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Abstract
Being a truly meshless method, smoothed particle hydrodynamics (SPH) raises expectations to naturally handle solid mechan-
ics problems of large deformations. However, in a simple formulation it severely suffers from two instabilities, namely tensile
instability and zero-energymodes, which hinders SPH from being an popular numerical tool in that area. Although Lagrangian
SPH completely removes tensile instability, it is not yet able to prevent zero-energy modes. Furthermore, kernel updates are
required to properly handle very large deformations which again triggers tensile instability. Additionally, Lagrangian SPH
cannot naturally deal with contact problems. Pursuing an alternative route, this paper aims at stabilizing Eulerian SPH in
order to accurately deal with large deformations while preserving the fundamental properties of SPH to easily handle contact
problems as well as fluid–structure interaction in a straightforward monolithic manner. For this purpose, an hourglass control
scheme already employed to prevent zero-energy modes in Lagrangian SPH framework is used. The advantage of the present
scheme is that the stabilization method can be easily implemented in any Eulerian SPH code by making only few changes
to the code. The proposed scheme is employed to simulate several cases of elasticity, plasticity, fracture and fluid–structure
interaction in order to assess its accuracy and effectiveness. The obtained results are compared with analytical solutions and
finite element results where very good agreement is found.

Keywords Meshless methods · Smoothed particle hydrodynamics · Stabilization · Hourglass control

1 Introduction

Since its emergence proposed by Lucy [26] and Gingold and
Monaghan [17] to originally solve astrophysics problems in
open space, smoothed particles hydrodynamics (SPH) has
been developing by many researchers and employed in vari-
ous fields such as fluid dynamics [9,19,29], solid mechanics
[4,12,25] and fluid–structure interaction [2,27,34]. Several
corrections andmodifications have been proposed to increase
the accuracy of SPH predictions. To name a few, Monaghan
[28] proposed the artificial viscosity to properly capture
shocks physics, Libersky et al. [23] and Krongauz and
Belytschko [22] proposed corrected derivatives with linear
completeness, Lind et al. [24] and Sun et al. [36] used a
particle shifting technique based on Fick’s law of diffusion
to slightly redistribute particles in each time step in a more
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uniform arrangement in order to have more accurate fields
approximations, and Antuono et al. [3] added an artificial
density diffusive term to the continuity equation to smooth
out spurious noises affecting density and, consequently, pres-
sure.

As a truly meshless method, in the sense that there is even
no need for any background mesh, SPH uses mass points to
approximate field functions and their derivatives in order to
discretize and solve governing equations. Hence, as opposed
to mesh-based methods SPH can conveniently handle prob-
lems with large displacements and moving boundaries.
However, SPH is not widespread in the field of solidmechan-
ics despite proposed stabilizationmethods, since inmodeling
of solid materials deformation instabilities, namely tensile
instability and zero-energy modes, are prevailing, sever and
therefore hard to stabilize. Tensile instability as Swegle et al.
[37] noted occurs at the presence of tensile stress. This
instability causes particles to non-physically clump together
which leads to unrealistic fractures under large deformations
even if no fracture criterion is defined. To reduce tensile
instability, Gray et al. [18] added repulsive forces to the
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momentum equations between particles in tension in order to
prevent particles clumping. Belytschko et al. [6] performed
a stability analysis and found that the source of tensile insta-
bility is the recurring update of SPH kernels. This procedure
imparts Eulerian character to the kernels, hereinafter called
Eulerian kernels, as during a simulation other particles pass
through a particle’s kernel support domain. Hence, on the
contrary as Bonet and Kulasegaram [8] and Rabczuk et al.
[32] showed defining kernels in terms of the material coordi-
nates, hereinafter called Lagrangian kernels, prevents tensile
instability leading to stable solutions in tensile regimes.

The othermajor instability intrinsic to SPH, spurious zero-
energy modes, stems from the fact that SPH discretization
of the divergence of the stress tensor is rank deficient sim-
ilar to meshless methods employing nodal quadrature [5]
and therefore solutions of boundary value problems are not
unique and may include undesirable spurious modes. To
remove the spurious modes, Dyka et al. [13] proposed the
stress point method which was later used and developed by
Vignjevic et al. [40] and Randles and Libersky [35]. The
method tends to stabilize SPH by utilizing additional quadra-
ture points named stress points. However, since an additional
set of points must be handled the method not only is hard to
be incorporated into a SPH code but also is not efficient.
Another common practice is to use higher-order derivatives
to stabilize numerical methods. Bonet and Kulasegaram [7]
employed a least-square stabilization method based on the
residual of the Poisson-like governing equations. Vidal et al.
[39] proposed a stabilized updated Lagrangian SPH scheme
in which instabilities activated due to updating the reference
configuration are controlled by adding a Laplacian filter to
the SPH gradient approximation. Although using higher-
order derivatives render enhanced stability for SPH, it is
expensive to correctly approximate them. Inspired by the
similarity between SPH and single integration point finite
element (FE) method Ganzenmüller [15] proposed identify-
ing zero-energymodes as nonlinear parts of the velocity field
and then penalizing the spurious displacements to force par-
ticles back to their theoretically ideal positions. The method,
called hourglass control borrowed from FE, was applied to
total Lagrangian SPH [15] and updated Lagrangian SPH [16]
and proved to be able to hinder not only zero-energy modes
but also tensile instability. It isworthmentioning that updated
Lagrangian SPHmust not be confused with Eulerian SPH. In
updated Lagrangian SPH kernels are only re-calculated once
the particles pairwise displacement exceeds a given threshold
as opposed to Eulerian SPH where kernels are re-calculated
in every time step. Note that the term Eulerian only refers
to the type of kernel and not to the Eulerian perspective of a
continuum. Therefore, Eulerian SPH in this context should
not be interpreted as an SPH schemewhere particles are fixed
in space.

As mentioned above, SPH in its plain Eulerian form
suffers from two major instabilities, namely tensile insta-
bility and zero-energy modes. Although a total Lagrangian
scheme removes the tensile instability, it lacks applicability
to deal with large deformations, the main advantage of SPH
over mesh-based methods, and to naturally handle contact
problems. In order to circumvent these issues, an updated
Lagrangian scheme was proposed in which the reference
configuration and consequently kernels must be regularly
updated which again triggers tensile instabilities. Besides,
regardless of which kernel type, Eulerian or Lagrangian, is
employed, zero-energy spurious modes occur anyway since
they are not initiated by a certain stress state. Needless to say,
dealing with problems of fluid–structure interaction (FSI)
requires at least Eulerian SPH to predict the fluid’s behav-
ior; therefore, it needs extra care and effort to implement and
manage two different descriptions for SPH. That being said,
this paper aims to propose a stabilization scheme in the Eule-
rian SPH framework that removes the tensile instability and
zero-energy modes under large deformations and high strain
rates. To this end, the hourglass control scheme proposed by
Ganzenmüller et al. [16] is borrowed and incorporated into
the Eulerian framework. This is done with a little change to
an Eulerian SPH code and enables accurate analyses of solid
materials under large deformations aswell as straightforward
modeling of contact and FSI problems in a monolithic man-
ner.

The rest of this paper is organized as follows. The next
section is dedicated to explain the SPH description of the
solidmechanics governing equations alongside the hourglass
control scheme and its implementation in Sect. 2.4. To verify
the proposed scheme several cases in different regimes under
different loading conditions are simulated and results are pre-
sented in Sect. 3. Finally the benefits of using the proposed
stabilization scheme are discussed.

2 SPH formulation for solids

SPH is a particle-based numerical method employed to solve
systems of partial differential equations. In SPH, a material
volume is discretized by particleswhich carry quantities such
as velocity, density, volume, pressure and stress, and describe
the state of material at their position. Later on, information
stored for each particle is used to construct SPH approxima-
tions of field functions and their derivatives.

SPH approximations do not require any connectivity
between particles as in, e.g., FE nor a background mesh
used in, e.g., element-free Galerkin. Therefore, SPH is a
true meshless method and, in turn, suitable for problems
with large deformations. The SPH approximations at a given
point are calculated using only a limited number of particles
located in a support domain, the size ofwhich is controlled by
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a smoothing length. A kernel function determines how strong
each surrounding particle influences the SPH approximation
at a given point and is typically defined as a bell-shaped func-
tion gradually decreasingwith the distance between a particle
and the point. There are several common kernel functions
such as splines of various order or a truncated Gaussian. In
our case, a cubic spline kernel is employed which is defined
by:

W (x, h) = k

hd

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2 − q)3 − 4 (1 − q)3 , 0 ≤ q < 1,

(2 − q)3 , 1 ≤ q < 2,

0, q ≥ 2.

(1)

where x = |x| is the Euclidean norm of the position vector
x at current deformed configuration and q = x/h with h
being the smoothing length of the kernel. d is the number
of dimensions and k is the normalization factor which equals
5/(14π) for 2D and 1/(4π) for 3D cases. According to Eq.1,
the radius of a support domain is twice the parameter hwhich
is proportional to the particles spacing, Δp, and in this study
h = 1.3Δp is used. As the cubic spline proved to yield
satisfactory results, it is used throughout this work although
different kernels might improve convergence [11].

The development of the SPH approximation for any func-
tion A(x) begins with the following mathematical identity.

A(x) =
∫

A(x′) δ(x − x′) dx′, (2)

where δ is the Dirac delta function. To obtain an SPH approx-
imation, the Dirac delta function is replaced by the kernel
function which can be considered as a smoothed, finite delta
function. Additionally, the integral is discretized using the
mid-point quadrature which results in the following SPH
approximation of a field function.

〈A(x)〉 =
N∑

j=1

A(x j )W
(|x − x j |, h

)
Vj , (3)

where Vj is the volume of particle j evaluated by the ratio of
its mass m j to its density ρ j and N is the number of parti-
cles within the support domain. The 〈· · ·〉 symbol denotes an
approximation of a function and, for the sake of simplicity,
will be dropped in the rest of the paper. Besides, in SPH gov-
erning equations are collocated at each particle and, hence,
the following approximations of a field function at particles
position are employed.

〈Ai 〉 =
N∑

j=1

m j

ρ j
A j Wi j , (4)

with A j = A(x j ) and Wi j = W
(|xi − x j |, h

)
. In order

to discretize the governing equations, derivatives of field
functions at particles position need to be evaluated. It is
straightforward to do that by using Eq.4 and taking the
derivative of the kernel function. Therefore, gradient of a
function is given by

∇Ai =
N∑

j=1

m j

ρ j
A j ∇Wi j . (5)

However, the following forms of gradient are commonly
employed since they possess better convergence properties.

∇Ai =
N∑

j=1

m j

ρ j

(
A j − Ai

)∇Wi j

∇Ai = ρi

N∑

j=1

m j

(
A j

ρ j
2 + Ai

ρi 2

)

∇Wi j

(6)

Having said that, using Taylor expansion up to second order
it was shown that the SPH derivative approximations can
be second-order accurate if the kernel gradients in Eq.6 are
replaced by the corrected one. To obtain the corrected ker-
nel gradient correction matrix L is introduced to the kernel
gradient as

∇̃Wi j = Li ∇Wi j . (7)

In order for the SPH derivative approximations to be second-
order accurate the following condition must be satisfied

N∑

j=1

m j

ρ j

(
x j − xi

) ∇̃Wi j = I (8)

where I is a second-order unit tensor. Substituting Eq.7 in
Eq.8, the correction matrix is obtained as

Li =
⎛

⎝
N∑

j=1

m j

ρ j

(
x j − xi

) ⊗ ∇Wi j

⎞

⎠

−1

. (9)

Having said that, it has been realized that discretization of the
stress divergence inmomentumequations using the corrected
gradient, Eq. 7, does not essentially lead to accurate approxi-
mations.We have found employing the following normalized
gradient instead results in a robuster scheme.

∇̂Wi j = ∇Wi j
∑

j
m j
ρ j

Wi j
. (10)

Hence, in the present study the corrected gradient, Eq. 7, is
employed to approximate the velocity gradient and the veloc-
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ity divergence, and the normalized gradient, Eq.10, is only
used to calculate stress divergence.

2.1 SPH discretization of governing equations

The conservation laws of mass, momentum and energy are
employed to correctly define particles movement during sim-
ulations. Since SPH followsmaterial points in space,material
derivatives are used and the conservation laws are discretized
at each particle position using SPHapproximations.Here, the
following discretized governing equations are employed.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dρi
dt

= ρi
∑N

j=1

m j

ρ j

[
vi j · ∇̃Wi j + �diff

i j · ∇Wi j

]

dvi
dt

=
∑N

j=1
m j

⎡

⎣
Σi−εRi f

n
i j

ρ2i

· ∇̂Wi j−
Σ j−εR j f

n
i j

ρ2j

· ∇̂Wji+�visc
i j · ∇Wi j

⎤

⎦

(11)

where vi j = vi − v j is the relative velocity of particle i with
respect to particle j and Σ is the stress tensor decomposed
into pressure P (positive in compression) and deviatoric
stress S as

Σ = −PI + S (12)

The pressure term is evaluated using a equation of state
expressed as

P = K

(
ρ

ρ0
− 1

)

(13)

with K being the bulk modulus and ρ0 being the initial den-
sity. Elastic deformations follow the theory of linear elasticity
and the deviatoric stress at point i is evolved using the Jau-
mann stress rate as

dSi
dt

= 2μ

(

Ėi − 1

3
tr
(
Ėi

)
I
)

− Si Ωi + Ωi Si (14)

where μ is the shear modulus. Ė and Ω are the rate of strain
tensor and the rotation tensor, respectively, which are defined
as

Ė = 1

2

(
∇v + ∇v T

)

Ω = 1

2

(
∇v − ∇v T

) (15)

where the velocity gradient tensor is approximated by

∇vi =
N∑

j=1

m j

ρ j

(
v j − vi

) ∇̃Wi j . (16)

In Eq.11, the term �visc
i j is the artificial viscosity added

to the momentum equation in order to diminish unphysical
oscillations due to shock waves. �visc

i j proposed by Mon-
aghan [28] is applied which is given by

�visc
i j =

⎧
⎨

⎩

(
αcs − βφi j

)
φi j /ρi j , vi j · xi j < 0

0, vi j · xi j ≥ 0
(17)

where xi j = xi −x j is the relative position vector of particle
i with respect to particle j , cs = √

K/ρ0 is the speed of
sound, α and β are the model parameters, here, equal to 2.0
and 1.0, respectively, ρi j is the average density of particles i
and j , and φi j is defined by

φi j = h
(
vi j · xi j

)

x2i j
, (18)

where xi j = |xi j | is the Euclidean norm of the relative posi-
tion vector xi j .

Additionally, the term εRi f ni j exerts inter-particle repul-
sive forces to reduce the tensile instabilitywhere n is a dimen-
sionless exponent set to 4.0, and fi j = W (xi j , h) /W (Δp, h)

is a normalized repulsion function. ε is a dimensionless scal-
ing factor, here, set to 0.3 andRγ=i, j is the unscaled artificial
tensor defined by

Rγ = QT R̂γQ (19)

where Q is a rotation matrix consists of the stress tensor’s
eigenvectors and R̂γ is the unscaled stress tensor defined in
the principal frame as

R̂
ab
γ =

⎧
⎨

⎩

Σ̂ab
γ , a = b and Σ̂ab

γ ≥ 0,

0, else,
(20)

with a and b indicating spatial components and Σ̂ being the
diagonalized stress tensor.

Moreover, �diff
i j is the density diffusion proposed by

Antuono et al. [3] added to the continuity equation so as
to better stabilize the method at the presence of high fre-
quency numerical noises in the pressure field by smoothing
the density field. �diff

i j is defined by

�diff
i j = 2δhcs

(
ρ j − ρi

)

ρi

(
x j − xi

)

x2i j
(21)

with δ being a dimensionless parameter which normally is
set to 0.1 for problems of fluid dynamics [3,36]. It is worth
mentioning that the density diffusion is only applied to the
case of fracture modeling with δ being 0.01.
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2.2 Plasticity model

An elastic predictor-plastic corrector algorithm is used to
calculate plastic strain at each point. In order to model mate-
rials behavior beyond elastic region, a J2 plasticity model is
employed introducing a yield function as

� = σeq − σy (22)

where σeq =
√

3
2S : S is von Mises equivalent stress and σy

is a yield stress. Assuming the loading to be elastic the yield
function is evaluated according to Eq.22 (elastic predictor).
Amaterial point experiences plastic deformation only if� >

0 thereby stress must be returned to the yield surface which is
defined by � = 0 (plastic corrector). To do this, the cutting-
plane return mapping algorithm explained in Neto et al. [30]
is employed. Cutting-plane algorithm is an explicit method
which not only is easier to be implemented comparing with
implicit methods, especially for complicated yield functions,
but also guarantees to meet the plastic consistency condition
(� = 0). The plastic consistency condition ismet by accurate
calculation of plastic strains which alters the deviatoric stress
tensor and the yield surface so as to reasonably equate the
von Mises stress and the yield stress in Eq.22.

As to yield stress, Johnson–Cook constitutive model [21]
is employed which describes strain hardening and strain rate
hardening as well as materials temperature softening. Hence,
yield stress is expressed as

σy =
[
A + B

(
ε
p
eff

)n
]
[1

+ C ln

(
ε̇
p
eff

ε̇0

)][

1 −
(

T − Tref
Tmelt − Tref

)m]

(23)

where ε
p
eff is equivalent plastic strain, ε̇

p
eff is equivalent plastic

strain rate, ε̇0 is a reference plastic strain rate, T is cur-
rent temperature, Tref is a reference temperature and Tmelt

is melting temperature. Additionally, A, B, C , n and m
are material-dependent constants. In Eq.23, the three paren-
theses describe strain hardening, strain rate hardening and
softening due to temperature change during plastic deforma-
tion, respectively.

For an adiabatic behavior assumption, therewill be no heat
flux andonly plasticwork is considered as the volumetric heat
source. Then, the temperature change is obtained using the
following rate equation.

Ṫ = η
Σ : Ėp

ρ CP
(24)

with Ė
p
being the plastic strain rate, η being the Quinney-

Taylor coefficient, typically around 0.9, and CP being the
heat capacity.

2.3 Damagemodel

In dealingwithmaterials failure, a criterion is needed todeter-
mine when a particle can no longer carry a load. Here, the
Johnson–Cook dynamic failure criterion proposed by John-
son and Cook [21] is employed in which fracture is described
by a damage parameter, D. The evolution of the damage
parameter is defined as

Ḋ = ε̇
p
eff

ε
p
f

(25)

with ε
p
f being the equivalent plastic strain at fracture deter-

mined by

ε
p
f = [

D1 + D2exp
(
D3σ

�
)]

[

1 + D4ln

(
ε̇
p
eff

ε̇0

)]

[1

+D5

(
T − Tref

Tmelt − Tref

)]

(26)

where σ� = − P
σeq

is the stress triaxiality ratio and D1

to D5 are the material-dependent constants. The damage
parameter is zero until the yield stress is reached and
then starts growing with plastic strain up to failure where
D = 1. At failure the deviatoric stress of the failed particle
is set to zero and kept zero for the rest of the simula-
tion.

2.4 Hourglass control scheme

Here the scheme proposed by Ganzenmüller et al. [16] in
order to prevent spurious zero-energy modes is employed.
Due to the fact that the stabilization method is based on
the similarity between zero-energy modes in SPH and hour-
glass modes in finite element simulations, the scheme is
called hourglass control. Since SPH approximation results
in mean fields within each particle’s neighborhood simi-
lar to FE using single-point reduced integration elements,
Ganzenmüller [15] concluded that according to Flanagan
and Belytschko [14] only a fully linear velocity field can
be represented. Therefore, displacements or velocities not
compatible with the linear field are identified as zero-energy
modes which must be corrected.

The linear displacement field within a particle’s support
domain must be defined by the deformation gradient as it is a
linear operator itself. Therefore, zero-energymodes are those
parts of the displacement field which cannot be expressed by
the deformation gradient. The relative position vector of par-
ticle i with respect to particle j is defined by deformation
gradient, F, as

〈
xi j

〉i = FiXi j (27)
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where xi j and Xi j are relative position vectors in the current
deformed and initial undeformed configurations, respec-
tively. 〈 〉i denotes that xi j is a theoretically exact relative
position vector calculated by the deformation gradient of the
particle i , Fi , with respect to initial configuration which is
evaluated in every time step by

Fi = I +
N∑

j=1

m j

ρ0 j

(
u j − ui

) ⊗ ∇̃W (Xi j ) (28)

with ρ0 and ∇̃W (Xi j ) being the density and corrected
kernel gradient, respectively, in the initial configuration.
In Eq.28, ui is the displacement of particle i defined
by

ui = xi − Xi (29)

where xi and Xi are the position vectors of particle i in
current and initial configurations, respectively. ∇W (Xi j )

is calculated once at the beginning of simulations and
kept unchanged as long as particles neighbor list does
not change. However, the neighbor list must be frequently
updated, e.g., for simulations involving large particle dis-
placements as suggested by Vidal et al. [39], for contact
problems and for the sake of computational efficiency,
which makes it impossible to use Eq.28 throughout the
whole course of the simulation. To address this problem,
an intermediate reference configuration is considered which
coincides with the initial configuration at the beginning
of the simulation and later on is replaced with the cur-
rent configuration each time the neighbor list is updated.
Then the deformation gradient at point i is calculated
using

Fi = Fref
i Finit

i (30)

where Fref
i is the deformation gradient with respect to the

reference configuration evaluated by Eq.28 using quantities
described in the reference configuration andFinit

i is the defor-
mation gradient of particle i in the reference configuration
with respect to the initial configuration. Finit

i initially is a
second-order unit tensor and is replaced with Fi each time
the neighbor list is updated.

Having calculated the deformation gradient, using Eq.30
the exact relative position vector,

〈
xi j

〉
, is evaluated and com-

pared with the estimated one, xi j , providing an error vector
showing how much a particle has deviated form its true
position due to a zero-energy mode. The error vector εi j is
expressed as the difference between the average exact rela-
tive position vector and the estimated relative position vector
defined by

εi j = 1

2

(〈
xi j

〉i + 〈
xi j

〉 j
)

− xi j = 1

2

(
Fi + F j

)
Xi j − xi j .

(31)

The following subsections explain two hourglass control
methods as introduced by Ganzenmüller et al. [16], stiffness-
based andviscosity-based, inwhich this error vector employed
to control the amount of the stabilization.

Stiffness-based hourglass control

In order to minimize the error and, in turn, prevent zero-
energymodes, a penalty force proportional to the error vector
magnitude is exerted on particles to counterbalance spuri-
ous displacements. For the sake of conservation of angular
momentum, the penalty force acts along the particles relative
position vector in the current configuration by projecting the
error vector on that direction. Besides, ε is weighted by the
kernel function and the particle volume so that the force is
formulated in the spirit of SPH which finally results in the
following equation.

f stiffi = −ξ

N∑

j=1

mi

ρi

m j

ρ j
Wi j

E

X2
i j

εi j · xi j
xi j

xi j
xi j

(32)

where E = 9Kμ/(3K + μ) is the elastic modulus, ξ is a
scaling factor and Xi j = |Xi j | is the Euclidean norm of the
relative position vector Xi j . The elastic modulus is divided
by X2

i j in order for the stiffness-based hourglass control force
to be compatible with the elastic energy.

Viscosity-based hourglass control

It is known from FE that stiffness-based hourglass control
works well for problems with linear deformations, e.g., lin-
ear elasticity. However, being nonlinear, plastic deformations
are hindered by stiffness-based hourglass control as if the
material appears stiffer than it should be. Hence, another
hourglass control based on viscous forces was proposed to
circumvent the problem which instead of being dependent
on particles position as in Eq.32 is based on particles veloc-
ity. The viscosity-based hourglass control is motivated by the
bulk (linear) part of the artificial viscosity, Eq. 17, which is
scaled by the norm of the error vector, εi j = |εi j |, normal-
ized by the norm of the relative position vector in the initial
configuration, Xi j , to damp parts of particles velocity caused
by zero-energy modes and, then, defined by

f visci =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−ζ
N∑

j=1

mim j
ρi j

εi j
Xi j

csh
(
vi j ·xi j

)

x2i j
∇Wi j ,

(
vi j · xi j

) (
εi j · xi j

)
< 0

0,
(
vi j · xi j

) (
εi j · xi j

) ≥ 0

(33)
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where ζ is a scaling factor and the uncorrected kernel deriva-
tive is employed. Besides the condition is also modified to
ensure that hourglass control forces are only applied if the
relative velocity increases the error vector magnitude. In
practical tests, it has been realized that a combined hour-
glass control defined by the following form works best for
problems with plastic deformations.

f comb
i = χ f visci + (1 − χ) f stiffi (34)

where χ is a combination weight factor to scale the stiffness-
and viscosity-based hourglass control’s contributions. In
summary, the hourglass control scheme originally developed
for total Lagrangian SPH is applied in an Eulerian SPH
framework by calculating the deformation gradient which
would otherwise not be required in the Eulerian scheme.

3 Results and discussion

Several cases are studied using the proposed hourglass con-
trol scheme, and the results are comparedwithFEsimulations
and SPH simulations stabilized only by artificial viscosity
and artificial stress. No other stabilization methods such as
artificial viscosity and artificial stress are applied when SPH
simulations are stabilized by the hourglass control scheme
except for the case of metal cutting for which addition-
ally the density diffusion is used. In addition, two cases
are also simulated by the stabilized total Lagrangian SPH
formulation explained in Ganzenmüller [15] in order to pro-
vide a comparison between the present stabilized Eulerian
SPH and the stabilized total Lagrangian SPH. FE results
are obtained using the commercial software Abaqus/Explicit
(version 2017) employing reduced integration linear ele-
ments with default hourglass control. Material properties
shown in Table1 are used in all simulations with the excep-
tion of the case of an oscillating plate. Rigid boundaries in
the cases of upsetting and Taylor impact as well as the cutting
tool in the case of metal cutting are represented as rigid trian-
gulated surfaces. Interactions between an SPH particle and a
surface are defined as a repulsive Hertzian normal force and
a Coulomb friction tangential force between a sphere with a
diameter equal to the particle spacing and the spatially closest
triangle of the surface.

3.1 Elastic tension

This case is carried out so as to demonstrate the capability of
the scheme to prevent the instabilities observed as a material
undergoes linear elastic deformations. Tensile behavior of a
2D rectangular model of elastic aluminum clamped at both
ends ismodeled using stiffness-based hourglass control. SPH
prediction for nominal tensile strain of 0.45 is shown in Fig. 1

Table 1 Summary ofmaterial properties for aluminumAl6061-T6 [38]
and polymethyl methacrylate (PMMA)

Material properties Symbol Al PMMA

Density ρ0 (kg/m3) 2800 1186

Bulk modulus K (GPa) 69 5.85

Shear modulus μ (GPa) 26.5 2.2

Heat capacity CP (J/kg-K) 885 1470

Plasticity model

Yield Stress A (MPa) 164 212

Hardening coefficient B (MPa) 211 580

Strain hardening exponent n (–) 0.465 3.5

Strain rate hardening constant C (–) 0.002 0.081

Reference strain rate ε̇0 (s−1) 1 0.001

Temperature softening exponent m (–) 1.419 0.749

Reference temperature Tref (K) 292 213

Melting temperature Tmelt (K) 925 398

Failure criterion

Damage constant D1 (–) −0.77 −1.751

Damage constant D2 (–) 1.45 2.32

Damage constant D3 (–) −0.47 −0.773

Damage constant D4 (–) 0 −0.0491

Damage constant D5 (–) 1.6 0.38

alongside FE result. Although a discrepancy between results
is observed around the corners owing to the smoothing nature
of SPH, there is a very good agreement between SPH and FE
results showing that the hourglass control can effectively pre-
vent both tensile instabilities and spurious zero-energymodes
which would not be possible in the absence of the hourglass
control. As Fig. 2 shows, although artificial viscosity and arti-
ficial stress are employed, instabilities occur for very small
strains and propagate throughout the geometry which finally
leads to an unphysical fracture.

3.2 Oscillating plate

To further check the accuracy of the proposed scheme in deal-
ing with large elastic deformations oscillation of thin elastic
plates is simulated and compared with analytical solution
[18,33]. Figure3 shows the initial 2D geometry of a thin plate
clamped on the left side. Herein, oscillation of two plates,
both of free length of 0.2m, but, one 0.02m wide and the
other 0.01m wide, are studied. According to the analytical
solution, the following distribution for initial velocity along
y axis, vy , is applied to a plate’s free length.

vy(x) = vl
f (x)

f (l)
(35)
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Fig. 1 Elastic tension results for the vonMises stress contour. Initial SPH undeformed body (left), SPH result stabilized by stiffness-based hourglass
control scheme with ξ = 10 (middle) and FE result (right)

Fig. 2 Elastic tension SPH
results obtained using artificial
viscosity and artificial stress:
instabilities occur at very small
strain levels propagating over
the whole body

Fig. 3 Geometry of an oscillating plate

where vl is the initial velocity of the free end of the plate,
herein is equal to 5% of the speed of sound, and f (x) is
defined as

f (x) = (cos kl + cosh kl) (cosh kx − cos kx)

+ (sin kl − sinh kl) (sinh kx − sin kx)
(36)

being k as the wave number which is calculated using kl =
1.875 for the fundamental mode of oscillation. Unlike other
cases, in this section results are presented using a soft elastic
material with the following properties; ρ0 = 1000 kg/m3,
K = 3.25 MPa and μ = 0.715 MPa. Moreover, the geome-

tries are discretized in a way that there are 20 particles across
the plates’ width.

Solutions are stabilized by stiffness-based hourglass con-
trol scheme with ξ = 0.5 and ξ = 1.0 for plates with
he = 0.02m and he = 0.01m, respectively. Figure4 shows
the von Mises stress field for the given plates after sev-
eral cycles when the free end of a plate is at its highest
position proving the good stabilization properties of the
scheme which is further supported by a very good agreement
between the obtained oscillations period with the analyt-
ical ones reported in Table2. As it was expected, since
we are using thin plate theory the discrepancy between
the calculated period and analytical one decreases as the
aspect ratio of the plate increases. Additionally, Table2
shows a very good agreement between the present scheme
and the stabilized total Lagrangian SPH. That being said,
computation times presented in Table3 show that the total
Lagrangian scheme is around 25% faster that the present
stabilized Eulerian scheme. This speedup is obtained by
skipping kernel updates at every time step and by avoiding
any neighbor list updates. Nevertheless, the material models
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Fig. 4 Oscillating plate von Mises stress for 0.02m width at 2.465s
(left) and 0.01m width at 2.17s (right)

Table 2 Comparison of the obtained period of the plates oscillations
with analytical values

Period (s)

he = 0.02m he = 0.01m

Present scheme 0.266 0.510

Stabilized total Lagrangian 0.264 0.510

Analytical solution 0.254 0.508

Table 3 Computation times for 2.5 s of oscillation of the thin plates

Plate width # Particles # CPU cores Computation time (s)

Present
scheme

Stabilized
total
Lagrangian

he = 0.02m 5118 1 6.88 × 103 5.27 × 103

he = 0.01m 10158 4 7.05 × 103 5.29 × 103

employed in this paper use the rate of deformation tensor to
calculate the Cauchy stress tensor which, consequently,
requires a transformation of Cauchy stress to first Piola-
Kirchhoff stress which then is used in the momentum
equation. Hence, the total Lagrangian scheme involves more

matrix operations than the Eulerian scheme in order to cal-
culate forces exerted on a particle from its surrounding
particles. These extra operations which include the inver-
sion of the deformation gradient for all particles at every
time step diminish the efficiency of the total Lagrangian
scheme. Besides, in order to better illustrate the favorable
effect of the proposed hourglass control scheme results
for the wider plate obtained using only artificial viscosity
and artificial stress at three moments during its oscilla-
tion are presented in Fig. 5. Though it seems employing
artificial viscosity and artificial stress can prevent instabil-
ities at early stages, as the simulation proceeds spurious
modes gradually propagate throughout the whole domain
which causes the oscillation amplitude to drop as shown in
Fig. 6.

Fig. 6 Temporal evolution of the deflection of the oscillating plate’s
free end with and without hourglass (HG) control

Fig. 5 Oscillating plate von Mises stress calculated using only artificial viscosity and artificial stress at 0.075s (left), 0.63s (middle) and 1.75s
(right)
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Fig. 7 Initial geometries for the
upsetting test: SPH (left) and FE
(right)

Fig. 8 Results for von Mises stress field (left column) and equivalent plastic strain (right column) obtained by the present scheme (top row),
stabilized total Lagrangian SPH (middle row) and finite element method (bottom row)

3.3 Upsetting test

Having shown the effectiveness of the stiffness-based hour-
glass control inmodeling elastic deformations, this case aims
at verifying that the hourglass control can stabilize SPH sim-
ulations dealing with fairly large plastic deformations. An
aluminum cylinder of 5 mm radius and 5 mm height, Fig. 7,
is placed between the rigid plates and then compressed to half
of its height as the top plate moves down while the bottom
one is fixed. It has been realized, although, stiffness-based
hourglass control hinders plastic deformations a reasonably
small amount of it can help obtaining better results. Hence,
the combined hourglass control for which χ = 0.5, ξ = 0.2
and ζ = 10 is employed. As can be seen in Fig. 8, there is a

good agreement among the present scheme, stabilized total
Lagrangian SPH and FE as a result of accurately predicted
deformations which manifests itself as the correspondence
between SPH particles and FE nodes positions. In addition,
computation times of the upsetting test for the proposed
scheme and the stabilized total Lagrangian SPH are reported
in Table4 showing that in this case the total Lagrangian
scheme is faster than the proposed Eulerian scheme by about
12%. Ba and Gakwaya [4] reported a much higher efficiency
obtained by using a total Lagrangian scheme implemented
as a user element subroutine in ABAQUS instead of using
the Eulerian SPH solver of ABAQUS. Since the speedup is
partly gained by skipping neighbor list updates, the amount of
gained efficiency depends on the neighbor search algorithm
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Table 4 Computation times for 5µs of compaction of the aluminum
specimen

# Particles # CPU cores Computation
time (s)

Present scheme 58591 12 3.59 × 105

Stabilized total
Lagrangian

58591 12 3.18 × 105

Fig. 9 Initial geometries for the Taylor bar impact test: SPH (left) and
FE (right)

employed in the Eulerian scheme. In that work an all-pair
neighbor search algorithm which needs N 2 operations for
N particles is reported to be used by ABAQUS for Eule-
rian SPH. This results in a significantly higher speedup for
the total Lagrangian scheme compared to the present work
where a linked-list neighbor search algorithm is used for the
Eulerian scheme.

3.4 Taylor bar impact

In order to test the hourglass control under a high strain
rate loading impact of a long aluminum bar to a rigid sur-
face, Fig. 9, with the impact velocity of 295 m/s is modeled.
Diameter and height of the bar are 7.595 mm and 37.975
mm, respectively. The combined hourglass control is used
with χ = 0.5, ξ = 0.2 and ζ = 10. Once again there is a
good agreement between SPH and FE as it can be seen in
Fig. 10. Besides, convergence of the calculated mushroom
diameter and bar’s height using the proposed scheme and FE
was studied and is presented in Fig. 11 showing bothmethods
are convergent. Although FE has a bit higher rate of conver-
gence, as expected, both methods converge to values which
are quiet close to each other. Additionally, experimental val-
ues for the mushroom diameter and the bar’s height reported

byHouse et al. [20] are indicated in Fig. 11 showing that both
methods predict themushroom diameter verywell. However,
there is an error of around 10% in the prediction of the bar’s
height indicating that the material model could be improved.
Moreover, von Mises stress field obtained using SPH with-
out hourglass control is also shown in Fig. 12. Instabilities
are observed shortly after impact at the impact site, propa-
gate upwards inside the bar and decrease the accuracy of the
solution. Comparing Figs. 10 and 12, the proposed hourglass
control scheme can effectively prevent spurious zero-energy
modes that might happen during high strain rate deforma-
tions.

3.5 Metal cutting

Since fracture criteria and damage models are strongly
dependent on stress and strain fields, it is imperative to con-
trol instabilities of SPH simulations so as to properly model
the failure of materials. SPH is employed to model the pro-
cess of metal cutting in which the cutting tool moves across
the aluminum workpiece at a constant velocity of 10 m/s
and, in turn, removes a chip of material from the surface.
Considering that the fracture criterion is dependent on pres-
sure, in order to have the pressure field correctly calculated
the density diffusion method is applied to filter out density
noises and consequently pressure noises. The focus, here,
is on the chip formation modeled by SPH with and without
hourglass control. Figure13 shows a serrated chip forma-
tion modeled using hourglass control. As the cutting tool
moves, shear bands are formed across the chip which even-
tually leads to cracks formation, propagation and breakage
of the chip. Results obtained using SPH without hourglass
control are presented in Fig. 14 which again show a serrated
chip formation, however there is no clear crack initiation and
propagation since the fields are not correctly calculated due
to the instabilities. Comparing results presented in Figs. 13
and 14 emphasizes the importance of preventing the insta-
bilities, specially, in dealing with materials failure and also
proves the ability of the proposed hourglass control scheme
in doing so.

3.6 Fluid–structure interaction

Although the stabilized total Lagrangian SPH is somewhat
faster than the proposed Eulerian scheme in dealing with
merely solid mechanics problems, it does not considerably
outperform its Eulerian counterpart when it comes to solving
FSI problems. In SPH simulations of FSI problems, the num-
ber of solid particles is usually not comparable to the number
of fluid particles. In this case, the computational speedup
achieved by employing the total Lagrangian scheme will be
marginal since for fluid particles kernel calculations must
be done every time step and neighbor lists are frequently

123



Computational Particle Mechanics

Fig. 10 Comparison of Taylor bar impact results obtained using stabilized Eulerian SPH (top) and FE (bottom). a, d von Mises stress at 20 µs, b,
e von Mises stress at 45 µs, c, f equivalent plastic strain at the end of the simulations

updated. Besides, having both Eulerian and Lagrangian SPH
running together adds complications to the implementation,
e.g., due to additional data bookkeeping, and it is not straight-
forward to make both schemes work together efficiently.

Here, the process of abrasive flowmachining is simulated.
It is employed to polish internal surfaces as abrasive grains
suspended in a carrier fluid hit the surface and gradually
smoothen it. The process is monolithically simulated at a
microscopic scale by employing Eulerian SPH to discretize
all of the involved phases. Figure15 shows a simplified two-
dimensional setup used to simulate polishing of a PMMA
micro-channel through removing the rectangular roughness
in the middle of the channel. The carrier fluid is a Newto-
nian fluid of 2 mPas viscosity carrying abrasive circular iron

grains. The hydrodynamics of the problem is solved by the
δ+-SPH scheme introduced by Sun et al. [36]. The abrasive
grains are modeled as rigid clusters of particles whose move-
ments are calculated by a rigid body motion solver explained
in Polfer et al. [31]. The solid phase is modeled by the pro-
posed stabilized Eulerian scheme. The interactions between
the fluid particles and solid or cluster particles are resolved by
the model proposed by Adami et al. [1]. The contact between
rigid clusters and the surface is modeled by inter-particle
repulsive forces calculated according to Cleary et al. [10]. A
periodic boundary condition is imposed on the right and left
side of the simulation domain meaning that particles leav-
ing the domain on the right side re-enter the domain on the
left side. Besides, surface particles are removed from the
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Fig. 11 Convergence study and comparison of the mushroom diameter (left) and the bar height (right) during Taylor bar impact calculated by the
proposed hourglass controlled SPH and FE

Fig. 12 Propagation of instabilities and their adverse effect on the simulation accuracy in the Taylor bar impact test using unstabilized Eulerian
SPH

simulation domain once their damage parameter becomes
larger than 1 due to impacts of the grains on to the sur-
face. The abraded surface after 3.5µs of machining obtained
by Eulerian SPH stabilized by hourglass control and with-
out hourglass control is shown in Fig. 16. The results prove
that the present scheme is capable of preventing instabilities
in this complex material removal situation. In the absence
of an effective stabilization scheme to prevent zero-energy
modes, instabilities initiate close to the top left corner of
the rectangular roughness, where most grains hit the sur-
face, then slowly propagate across the solid phase even in
regions far from the impact site. Eventually, the particle dis-

tribution becomes very disordered due to successive spurious
movements which leads to inaccurate calculations of kernel
derivatives and consequently velocity gradients, and pene-
tration of fluid particles in the solid phase as well.

4 Conclusion

This paper presents a stabilization scheme to prevent the
notorious tensile instability and zero-energy modes. The
scheme is based on the stabilization algorithm named
hourglass control proposed by Ganzenmüller [15] in the
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Fig. 13 Chip formation in cutting modeling using hourglass control; von Mises stress (left) and damage parameter (right); the rows represent
different times

Fig. 14 Same as middle row of Fig. 13 but without hourglass control
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Fig. 15 Two-dimensional setup used to simulate the process of abra-
sive flow machining with the solid material in gray, the abrasive grains
in light blue and the carrier fluid in dark blue. A periodic boundary
condition is imposed on the left and right side of the simulation domain

Lagrangian SPH framework to prevent spurious zero-energy
modes. That being said, since many SPH codes are imple-
mented in the Eulerian framework it might not be straight-
forward to turn them into Lagrangian codes considering the
existing code structure. Furthermore, it might be even nec-
essary to have Lagrangian and Eulerian codes work together
as, e.g., for FSI problems. To address this issue, the hour-
glass control algorithm is incorporated into the Eulerian SPH
formulation which can be done easily by a few changes to
an existing code. Thus, the present paper presents a scheme
to model solid material deformations using stabilized Eule-
rian SPH that does not suffer from the tensile stability nor
zero-energy modes. Furthermore, the results reveal that the
hourglass control scheme is not only applicable to total or
updated Lagrangian SPH but also to Eulerian SPH.

In order to verify the stabilization scheme, several cases
were modeled and the results were compared with finite
element simulations and stabilized total Lagrangian SPH
simulations. It was shown that the hourglass control algo-
rithm, although originally developed to prevent zero-energy
modes, can also hinder the tensile instability. Two cases
were used to examine the stiffness-based hourglass control.
The obtained results assured accurate SPH elastic responses
in the presence of large tensile strains which are highly

Fig. 16 Results for 3.5 ms of abrasive flow machining obtained by (top) the present scheme and (bottom) Eulerian SPH without hourglass control
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susceptible to tensile instability as well as long elastody-
namic responses by preventing zero-energy mode initiation
and propagation. Two further cases were carried out to
investigate the capability of the proposed scheme to sta-
bilize nonlinear solutions. Since employing stiffness-based
hourglass control tends to overestimate a given material’s
stiffness, viscosity-based hourglass control was utilized to
predict elastoplastic behavior. However, we found out that
still a small amount of stiffness-based control can lead to
more accurate results. Therefore, the combined hourglass
control was employed and the obtained results revealed high
accuracy in comparison with finite element simulations as
well as convergence of the proposed scheme. Another case
was devoted to emphasize the importance of stabilization
when dealing with fracture modeling. It demonstrated that
the hourglass control scheme leads to a better estimation
of stress and strain fields on which most fracture criteria
depend. Thus, fracture processes which consist of crack ini-
tiation, crack propagation and final rupture can be modeled
adequately. A final case simulating material removal by an
abrasive suspension illustrates the versatility of Eulerian SPH
in a three-phase scenario where the solid structure is again
stabilized using the proposed scheme.
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