application of Lemma 4. We summarise the first cycle of our reduction process as
follows:

n; <12172 and n, <3.36 x 10*.

From the above inequalities, we note that the upper bound on n, represents a very
good reduction of the bound given in Lemma 6. Hence, we expect that if we restart
our reduction cycle with the new bound on n,, then we get a better bound on n;.
Thus, we return to the inequality (46) and take M := 3.36 x 10*. A computer
search in Mathematica reveals that

qss >M >ny, >ky—k; and a(M) ::max{ai:O§i§88}:a54:3737

from which it follows that A <752. We now return to (48) and we put X :=

3.36 x 10* and C := (10X)’ and then apply the LLL algorithm in Lemma 3 to
A € [1,752]. After a computer search, we get
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533 x 1078 < min || <8npa™,
1<A<752

then v <1846. By continuing under the assumption that n; —m; = v <1846, we

return to (49) and put X := 3.36 x 10*, C := (10X)” and M := 3.36 x 10* for the
case A<y and A = y. After a computer search, we confirm that

2 x 1073% < min ITs| <6my0™,
1<2<752
A+ 1<y <1846

gives ny <3318, and a(M) = a<127(;5) = 206961, which leads to n; <772. Hence, in

both cases n; <3318 holds. This gives ny <5 x 10% by a similar procedure as
before, and k; <3125.
We record what we have proved.

Lemma 7 Ler (ki,n;,m;) be a solution to the Diophantine equation (8), with
3<m;<n; fori=1,2 and 1 <k <ks, then

my<ny <3318, k; <3125, and n, <5 x 10%.

5.4 The final reduction

Returning to (17) and (19) and using the fact that (x;,y;) is the smallest positive
solution to the Pell equation (1), we obtain

xk=%(5k+a") = %((x1+y1\/3)k+(x1—yn/c_i)k>

=3 (( 4 \/”5)+( - ﬁ)) = QF ().

Thus, we return to the Diophantine equation xi, = P,, + P, and consider the
equations

Qf (x1) =Py +Pp, and  Qp (x1) = Py, + Ppy, (51)

with ky € [1,3125], m; € [3,3318] and n| € [m; + 1,3318].

Besides the trivial case k; =1, with the help of a computer search in
Mathematica on the above equations in (51), we list the only nontrivial solutions
in Table 1. We also note that 3 + 2+/2 = (1+ \/5)2, so these solutions come from
the same Pell equation when d = 2.

From Table 1, we set each 6 := ; for t = 1,2,...,17. We then work on the
linear forms in logarithms I'; and I';, to reduce the bound on n;, given in Lemma 7.
From the inequality (28), for (k,n,m) := (k,,ny, my), we write
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Table 1 Solutions to Qf (x1) = Py, + P,

o/ (x1)

ki Xy Vi d 0

2 2 1 3 243

2 3 2 2 3+2V2

2 4 1 15 4+ V15

2 5 2 6 5+2v6

2 21 2 110 21 +2v/110

2 22 1 483 22 + /483

2 47 4 138 47 + 4/138

oy (x1)

ki X1 2 d é

2 1 1 2 1+V2

2 2 1 5 2445

2 3 1 10 3410

2 4 1 17 4+ T3

2 5 1 26 54+/26

2 9 1 82 94+ /82

2 10 1 101 10 + /101

2 17 1 290 17 + /290

2 42 1 1765 42 + /1765

2 47 1 2210 47 + /2210

2 63 1 3970 63 + /3970
Jlogor - log(2a) | ( > >a<"2'"2>, for 1=1,2,...,17. (52

log o log(a~1) log o
We put

log d log(2 5
T, = o8 L U ::M and (A,B):=|—,a].
loga log(a=1) log o

We note that 7, is transcendental by Gelfond-Schneider Theorem (see [2], Theo-
rem 2.1). Thus, t; is irrational. We can rewrite the inequality (52) as

0<|kat, — ny + | <AB, ™™ for t=1,2,...,17. (53)

We take M := 5 x 10*> which is the upper bound on 7, according to Lemma 7 and
apply Lemma 2 to the inequality (53). As before, for each 7, with r = 1,2,...,17,

we compute its continued fraction [a(()’>,a(1t>,ag), ...] and its convergents
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pg) /qff), pﬁ’) /qgt), pg) /q(zt)7 .... For each case, by means of a computer search in
Mathematica, we find an integer s, such that

g\ >3 x 10 = 6M and & = |wg?|| — M|jz.qg™ || > 0.

We finally compute all the values of b, := Llog(A,qg) /€:)/ log B;|. The values of b,
correspond to the upper bounds on n, — mjy, for each t = 1,2,...,17, according to
Lemma 2. The results of the computation for each ¢ are recorded in Table 2.

By replacing (k,n,m) := (ky,ny,m,) in the inequality (25), we can write

kzM—nz log(2a(l +a(ﬂ2mz)))‘< ( > )oc'”7 for t=1,2,...,17
log o log(a~1) loga
(54)
We now put
log &, log(2a(1 + o~ (7)) 3
T = loga’ Moy —my = Tog(a 1) and (A, B,) := (log = oc) .
With the above notations, we can rewrite the inequality (54) as
0<|katy —mo + fy py—pm, | <AB;™, for t=1,2,...17. (55)
We again apply Lemma 2 to the inequality (55), for
Table 2 First reduction
computation results ! O St s & > by
1 2+V3 85  8.93366 x 104  0.3100 374
2 4415 90  3.90052 x 10¥ 03124 371
3 5+2v6 80 316032 x 10¥  0.0122 382
4 21+2/110 88 633080 x 10¥ 02200 374
5 22 + /483 75 419689 x 1048 0.2361 372
6 47 +44/138 96 776442 x 10¥ 03732 373
7 1+v2 78 1.46195 x 10 0.3328 375
8 245 94 148837 x 10% 02146 377
9 3410 88 421425 x 10¥  0.1347 374
10 4417 92 1.11753 x 104 02529 375
11 5426 98 323107 x 10®  0.1043 374
12 94+82 74 525207 x 10¥ 02181 373
13 10+ 101 94 1.86122x 104 02672 377
14 17++29 87 1.06422 x 104 0.0193 384
15 42+/1765 78  3.81406 x 10 0.1768 373
16 47+2210 94 392482 x 10¥ 04476 370
17 63+43970 85  6.00550 x 10¥ 04056 371
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t=1,2,...,17, nm—m=12,...,b, with M:=5x10%.
We take

€rmm = |[1,g" 7| = M|rig" ") || > 0,

and

by = by, —m, = UOg(AIQngZ_mZ)/Gt,nrmz)/ logB,].

With the help of Mathematica, we obtain the results in Table 3.

Thus, max{b,,—m, :t =1,2,...,17 and n, —mp =1,2,...b,} <408. So, by
Lemma 2, we have that n, <408, for all t = 1,2, ...,17, and by the inequality (23)
we have that n; <n, + 4. From the fact that ok <20"3, we can conclude that
k1 <k, <133. Collecting everything together, our problem is reduced to search for
the solutions for (21) in the following range

1<ki<kr, <133, 0<my<n; € [3,408], and 0<myp<m € [3,408]

After a computer search for the solutions to the Diophantine equations in (21) on the
range above, we obtained the following solutions, which are the only solutions for
the exceptional d cases we have stated in Theorem 1:
For the +1 case:
(d=2)xy=3=P¢+Py=Ps+P3, x3=17=Py;,+Ps;
(d=3)x1 =2=P3+Py=P3+P3,x0=T=Py+Py=P7+ Ps,
x3 =26 = P13 + Ps;
(d=6)x; =5=Pg+Py=P;+ P3 =Pg+ Ps,
X2 =49 = Pig + Po = P15 + P12 = P1s + P13;
(d=15)xy =4=P7+Py=Ps+P3=Ps+Ps, x,=31=Pi+ Ps;
(d =110)x; =21 = P13+ Py = P12 + Pg = P11 + P,
X2 = 881 = P + P17 = Py5 + P;
(d=483)x; =22 =P34+ P35, x, =967 = Pys + Prg = Pys + P3.

For the —1 case:

Table 3 Final reduction computation results

t 1 2 3 4 5 6 7 8 9

bt niy—my 388 389 394 394 393 394 396 392 392
t 10 11 12 13 14 15 16 17

bt iy —m» 396 392 408 390 396 396 388 389
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(d=2)xy=1=P3+4+Py, x=7=Py+Py=Pg+ Ps=P;+ Pg,
x3 =4l = P15+ P7 = Pia+ Pio = P13 + Puo;
(d=5)x1=2=Ps+Py=P3+P3, x,=38=P5+Ps;
(d=10)x) =3 =Ps+Po=Ps+Ps, x»=117=Pio+Ps
(d=17)xy=4=P;+Py=Ps+P3=Ps+Ps, x3=Pp+Ps.

This completes the proof of Theorem 1.

6 Proof of Theorem 2

The proof of Theorem 2 follows from similar steps, techniques, and arguments as
given in the proof of Theorem 1. So, we do not give the details here. Below, we give
the solutions to the Diophantine equation (9) for the exceptional d cases stated in
Theorem 2.
For the +4 case:
(d=3)X, =4=P;+Py=Ps+P;=Ps+Ps,
Xo =14 =Py +Ps=Pyp+Ps, X3s=52=Pi5+ Ps;
(dZS)X1:3:P6+P0:P5+P3, X, =7 = P9+ Py = P7 + Pg,
X3 =18 = Py, + Ps;
(d=21)X, =5=Pg+Py=P;+P3=Ps+Ps,
X, =23 =P34+ P5s =P, + Py, X3 =2525= P39+ Pq;.

For the —4 case:

(d:2)X1:2:P5—|—P0:P3—|—P3, X2=14:P11—|—P5:P10+P8;
(d=5)Xy=1=P;+Py, X, =4=P;+Py=Ps+P3=Ps+Ps,
X3=11=Pip+Ps=Py+P;, X4=29=Puu+Ps.
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