
Multi-objective interval prediction of wind power based
on conditional copula function

Gang ZHANG1 , Zhixuan LI1, Kaoshe ZHANG1, Lei ZHANG2,

Xia HUA3, Yongqing WANG4

Abstract Interval prediction of wind power, which fea-

tures the upper and lower limits of wind power at a given

confidence level, plays a significant role in accurate pre-

diction and stability of the power grid integrated with wind

power. However, the conventional methods of interval

prediction are commonly based on a hypothetic probability

distribution function, which neglects the correlations

among various variables, leading to decreased prediction

accuracy. Therefore, in this paper, we improve the multi-

objective interval prediction based on the conditional

copula function, through which we can fully utilize the

correlations among variables to improve prediction accu-

racy without an assumed probability distribution function.

We use the multi-objective optimization method of non-

dominated sorting genetic algorithm-II (NSGA-II) to

obtain the optimal solution set. The particular best solution

is weighted by the prediction interval average width

(PIAW) and prediction interval coverage probability

(PICP) to pick the optimized solution in practical exam-

ples. Finally, we apply the proposed method to three wind

power plants in different Chinese cities as examples for

validation and obtain higher prediction accuracy compared

with other methods, i.e., relevance vector machine (RVM),

artificial neural network (ANN), and particle swarm opti-

mization kernel extreme learning machine (PSO-KELM).

These results demonstrate the superiority and practicability

of this method in interval prediction of wind power.

Keywords Wind power prediction, Interval prediction,

Conditional copula function, Empirical distribution

function, Multi-objective optimization algorithm

1 Introduction

China is rich in wind resources [1, 2] and has adopted a

national policy to vigorously develop wind power. How-

ever, wind power has strong randomness and volatility and

is difficult to accurately predict [3–8], thus making wind

power prediction a current hotspot in research. Most cur-

rent studies of wind power prediction focus more heavily

on point prediction [9–14] and less on interval prediction

[15]. Because the point prediction approach causes the

wind power prediction results to greatly deviate from the

actual values, it is difficult to implement real-time
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scheduling [16]. Interval prediction can supply more

accurate information for dispatching operations [17], and

consequently, the interval prediction method has become

increasingly important. The beta distribution calculation

model [18] and its improved model [19] obtain interval

prediction results under different confidence levels from

the point prediction error distribution. The non-parametric

kernel density estimation method fits the probability dis-

tribution curve of wind power through interpolation and

finally obtains the prediction interval that satisfies the

preset confidence level [20]. Based on the standardized

Gaussian distribution, Kou Peng et al used a modified

Gaussian model to realize interval prediction of wind

power [21]. The interval prediction results can also be

obtained via establishment of the probability distribution

function of wind power prediction based on the empirical

distribution model and a non-parametric regression tech-

nique [22]. Additionally, to improve the interval coverage

and reduce the interval width, Fan Lei et al [23] used the

method of ensemble empirical mode decomposition and

correlation vector machine to realize short-term wind

power interval prediction.

The development of heuristic algorithms has injected

new vitality into solution of nonlinear problems. Khosravi

A et al [24] proposed a method for predicting the upper and

lower bounds of wind power based on the neural network

method. Quan H et al [25] proposed a lower upper bound

estimation (LUBE) model based on the single-layer for-

ward neural network structure. This model uses particle

swarm optimization (PSO) to obtain a satisfactory wind

power prediction interval, but it is slow. Yang Xiyun et al

[26] proposed the particle swarm optimization kernel

extreme learning machine (PSO-KELM) model, which has

higher prediction accuracy and a faster speed of operation

and can supply decision supports for wind power interval

prediction and secure and stable operation of wind power

on the grid.

Although the above research has shown useful explo-

ration of the interval prediction of wind power, two types

of problems still remain:

1) Certain current prediction methods must assume that

wind power obeys a certain distribution function

[18–21] and fail to consider the correlation between

adjacent periods of wind power series, which reduces

the prediction accuracy of wind power to a certain

extent;

2) Each method has different parameters, and varying

prediction results can be obtained if the parameters are

different. Prediction interval coverage probability

(PICP) and prediction interval average width (PIAW)

are usually selected for accuracy evaluation [16, 26],

but the evaluation results of these two indicators have

often been inconsistent (when the effect of PICP is

preferable, PIAW has poorer evaluation results and

vice versa), leading to an inability to obtain the

optimal parameters and prediction results.

Because the copula function can more comprehensively

and accurately describe the correlation relationship among

multiple variables, prediction research conducted based on

this observation has become the focus of many scholars.

Selected scholars have attempted to solve the wind power

prediction problem using the conditional copula function

[27], and although they reported certain achievements, they

did not find the boundary problem of the model parameters,

could not obtain a group of optimal model parameter val-

ues and could not guarantee the prediction accuracy. All of

the above problems have made the copula prediction

method difficult to apply in reality.

To address these problems, this paper perfected the wind

power prediction method based on the conditional copula

function and achieved a combination of this method with

multi-objective optimization algorithms. This method takes

advantage of the copula function to make full use of the

correlation existing in the adjacent wind power sequences

and improve the prediction accuracy. To this end, we use

the non-dominated sorting genetic algorithm-II (NSGA-II)

multi-objective optimization algorithm to seek the optimal

solution set of the parameters for the copula prediction

model, and the optimal parameters and corresponding

prediction results are obtained via evaluation, which has a

strong practical value. To verify the effectiveness of the

method, we take three wind farms in China as research

objects and apply the proposed method to ultra-short term

wind power prediction. After comparing with the common

interval prediction methods, the predicting accuracy and

effect of the proposed method are verified.

2 Conditional copula function

The copula function, also known as the connection

function, is a type of function that connects multiple ran-

dom variable joint distribution functions with their

respective marginal distribution functions [28–31]. In using

the copula function for wind power interval prediction, the

copula function in its general form (Gaussian copula

function, t-copula function and others) always reveals

differences from the actual situation. At the same time, use

of the continuous copula function form in calculation is

relatively difficult because it requires the operation of

obtaining the inverse function in calculation of the confi-

dence interval. Therefore, this paper uses the conditional

copula function in discrete form to make wind power

predictions.
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The construction method of the discrete condition cop-

ula function [32–35] is given as follows. It is assumed that

N independent samples for t ? 1 variables are known, as

shown in (1), where each row represents one sample, and

each column represents the value of the marginal distri-

bution function of one variable under different samples;

X1;X2; . . .;Xt;Xtþ1 is a value in the real number domain;

and F1;F2; . . .;Ft;Ftþ1 are respectively the marginal dis-

tribution functions of variable 1 to variable t ? 1.

½X1;X2; . . .;Xt;Xtþ1� ¼

F1ðX1
1Þ � � � FtðX1

t Þ Ftþ1ðX1
tþ1Þ

F1ðX2
1Þ � � � FtðX2

t Þ Ftþ1ðX2
tþ1Þ

..

. ..
. ..

.

F1ðXN
1 Þ � � � FtðXN

t Þ Ftþ1ðXN
tþ1Þ

2
6664

3
7775

ð1Þ

The value of each element in (1) is between 0 and 1, and

we divide the interval [0, 1] into K equal sub-intervals.

Thus, we have K subintervals for each variable, and the

t ? 1 variables together form the Ktþ1 subspaces.

The conditional copula function refers to the probability

distribution function of the (t ? 1)th variable under the

condition that the former t variable values of a certain

sample F are known, i.e., the probability distribution

function corresponding to Ftþ1 xFtþ1

� �
under the condition

that (2) is known.

F1ðxF1 Þ; F2ðxF2 Þ; . . .; FtðxFt Þ ð2Þ

In the N samples of (1), the samples in the former t

variables that fall in the same subspace as (2) are removed

to form a conditional matrix. Suppose there are N1 samples

in the matrix. The samples for which all of the elements in

the (t ? 1)th column fall in the same subinterval are

classified into the same class, and it is assumed that a J

class is obtained. The numbers of samples included in each

class are recorded respectively as M1; M2; . . .; MJ .

Finally, an identical value F
j
tþ1ðj ¼ 1; 2; . . .; JÞ is

calculated using (3) to represent the (t ? 1)th element in

each class, and the probability of occurrence of each class

is given.

F
j
tþ1 ¼

1

Mj

XMj

i¼1

Ftþ1 xitþ1

� �
p j ¼ Mj=N1 ð3Þ

Therefore, F
j
tþ1; p

j
� �

j¼1; 2; ...; J
is the discrete probability

distribution function of Ftþ1 xFtþ1

� �
based on (2), which is

the discrete conditional copula function.

3 Multi-objective prediction method based
on conditional copula function

The wind power prediction model proposed in this paper

includes two main components. One component is the

conditional copula interval prediction method based on the

discrete form, which uses wind power historical data after

giving a set of prediction model parameters (K, t), to

establish the probability distribution function of the wind

power to be predicted by calculating the marginal distri-

bution function such that the upper and lower bounds of the

prediction interval under the given confidence level are

obtained, and the interval prediction effect is measured by

two evaluation indices containing PICP and PIAW. The

second component is the NSGA-II multi-objective opti-

mization method that uses PICP and PIAW as the objective

functions within the value range of the copula interval

prediction model parameters K and t and finds the non-

inferior solution set for predicting the parameters of K and

t. It is assumed that each evaluation index is equally

important such that each index is endowed with 50%

weights, and a set of optimal prediction model parameters

are obtained by weighting calculation. The copula interval

prediction is performed with the recently obtained param-

eter, and the results are compared with the prediction

results of the currently used interval prediction methods.

To understand the detailed process of this prediction

method better, we give the specific implementation steps of

the prediction method in Fig. 1.

Step 1: Using the historical wind power sequence of the

wind farm, in the process of establishing conditional copula

distribution function in discrete form, we first determine

the value range of K (interval division number) and t

(condition number) that is applicable to the current his-

torical data.

Historical 
data

Calculating 
marginal 

distribution 
function

Establishing the 
conditional Copula 

function

Interval 
prediction 

results

Interval prediction method based on the copula function

Determine the 
range of 

parameter K
and t

PICP PIAW

Non-inferior solution set
The optimal 

parameters of 
copula prediction 

model

Accuracy 
comparison and 

analysis Accuracy evaluation 
indexes

NSGA-II multi-objective 
algorithm

Indexes 
standardization
and weightings

Fig. 1 Process diagram of multi-objective prediction method based

on conditional copula function
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Step 2: We use two indicators, PIAW and PICP, to

evaluate the accuracy of the conditional copula interval

prediction results under different K and t values.

Step 3: Taking PICP and PIAW as objective functions,

we use the NSGA-II multi-objective optimization method

to find the non-inferior solution set of the conditional

copula prediction model parameters within the range of K,

t.

Step 4: We obtain a set of optimal parameters for the

prediction model using the average weight method.

Step 5: We use the optimal group of parameters of K,

t for conditional copula interval prediction and compare the

prediction results with those of relevance vector machine

(RVM), artificial neural network (ANN) and PSO-KELM

(three commonly used interval prediction algorithm

results) to verify the effectiveness of the proposed method.

3.1 Wind power interval prediction

A relatively strong correlation relationship exists

between wind power sequences in short time intervals (1

hour) [29]. Therefore, we can take the continuous wind

power sequences collected from certain wind farm as his-

torical data and use the copula function to describe this

correlation between wind power sequences. We assume

that the continuous wind power sequence of a certain wind

farm is y1; y2; . . .; yn�1; yn½ �, and we need to predict the

interval of wind power ynþ1 at the next moment. In using

the discrete conditional copula function to make wind

power prediction, assuming that the condition number is t,

the t ? 1 variables and n - t samples can be transformed

from the historical data:

y1 � � � yt ytþ1

y2 � � � ytþ1 ytþ2

..

. ..
. ..

.

yn�tþ1 � � � yn�1 yn

2
6664

3
7775 ð4Þ

Each column in the matrix is a wind power sequence at

certain time intervals, which is viewed as

½X1;X2; . . .;Xt;Xtþ1�. Thus, we establish the conditional

copula distribution function of wind power to be predicted.

In other words, we use the marginal distribution function

value F1ðxF1 Þ;F2ðxF2 Þ; . . .;FtðxFt Þ of the wind power

½yn�tþ1; . . .; yn�1; yn� as a known condition and obtain

the probability distribution function of ynþ1.

We assume that the conditional copula function obtained

is F
j
tþ1; p

j
� �

j¼1; 2; ...; J
, where p1 is the largest and pJ is the

smallest. Because all values of the marginal distribution

functions fall into the interval [0, 1], we divide the interval

into K subintervals, which are denoted as S1; S2; . . .; SK in

turn. Thus p j is accumulated from j = 1 until the summa-

tion is greater than or equal to the preset confidence level b.

We assume that when accumulating to j = q,
Pj¼q

j¼1

p j � b, and

additionally, the subinterval corresponding to

F1
tþ1; F

2
tþ1; . . .; F

q
tþ1 is given as follows:

F1
tþ1 2 SL1 ; S

u
1

� �

F2
tþ1 2 SL2 ; S

u
2

� �

..

.

F
q
tþ1 2 SLq ; S

u
q

� i

8>>>>>><
>>>>>>:

ð5Þ

where superscript L and u refer to the lower and upper

bound of the interval, respectively. Under the confidence

level b, the prediction interval of the wind power at the

(t ? 1)th moment is the union of (5), namely:

SL1 ; S
u
1

� �
[ SL2 ; S

u
2

� �
[ � � � SLq ; S

u
q

� i
¼ SL; Su

� �
ð6Þ

Using the inverse operation of the marginal distribution

function, we obtain the prediction interval

F�1
tþ1ðSLÞ�Wtþ1 �F�1

tþ1ðSuÞ of the wind power at the

(t ? 1)th moment, and the wind power interval

prediction at (t ? 1)th moment is realized.

3.2 Interval prediction evaluation index

We adopt PICP and PIAW as the evaluation indices to

validate the prediction accuracy of the proposed algorithm.

PICP indicates the number of actual values of wind power

that fall within the prediction interval. Based on satisfac-

tion of the confidence level, the larger the PICP value, the

larger the number of actual wind power values that will fall

into the prediction interval and the better the prediction

effect will be. PIAW represents the average width between

the upper and lower boundaries of the interval. If the same

confidence level is satisfied, the smaller the value, the

narrower the prediction interval will be, which means that

the prediction interval is closer to the actual value. The

calculation formulas of PICP and PIAW are written as

follows:

1) PICP

PICP ¼ 1

U

XU
u¼1

Au � 100% ð7Þ

where U is the total amount of wind power to be predicted;

u = 1, 2,…, U; and Au is the characteristic function defined

as follows:

Au ¼
1 Vu 2 Vu; Vu

� �

0 Vu 62 Vu; Vu

� �
(

ð8Þ
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where Vu and Vu are respectively the upper and lower

bounds of the prediction interval; Vu is the actual value of

wind power at the moment to be predicted.

If the actual value of wind power to be predicted falls

into the prediction interval, the value of Au is 1. Otherwise,

Au is 0.

2) PIAW

PIAW ¼ 1

U

XU
u¼1

Vu � Vu

� �
ð9Þ

3.3 NSGA-II multi-objective optimization algorithm

The NSGA algorithm is derived from the genetic algo-

rithm (GA) but is different from the traditional GA. NSGA

has a strong advantage in the field of multi-objective

optimization but also contains many defects. Aimed at

addressing the defects of the NSGA method, Deb et al

proposed the NSGA-II method in 2002. This version is

better than the NSGA, and it can improve the opera-

tion speed and system robustness [36].

In this paper, according to [37], two target functions of

PIAW and PICP are used, and NSGA-II is applied for

multi-objective optimization to obtain a non-inferior solu-

tion set of the conditional copula prediction model.

4 Example analysis

4.1 Example data source

To verify the effectiveness of the proposed method in

this paper, we apply the multi-objective prediction method

of the conditional copula function proposed in Section 3 to

three wind farms, which are recorded as wind farms 1–3.

Wind farm 1 is the Huanglongjiecumiao wind power

plant, which is located in Yanan, Shaanxi Province of

China, and the total installed capacity is 49.5 MW. In

establishing the interval prediction model based on the

copula function, we use the wind power data from the

Huanglongjiecumiao wind power plant from June to

November in 2016 as the modelling data, and the time

interval of the data is 1 hour. We take the data from 72

points (three days) in December as the validation data.

Wind farm 2 is the wind farm referred to as Liuhe under

the jurisdiction of the China Huaneng Group Co., Ltd. in

Nanjing, Jiangsu Province. The total installed capacity of

the project is 49.5 MW, and a total of 25 sets of wind

turbines are installed. We use the wind power data from the

Liuhe wind power plant from March to October in 2017 as

the modelling data, and the time interval of the data is 1

hour. We take the data from 72 points (three days) in

November as the validation data and analyse the interval

prediction effectiveness of the proposed method. Wind

farm 3 is the wind farm Baitiancifeng located in Jingbian,

Yulin, Shaanxi Province. The total installed capacity is

49.5 MW. We use the wind power data of the Baitian-

cifeng wind power plant from April to August in 2016 as

the modelling data, and the time interval of the data is 1

hour. We take the data from 72 points (three days) in

September as the validation data and analyse the interval

prediction effectiveness of the proposed method.

4.2 NSGA-II multi-objective optimization

In this section, we use only wind farm 1 as an example

to specifically describe the application process for the

method proposed in this paper. The steps of wind farms

2–3 are the same as those of wind farm 1, and only the final

result is given.

In establishing the discrete conditional copula function,

t and K must be determined. The confidence level b is a

free parameter that can reflect the prediction accuracy, and

it is unified as b = 0.9 in this paper. The values of

parameter K and t are limited by the sample number of the

historical wind power sequence. Under the condition that

K and t are too large because of too many subspaces

composed of wind power sequences, there is no sample,

which is the same as t wind power subspaces in t consec-

utive moments before the point to be predicted in (4). Thus,

the corresponding conditional matrix cannot be formed,

which leads to failure of the conditional copula function

construction. In this example, we take the historical sample

as the condition and take the existence of conditional

matrix of each points in the prediction period as the prin-

ciple. We programme in MATLAB and cyclically take the

value of the model parameters to determine the value range

of K and t. Finally, we obtain the following range: while

t = 1, the range of K is from 2 to 408, while t = 2, the range

of K is from 2 to 11, while t = 3, the range of K is from 2 to

5.

In the value range of model parameters K and t, the two

evaluation indices of PICP and PIAW are taken as the

objective function for calculation using the NSGA-II multi-

objective optimization method to find the Pareto optimal

solution of the conditional copula prediction model

parameters. The obtained Pareto optimal solution set is

shown in Fig. 2.

It can be observed that there are 13 optimal points in the

Pareto optimal solution set. All of the points in the solution

set have relatively better prediction performance. The PICP

values of points 1, 2, and 3 are large, and their PIAW is

also wide. In the remaining points, the PIAW changes are

not much different. Point 4 can be viewed as the sudden

point of the entire Pareto optimal solution set curve, which
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can also be said to be the inflection point. In the figure, we

mark the general Pareto optimal solution with red dots, and

the inflection point is marked with a blue circle.

In the Pareto optimal solution set, the larger the PICP

point, the larger the PIAW will be. The PIAW and PICP

values are contradictory to each other, and thus the solution

sets cannot be compared with each other to seek the better

choice. Therefore, all solution sets are feasible solutions.

To obtain the optimal parameter settings, we first use the

extreme value method to standardize the PIAW and PICP

values of each group of parameters. According to the

definition in Section 3.2, the smaller the PIAW value, the

better the prediction performance will be, and therefore, we

use (10) to standardize the index PIAW. Additionally, the

larger the PICP value, the better the prediction perfor-

mance will be, and we adopt (11) to standardize the index

PICP, where xi is the value of point i to be normalized, yi is

the normalized value of point i.

yPIAWi ¼ xPIAW1 � xPIAWi

xPIAW1 � xPIAW13

0� i� 13 ð10Þ

yPICPi ¼ xPICPi � xPICP13

xPICP1 � xPICP13

0� i� 13 ð11Þ

Equations (10) and (11) are used to standardize the

PIAW and PICP value of the 13 points. We consider that

the two precision indices are equally important, and the

weights of PICP and PIAW can all be considered as 50%.

Finally, we conduct the weight calculation for the two

evaluation indices of all points in the Pareto optimal

solutions set, and the results are shown in Table 1.

From Table 1, we note that after standardization of the

two interval prediction indices of each point, from point 1

to 13, the PIAW value gradually increases, and the PICP

value gradually decreases. In other words, the PICP value

of point 1 is the best, and the PIAW value is the worst.

Otherwise, the PICP value of point 13 is the worst, and the

PIAW value is the best. Additionally, after taking 50% as

the weight of the two indices and summing them, the result

of point 4 is 0.8465, which is the maximum value in the 13

points. This observation shows that the interval prediction

result is optimal in this parameter setting. In Fig. 2, it can

be observed that the point is located at the inflection point

of the approximate curve, which is marked with a blue

circle, and the specific prediction model parameters are set

to K = 51, t = 1.

Similarly, we apply this method to the other two wind

farms. The optimal prediction model parameters for wind

farm 2 are K = 244, t = 1, and the optimal prediction

model parameters for wind farm 3 are K = 200, t = 1.

4.3 Result comparison for different algorithms

To validate the effectiveness of the proposed method,

RVM [23], ANN [24], and PSO-KELM [26] are introduced

to compare the results of interval prediction with those of

the proposed method.

Figures 3, 4 and 5 respectively show the prediction

results of applying the four methods in wind farms 1–3, and

the red line and the green line form 72 little intervals,

which the result of the interval prediction. If the black ‘‘9’’

Fig. 2 Pareto optimal solution set

Table 1 Weight calculation results of the points in Pareto optimal

solutions set

Point PICP PIAW Standa-

rdized

PIAW

Standa-

rdized

PICP

Weight

calculation

P1(t = 3,

K = 4)

0.986 13.442 0 1 0.5000

P2(t = 1,

K = 4)

0.972 13.396 0.004 0.937 0.4705

P3(t = 1,

K = 5)

0.958 10.957 0.233 0.875 0.554

P4(t = 1,

K = 51)

0.944 4.032 0.881 0.812 0.8465

P5(t = 1,

K = 140)

0.917 3.766 0.906 0.688 0.797

P6(t = 1,

K = 124)

0.903 3.545 0.926 0.625 0.7755

P7(t = 1,

K = 230)

0.889 3.239 0.955 0.563 0.759

P8(t = 1,

K = 198)

0.861 3.185 0.960 0.437 0.6985

P9(t = 1,

K = 282)

0.847 3.028 0.975 0.375 0.675

P10(t = 1,

K = 362)

0.819 2.918 0.985 0.250 0.6175

P11(t = 1,

K = 396)

0.806 2.913 0.985 0.188 0.5865

P12(t = 1,

K = 397)

0.792 2.801 0.996 0.125 0.5605

P13(t = 1,

K = 399)

0.764 2.758 1 0 0.5000
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mark is within the red line and the green line, the point

prediction can be considered successful. If the black ‘‘9’’

mark is beyond the red line, then the measured value is

considered beyond the upper limit of the prediction. If the

black ‘‘9’’ mark is lower than the green line, then the

measured value is lower than the lower limit of the

prediction. When the measured value exceeds the upper

limit or lower limit, the point prediction is considered to be

a failure.

It can be observed from Fig. 3a that the measured values

of three points (21, 41, 71) exceed the upper limit of the

prediction, the measured values of one point (23) exceed

Fig. 3 Prediction results of applying four methods in wind farm 1
Fig. 4 Prediction results of applying four methods in wind farm 2
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the lower limit of the prediction, and thus a total of four

points do not meet the prediction requirements. In Fig. 3b,

the measured values of three points (15, 21, 71) exceed the

upper limit of the prediction, and the measured values of

four points (10, 20, 23, 58) exceed the lower limit of the

prediction, and thus a total of seven points do not meet the

prediction requirements. In Fig. 3c, the measured values of

three points (21, 40, 71) exceed the upper limit of the

prediction, and the measured values of three points (10, 20,

58) exceed the lower limit of the prediction, and thus a total

of six points do not meet the prediction requirements. In

Fig. 3d, the measured values of seven points (15, 21, 40,

41, 70, 71, 72) exceed the upper limit of the prediction, the

measured values at the 58th point exceed the lower limit of

the prediction, and thus a total of 8 points do not meet the

prediction requirements. The prediction results obtained

using the method of this paper has the highest number of

points that meet the requirement. In Fig. 3, we note that all

four prediction methods are failures at point 21, which

might be due to a large sudden change of wind power for

this time slot. However, the prediction range of all four

methods at point 22 is too wide, which might be due to the

continuous increase of wind power in the adjacent periods,

thereby lifting the upper bound of the prediction interval.

However, the prediction model reduces the error as soon as

possible according to the actual situation, and it shows an

upward small and protruding rectangle in the predicted

image. However, from Fig. 3, when using the method of

this paper to make predictions on wind farm 1, the fig-

ure shows only a small upward and protruding rectangle,

whereas Fig. 3b and c has more than three, indicating that

the method in this paper fully uses the correlation between

wind power sequences and has a better prediction effect.

In Fig. 4a, only two points (64, 67) in the predicted

segment do not meet the prediction requirements. In

Fig. 4b, only four points (1, 2, 64, 67) in the predicted

segment do not meet the prediction requirements. In

Fig. 4c, only three points (2, 64, 67) in the predicted seg-

ment do not meet the prediction requirements. In Fig. 4d,

only four points (2, 8, 64, 67) in the predicted segment do

not meet the prediction requirements. It can be observed

that the method of this paper is still the most reliable.

However, the overall prediction effect of each method

under wind farm 2 is better than that of wind farm 1, which

might be due to the smooth wind power of wind farm 2

during the prediction period, which only fluctuates between

3 and 10 MW, and the rate of change is not large. How-

ever, at points 43–45, the lower bounds of the interval

predictions given by each method are quite low, and the

predictions are relatively conservative. This result might be

due to the decrease in wind power at points 40–42, such

that the prediction model expects that this downward trend

in wind power will continue to exist, thereby reducing the

predicted lower bound and increasing the success rate. This

process shows a small downward and protruding rectangle

in the predicted image. It can be observed from Fig. 4 that

for prediction in wind farm 2 using the method of this

paper, the number of small rectangles protruding down-

ward is the least, indicating that the prediction effect of

Fig. 5 Prediction results of applying four methods in wind farm 3
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method in this paper is better than that of other three

methods.

In wind farm 3, the accuracy of the method proposed in

this paper is still the highest, and four points (20, 22, 63,

70) in Fig. 5a do not meet the requirements. Five points

(20, 22, 41, 47, 63) in Fig. 5b do not meet the require-

ments. Five points (20, 22, 41, 47, 63) in Fig. 5c do not

meet the requirements. Six points (20, 22, 25, 41, 47, 63) in

Fig. 5d do not meet the requirements. It can be observed

that in addition to the method in this article, the remaining

three methods have points of failed prediction in each day,

especially for each night. We speculate that this result

might be related to local meteorological factors during the

night. At the 41st point, the wind power shows a downward

trend at points 31–40, which results in prediction of failure

for Fig. 5b, c and d. However, the method in this paper can

make full use of the correlation between wind power and

finds the ‘‘trend’’ of such a continuous decline is actually

weakened. The prediction contains a certain margin for the

prediction interval at the next moment, and that makes the

prediction successful.

5 Discussion

After obtaining the prediction results of each method

under three wind farms, for further analysis and discussion,

we use (7) and (9) to separately calculate the prediction

accuracy indicators of each method. The results are shown

in Table 2.

It can be observed from Table 2 that in the three wind

farms, the PICP values obtained by each method are all

greater than 0.85, indicating that the prediction effects of

these methods are relatively excellent. However, the PICP

of the interval prediction method (M1) proposed in this

paper is the largest, and at the same time, the corresponding

PIAW is smallest. This observation illustrates that the

proposed method in this paper is superior to the commonly

used interval prediction methods for which these three

methods are representative.

The comparison shows that the prediction interval

coverage of M3 is better than that of M2 and M4, but its

interval width is too large. The interval average width of

M2 is narrower, but the success rate of interval prediction

is not high. In general, each of these three methods has

advantages and disadvantages, and it is impossible to

choose an optimal method. However, the optimal param-

eters selected in this paper are based on the same impor-

tance of PICP and PIAW, but at times it is necessary to

emphasize security in the scheduling process, and thus the

requirements for PICP are higher in the two evaluation

indicators. Applying the method in this paper endows the

PICP with a higher weight, but because of the need to

consider high security, the prediction process tends to be

conservative, resulting in an increase in the interval width.

In contrast, at times we require a narrower prediction

interval in the scheduling process. In this case, the

requirements for PIAW are higher. The smaller the PIAW,

the easier it is to meet the requirements such that the PIAW

is endowed with a higher weight when applying this

method, but this increases the probability of prediction

failure and decreases PICP. It can be observed that the

selection of the optimal parameters for the prediction

model actually changes with different situations, and the

actual scheduling must be considered.

6 Conclusion

Due to the strong randomness of wind power, making

point predictions accurately is relatively difficult. This

paper improved the wind power prediction method based

on the conditional copula function and proposed a combi-

nation of this method with multi-objective optimization

algorithms, thus supplying reference information for short-

term or real-time dispatch of the power system.

First, we take full advantage of the correlation rela-

tionship between wind power sequences in adjacent time

periods by establishing the discrete condition copula

function of the point to be predicted. Based on the problem

of contradiction between multiple evaluation indicators

when the values of the prediction model parameters

change, we use the NSGA-II multi-objective algorithm to

seek the optimal model parameter within its value range

such that the non-inferior solution set of the conditional

copula prediction model parameters is obtained. Second, to

validate the effectiveness and applicability of the method

proposed in this paper, the method is applied to three wind

farms in China. We compare the results obtained using the

proposed method with those from three more mature

methods. The comparative analysis shows that the method

Table 2 Accuracy comparison of three methods

Method W1 W2 W3

PICP PIAW PICP PIAW PICP PIAW

M1 0.944 4.032 0.972 2.965 0.944 3.198

M2 0.903 4.154 0.944 3.068 0.931 3.342

M3 0.917 4.337 0.958 3.169 0.931 3.400

M4 0.889 4.085 0.944 3.089 0.917 3.455

Note: M1 means the method proposed by this paper; M2 means RVM;

M3 means ANN; M4 means PSO-KELM; W1–W3 mean the wind

farms 1–3 respectively
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proposed in this paper has the smallest PIAW, the largest

PICP, and the best effect. Finally, in the discussion, we

believe that when PICP and PIAW are endowed with their

respective weights, we must combine the actual require-

ments of scheduling. The results obtained using this

method are not exactly the same in different practical

situations.

However, certain shortcomings remain in our work. If

the correlation relationship among wind power sequences

is weak, the prediction results obtained using this method

are usually poor. In the prediction, we only consider the

correlation relationship between the wind power in the

adjacent time periods but ignore the correlation relation-

ship between the wind power sequence and influencing

factors such as meteorology and unit maintenance. There-

fore, in future work, we will further study the copula

function wind power interval prediction based on the

combination of meteorological factors and wind power.
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