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Abstract: The influence of out-of-plane oscillations on friction is a well-known phenomenon that has been 

studied extensively with various experimental methods, e.g., pin-on-disk tribometers. However, existing theoretical 

models have yet achieved only qualitative correspondence with experiment. Here we argue that this may be due 

to the system dynamics (mass and tangential stiffness) of the pin or other system components being neglected. 

This paper builds on the results of a previous study [19] by taking the stiffness and resulting dynamics of the 

system into account. The main governing parameters determining macroscopic friction, including a dimensionless 

oscillation amplitude, a dimensionless sliding velocity and the relation between three characteristic frequencies 

(that of externally excited oscillation and two natural oscillation frequencies associated with the contact stiffness 

and the system stiffness) are identified. In the limiting cases of a very soft system and a very stiff system, our 

results reproduce the results of previous studies. In between these two limiting cases there is also a resonant case, 

which is studied here for the first time. The resonant case is notable in that it lacks a critical sliding velocity, above 

which oscillations no longer reduce friction. Results obtained for the resonant case are qualitatively supported 

by experiments. 
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1  Introduction 

Vibrations can be applied to reduce and control friction, 

which is widely used in many industrial branches, 

such as metal forming, wire drawing and drilling [1, 2]. 

One of the earliest studies of friction reduction due to 

oscillations was carried out by Godfrey in 1967 [3]. He 

conducted experiments, in which a rider slid along  

a steel plate and was vibrated in the direction per-

pendicular to the plane. Afterwards numerous studies 

were carried out, which can be roughly classified by 

whether the static or sliding friction is considered and 

by the direction of the oscillations, see, e.g., Refs. [4−6]. 

The three possible directions of oscillation are: (1) in 

the sliding direction; (2) perpendicular to the sliding 

direction in the contact plane; (3) perpendicular to 

the contact plane (out-of-plane oscillations). Arbitrary 

combinations of these three modes are also possible, 

some of which can produce directed motion even in 

the absence of a directed mean force, thus producing a 

frictional drive. In this regard, active control of friction 

through oscillations is closely related to oscillation- 

based frictional drives [7, 8]. However, in the present 

paper we consider only sliding friction under the 

influence of out-of-plane oscillations. 

Friction under the action of out-of-plane oscillations 

has been studied experimentally in the past in a number 

of works [9−12]. The first theoretical description  
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was proposed in Refs. [13, 14], where the movement 

of a rigid body under constant tangential force and 

oscillating normal force was considered. Unfortunately 

this model achieved only qualitative correspondence 

with experimental results. In Ref. [7], it was shown 

that the macroscopic behavior of a frictional contact 

is strongly influenced by the contact stiffness. Related 

studies of the dependence of friction on tangential 

oscillations [15, 16] and a study of frictional drives [17] 

came to the same conclusion. In a recent experimental 

study [18] the contact stiffness was also confirmed as 

one of the main parameters governing the response of 

a tribological contact to high frequency oscillations. 

Based on these indications of the importance    

of contact stiffness, Popov et al. [19] carried out a 

theoretical study of friction under the action of out- 

of-plane oscillations with explicit account of finite 

contact stiffness. In this paper it was assumed that the 

stiffness of the system is much larger than that of  

the contact, which allowed avoiding consideration  

of system dynamics. In real systems, depending on 

their particular mechanical design, the stiffness of the 

system may be comparable with the contact stiffness, 

thus bringing the whole system dynamics into play. In 

the present paper, we extend the previous study [19] by 

considering the complete dynamics of a system with 

a tribological contact.  

2 Simplified model of the experimental 

set-up 

The model studied in the present paper is motivated 

by experimental studies of active control of friction by 

out-of-plane oscillations in a pin-on-disk tribometer 

(e.g., Refs. [7, 14−16]). The design of the pin is shown 

in Fig. 1(a). Assuming that the vertical stiffness of the 

set-up is much larger than the normal contact stiffness, 

the vertical macroscopic motion of the pin can be 

considered to be displacement controlled. The tangential 

stiffness of the pin assembly is much smaller than its 

vertical stiffness, so that it is no longer guaranteed 

that the tangential stiffness of the pin is larger than 

the tangential contact stiffness. Therefore, the tangential 

stiffness of the pin is explicitly taken into account in 

our model. Assuming that the transversal dynamics 

of the pin is controlled by only one bending normal  

mode of the pin, we arrive at the simplified model  

of the system, which is sketched in Fig. 1(b): a one- 

degree-of-freedom model taking into account the 

normal and tangential contact stiffness, the inertia of 

the pin and its tangential stiffness. Modal analysis  

of the pin could be used for estimation of a more 

accurate modal mass, but we do not do this here, as 

our aim is to present a high-level analysis without 

considering particular geometrical realizations. We 

will show that the frequency of free oscillations of  

the pin, 
0

/
x

k m  , is the most important system 

parameter; when describing a real experiment, it has  

to be adjusted to the ground frequency of the free 

oscillations of the pin. Naturally, our model abstracts 

away many (possibly important) aspects of real frictional 

systems, in particular the differential contact stiffness 

of curved bodies (we model the contact as a single 

spring with constant stiffness). However, in the first 

part of this series [19] we found that the detailed 

contact mechanics had surprisingly little influence on 

the results, relative to a one-spring model. In particular, 

abstracting the exact geometry of the contact does 

not change the relevant dimensionless variables. Due 

to this, and in view of the already large number of 

system parameters, we restrict ourselves to the simple 

model described above.  

The model, as shown in Fig. 1(b), consists of a rigid 

body with mass m that is connected to an external 

actuator, which imposes the body’s z-coordinate. The 

body is pulled by a spring with a tangential stiffness 

x
k  and interacts with the substrate through a “contact 

spring” that has the normal stiffness 
,cz

k  and tangential 

stiffness 
,cx

k . The vertical movement of the mass is 

determined explicitly by the external oscillation:  

,0
cos

z z z
u u u t               (1) 

where 
,0z

u  is a constant initial indentation, 
z

u  is the 

amplitude of normal oscillations, and   is the angular 

frequency of the oscillation. The attached “system 

spring” is pulled tangentially with a constant velocity 

0
v . The motion of the body in the x-direction under 

the influence of the attached springs is described by 

Newton’s Second Law for the tangential displacement 

x
u . The tangential displacement of the immediate 

contact point is denoted with 
,cx

u . For simplicity, we 

assume Coulomb’s law of friction with a constant  
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coefficient of friction 
0

  in the immediate contact 

point between the substrate and the contact spring. 

Although this may be an unrealistic assumption in 

general, the aim of this study is to understand how 

changes in the macroscopic coefficient of friction can 

arise from pure system dynamics even with constant 

microscopic friction. Experimental results might be 

best approximated by a combined theory, including 

system dynamics, contact mechanics and changes of 

the local coefficient of friction, but this is left for later 

studies. 

Note that the amplitude of oscillation can be either 

smaller than the mean indentation (non-jumping),  

in which case the body is always in contact with the 

substrate, or larger (jumping case), where contact with 

the substrate is intermittent. Initially we will focus on 

the permanent contact case. Jumping will be introduced 

later in the paper. 

3 Qualitative analysis 

All previous studies of the influence of normal 

oscillations on friction, including the first part of the 

present work [19], have shown qualitatively the same 

dependence of the macroscopic coefficient of friction 

(COF) on velocity: At zero velocity the friction force 

is at its static value, which is determined solely by the 

minimum value of normal force during one oscillation 

cycle: 





   

    


0 ,0 ,0

0
,0

(1 / ), for   

(non-jumping case)
( 0)

0, for   

(jumping case)

z z z z

z z

u u u u

v
u u

 (2) 

At higher velocities the COF increases until it reaches 

0
  at some critical velocity *

0
v  (“point of insensitivity”), 

and remains constant thereafter. The static COF and 

the critical velocity *

0
v  are the two main reference 

points of the velocity dependence of the COF. While 

the first reference point is universal (Eq. (2)), the 

second one is determined by the dynamics of the 

tribological system.   

We begin our analysis with the case of small 

oscillation amplitudes, 
,0z z

u u  , so that the lower 

point of the indenter remains in contact with the 

substrate at all times. In this case, the normal com-

ponent of the contact force 
N

F  is non-vanishing and is 

determined by the product of the current indentation 

depth (Eq. (1)) with the normal contact stiffness 
,cz

k :  

N ,c ,0
( cos )

z z z
F k u u t             (3) 

At sufficiently large pulling velocities 
0

v , the contact 

point will be sliding all the time (without stick) in 

one direction (except for the resonant case that will be 

described later). Under these conditions, the average 

tangential force is equal to the average normal force 

times 
0

 , and the macroscopically observed COF, 

which we define as the ratio of the mean values    

of tangential and normal forces over one period of 

oscillation, will be constant and equal to 
0

 . When 

the above conditions are satisfied the tangential force 

of the contact spring is in equilibrium with the friction 

force (normal force times 
0

 ), since the contact stiffness 

is not associated with any mass: 

,c ,c 0 ,c ,0
( ) ( cos )

x x x z z z
k u u k u u t           (4) 

The equation of motion of the body m along the 

 

Fig. 1 (a) Photograph and diagram of the pin assembly of a pin-on-disk tribometer used in Refs. [7, 16] and in the experimental part of 
the present study; (b) a simplified model of the pin in contact with the disk, which is studied in the present paper. 
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x-axis is 

   
0 ,c ,c( ) ( )x x x x x xmu k v t u k u u         (5) 

Taking Eq. (4) into account, the equation of motion 

reads 

0 0 ,c 0 ,c ,0
cos

x x x x z z z z
mu k u k v t k u t k u         (6) 

The particular solution of this equation is 

,c 0 ,c

0 0 ,0 2
cosz z z

x z

x x

k k u
u v t u t

k m k


 




  


     (7) 

Differentiating this solution with respect to time gives 

0 ,c

0 2
sinz z

x

x

k u
u v t

m k


 




 


          (8) 

Differentiating the equilibrium condition (Eq. (4)), 

,c ,c 0 ,c
( ) sin

x x x z z
k u u k u t              (9) 

Substituting Eq. (8) into Eq. (9) and resolving the 

resulting equation with respect to 
,cx

u , we obtain the 

following expression for the sliding velocity of the 

immediate contact point (lower point of the contact 

spring)  


  


 

  



2

,c ,c

,c 0 02
,c

sin
( )

z x x

x z

x x

k k k m
u v u t

k m k
   (10) 

Due to our previous assumption of continuous sliding 

this velocity must remain positive at all times. This is 

the case if  

*

0 0
v v                  (11) 

where 


 



 
 



2
,c,c*

0 0 2
,c

x xz

z

x x

k k mk
v u

k k m
      (12) 

This relatively simple equation is one of the central 

results of the present paper and it is instructive to 

discuss it in some detail. First, let us consider limiting 

cases that have already been studied in the literature: 

I. In the case of a very soft system ( 2

x
k m ) with 

very large contact stiffness ( 2

,cx
k m ) we effectively  

have a rigid body under the action of constant 

tangential force. In this case, which was considered in 

Ref. [14] (see esp. Fig. 20 and discussion) the critical 

velocity reduces to 

  


 
 ,c* N

0,soft 0 02

z zu k F
v

mm
        (13) 

II. The limiting case of a very stiff system (
,cx

k   
2

x
k m ) was considered in the first part of the 

present work [19]. In this case Eq. (12) simplifies to 

,c*

0,stiff 0

,c

z

z

x

k
v u

k
               (14) 

There are two other limiting cases which involve 

resonances and have not yet been considered in the 

literature: 

III. If 2

,c
0

x x
k k m   , the critical velocity is very 

small: *

0
0v  . The body is in permanent sliding state 

even at very low velocities and the COF is constant 

and equal to 
0

  at all sliding velocities. 

IV. If 2 0
x

k m  , the critical velocity is infinitely 

large and the system never achieves the state of 

continuous sliding. It will be shown that in this case 

the macroscopic coefficient of friction reaches a plateau 

at large velocities, with a value lower than 
0

 . This 

case is of a special interest and it will be considered 

below in detail and was also studied experimentally. 

Let us now consider the movement of the body in 

the general case, when the contact point slides during 

some part of the oscillation cycle and sticks at other 

times. The movement of the slider is still governed  

by the Eq. (5), however, Eq. (4), which describes the 

tangential force in the contact spring, is only valid 

during the sliding part of the period, while during the 

sticking phase the following is true for the immediate 

contact point: 

,c
0

x
u  , 

,c ,c 0 ,c ,0
( ) ( cos )

x x x z z z
k u u k u u t      (15) 

To study the dynamics of the system in detail, the 

equation of motion (Eq. (5)) was integrated numerically 

with account of Eqs. (4) and (15). The nontrivial 

behavior that can result when both stick and slip 

occur is illustrated in Fig. 2, which presents the time 

dependencies of the normal and tangential force (the  
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Fig. 2 An example of the dynamics of normal and tangential 
contact forces showing the phases of slip, where the tangential 
force (green line) coincides with the normal force multiplied with 

0  (blue line), and the sticking phase, where the tangential force 
is smaller than the normal force multiplied with 0 . 

former multiplied with 
0

 ). During the sliding phase 

(e.g., before 
1

t  and between 
2

t  and 
3

t ), these two 

quantities are equal, while during the sticking phase 

the tangential force (green line) is less than the normal 

force times 
0

  (blue line). The beginning of stick (
1

t ) 

is determined by the condition that the velocity of  

the immediate contact point (lower end of the contact 

spring) becomes zero, while the end of the sticking 

phase (
2

t ) is determined by the condition that the 

tangential force becomes equal to the normal force 

times 
0

 . 

4 Dimensionless formulation of the problem 

Introducing the dimensionless variables  

0

*

0

v
v

v
                   (16) 

t                     (17) 

*

0

x
u

v

                   (18) 

c ,c *

0

x
u

v

                  (19) 

where *

0
v  is defined by Eq. (12), with two additional 

dimensionless parameters 

2

x
k

m



 ,  ,c

2

x x
k k

m





            (20) 

We can rewrite the Eqs. (4), (5) and (15) in the following 

form: 

  


  
     

,0

c

1
( ) cos

1

z

z

u

u
         (21) 

             c( ) ( )( )v          (22) 

  c 0 ,  
  


  
     

,0

c

1
cos

1

z

z

u

u
       (23) 

where d /d    , 2 2d /d    . 

One can see that the behavior of the above system 

is unambiguously determined by the following set of 

variables:  

v , 
,0

/
z z

u u ,  , and               (24) 

After solving the Eqs. (21)−(23), one can go back to 

the initial dimensional variables and calculate the 

average normal force 
N

F   and the average tangential 

force 
0

( )
x x x

F k v t u      . The macroscopic coefficient 

of friction is then defined as  

macro

N

x
F

F


 

 

              (25) 

It is easy to see that with the given dimensionless 

variables (24) the macroscopic coefficient of friction 

will be proportional to 
0

 . Thus, it is more convenient 

to define the reduced coefficient of friction, 
macro 0

/  , 

which is a function solely of the variables (24). In the 

following, we will explore the dependence of the 

reduced COF on the dimensionless velocity (16) on 

the parameter plane ( , )  .  

5 Numerical results and analysis 

We begin with a general classification of the numerical 

results (Fig. 3). According to the definition (20),   is 

always larger than  , therefore we only consider  

the upper half of the parameter space above the line 

  . In the figure, it is easy to identify the previously 

described special cases: the limiting case of a very 

soft system with a stiff contact (case I, according to 

the above classification) corresponds to small values 

of 1   and large values of 1  , and is thus to 

be found in the upper left corner of the diagrams. 

The limiting case of very stiff system with low contact 

stiffness (case II), corresponds to    and is found 

along the diagonal of the diagram. The resonant 
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case III corresponds to the line 1   and the resonant 

case IV to 1  .  

Since case II occupies the diagonal of the diagram, 

there are infinitely many possible transitions from II 

to I. We will consider two such transitions: between  

A and B in Fig. 3, which passes over the resonant case 

III and from C to B, which passes over the resonant 

case IV.  

5.1 Limiting cases of soft (case I) and stiff (case II)  

system and transition over resonant case III 

Let us consider the transition from the stiff to the soft 

system over the resonant case III in more detail. We 

start with the separate consideration of the limiting 

cases of the very stiff and the very soft system. The 

diagram in Fig. 4(a) shows results of numerical simula-

tion for the parameter set ( , ) (0.01,0.02)   , which 

corresponds to the limiting case I according to the 

classification of Section 3. This case was considered 

in detail in the publication [19]. In Fig. 4, results of 

numerical simulations are compared with the semi- 

empirical equation 

2 4macro

0 ,0

3 1
1 ( 1) ( 1)

4 4
z

z

u
v v

u




  
     

 
     (26) 

derived in Ref. [19] with v  given by Eq. (16) and *
0v  

by Eq. (14). The numerical data practically ideally 

coincide with the result (Eq. (26)).  

The right-hand-side diagram Fig. 4(b) presents a 

comparison for the opposite case of very soft system. 

Again, numerical data are compared with the analytical 

expression  




     
               

1.2macro N N

0 N,0 N,0

4π 4π
1 1

9 9

F F
v v

F F
   

(27) 

obtained in Ref. [14], with *
0v  given by Eq. (13). In 

this case too we see a very good agreement. However, 

numerical data have a noticeable fine structure which 

the limiting-case curves do not have (a sort of small- 

amplitude oscillations).  

With these two limiting cases, we establish the 

connection to previous studies and at the same time 

pose the more general problem of investigating the 

dependencies of the coefficient of friction on velocity 

in between these two poles.  

As the character of the transformation of the law of 

friction is very similar for various oscillation amplitudes, 

in the following we illustrate this transformation only 

 

Fig. 3 Typical dependencies of macro 0/   on v  for the oscillation amplitude ,0/ 0.5 z zu u  (a) and for the maximal non-jumping 
oscillation amplitude ,0/ 1.0 z zu u (b) arranged in a matrix of the dimensionless parameters   and  . The individual curves start at 
the static COF value at 0v , which only depends on the oscillation amplitude and is equal to 0 / 2 in (a) and zero in the diagrams in 
(b). With increasing velocity, the reduced COF monotonically increases and reaches the value “1” at the velocity 1v . In between, 
however, the velocity-dependence of the COF is determined by the particular system dynamics. 
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for the case of the critical amplitude 
,0

/ 1
z z

u u  . The 

transition from the lower left corner of the diagram 

in Fig. 3 to the upper left corner means that the value 

of the parameter   remains small, while parameter 

  is changing from very small to very large values. 

The corresponding transformation of the dependencies 

of the reduced coefficient of friction on the dimensionless 

velocity is shown in Fig. 5(a) for the values of   in 

the lower left quarter of the parameter space and in 

Fig. 5(b) for the values of   in the upper left quarter 

of the diagram. In the lower quarter, the changes   

of the form are relatively slow until parameter   

becomes very close to the value of “1”. In the vicinity 

of this “resonant value” the upper point of the curve 

starts to slide to the left forming a plateau (as is clearly  

seen in Fig. 5(a) for 0.91  ). In the exact resonant 

case, the whole “dependence” consists only of this 

single plateau, that means that the coefficient of friction 

is constant and equal to 
0

 . Much more dramatic 

changes occur after passing the resonant value 1  . 

The resonant plateau then sharply decreases and a 

second plateau appears at the same time. This process 

repeats many times producing an oscillating curve 

whose “upper envelope” tends toward the limiting 

solution for the soft system, as already shown in 

Fig. 4(b). 

5.2 Resonant case IV 

We now turn our attention to the resonant case IV, 

where the frequency of oscillation is equal to the natural 

 

Fig. 4 The dependence of macro 0/   on v  for ( , ) (0.01,0.02)    and ( , ) (0.01,400.01)   for the oscillation amplitudes

,0/ 0.2,  0.4,  0.6,  0.8,  1.0 z zu u  (from top to bottom). The crosses and black lines represent results of numerical simulation and the 
red lines the analytical results (26) and (27). 

Fig. 5 The dependence of macro 0/  on v for ,0/ 1z zu u  , 0.01   and a series of  : (a) lower left quarter of the diagram in Fig. 3 (note 
that the curves for   = 0.02 and 0.11 practically coincide and cannot be resolved in the figure), (b) upper left quarter of the diagram. 
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frequency of the slider 
x

k m   and the system’s 

behavior is qualitatively different from previously 

considered cases. For convenience we consider an 

equivalent system, where the right end of the system 

spring 
x

k  in Fig. 1 is fixed and the substrate is instead 

moving with velocity 
0

v . Note also that the velocity 

dependence of the COF cannot be displayed as a 

function of v  in the resonant case, because *
0v  tends 

to infinity and v  becomes zero. We therefore return to 

the ordinary dimensional variables in this section. Since 

we are here concerned with very large values of  , 

we can consider the contact stiffness to be infinitely 

large for the purposes of this analysis. We chose the 

direction of the x-axis as the direction of movement 

of the substrate. The equation of motion then reads 

0 N 0
sign( )

x
mx k x F v x            (27) 

In our model the normal force oscillates according to 

N N,0
cosF F F t               (28) 

Thus, the complete equation of motion is 

0 N,0 0
( cos )sign( )

x
mx k x F F t v x           (29) 

For an approximate analysis, let us assume that the 

body begins with a small-amplitude oscillation  

cosx v t                (30) 

Then the amplitude will be increasing over time 

until v  becomes larger than 
0

v . Indeed, multiplying 

Eq. (29) with Eq. (30) and noting that the left-hand side 

of the resulting equation is the time derivative of the 

energy of the system, we arrive at the energy equation 

22

0 N,0

0

d
( cos ) cos

d 2 2

sign( cos )

x
k xmx

F F t v t
t

v v t

  



 
        

 
 


  (31) 

If 
0

v v  , then the average value of the right-hand 

side is positive, and the energy of the system is 

monotonously increasing from one period to the next. 

However, if 
0

v v   then the amplitude of oscillation 

stabilizes at the value for which the average change 

in energy during one period vanishes  

N,0 0
( cos ) cos sign( cos ) 0F F t v t v v t               

(32) 

where    means averaging over one period of 

oscillation. During one oscillation period, there is a 

time interval 
1 2
     where 

0
cos 0v v    :  

*

1,2 0
arccos( / )v v               (33) 

Assuming that the oscillation amplitude v  exceeds 

the mean sliding velocity 
0

v  only slightly, *  can be 

approximated by 

*

0
2(1 / )v v                 (34) 

In this approximation, the condition (32) can be 

written, after some simple transformations, as 
N,0

4(F   

0
) 2(1 / ) π 0F v v F      . For the ratio of sliding 

velocity and oscillation velocity amplitude we finally 

find 

 

2

0

N,0

1 π
1

2 4

v F

v F F

   
    

          (35) 

Let us now calculate the macroscopic coefficient of 

friction. It is given by the equation 

*

N,0 0

0

N,0

0

0 N,0

( cos )sign( )

4 1 cos d 2π
2π

F F v x

F

F

F




 


 

     


  
          





     (36) 

which, assuming sufficiently small *  and considering 

Eqs. (34) and (35), leads to the equation 

macro

0 N,0

1
2

F

F





                (37) 

Comparing this with numerical results (Fig. 6) shows 

that the obtained approximation describes the plateau 

value of the COF in the resonant case very well. 

6 Large oscillation amplitudes (“jumping”) 

If the amplitude of normal oscillation 
z

u  exceeds the 

average indentation depth 
,0z

u , the body starts to 

“jump”: For part of the oscillation period, it will be in 

contact with the substrate and out of contact the  

rest of the time. In previous studies this case has not 

usually been studied in detail. In the first part of this  
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Fig. 6 The dependence of macro 0/   on the dimensionless 
velocity 0 0 N,0/ ( ) v m F for the resonant case. The curves start at 
zero velocity at the static value 0 N N,0/ 1 /    F F  and tend to 
the limiting value 0 N N,0/ 1 / (2 )    F F  given by Eq. (37) at 
large velocities. The black curves correspond to the non-jumping 
case N N,0/ 1F F ≤ , and the gray curves to jumping conditions 
( N N,0/ 1 F F ). 

publication [19] the jumping case was also considered 

(in the context of a stiff system) and it was found  

that the general character of the dependence of the 

coefficient of friction on dimensionless sliding velocity 

is very similar between the jumping and non-jumping 

cases: In both cases there is a critical velocity above 

which the COF no longer depends on velocity. Also, 

the shape of the velocity-dependences changes little 

after exceeding the critical oscillation amplitude 

(
,0z z

u u  ). In analogy to Fig. 3 we present the 

different dependences for the jumping case in Fig. 7. 

Comparison with the corresponding graph at the critical 

amplitude 
,0z z

u u   presented in Fig. 3(b) shows 

that the general character of the dependences remains 

roughly the same. In particular, in the resonant case IV 

considered above (corresponding to 1  ) there is still 

a plateau. However, the level of the plateau decreases 

with increasing oscillation amplitude. 

7 Comparison with experiment in the 

resonant case 

Of the various cases considered in the above discussion, 

several were studied experimentally in the past. The 

case I of a stiff system (or high-frequency oscillation) 

was studied experimentally, e.g., in Ref. [16]. On the  

 
Fig. 7 Typical dependencies of the reduced coefficient of friction 

macro 0/   on the dimensionless velocity v  for the relative 
oscillation amplitude ,0/ 1.5 z zu u (jumping case). 

other hand, we are not aware of previous experiments 

for the resonant case IV. We therefore conducted 

experiments using a pin-on-disc tribometer (Fig. 8(a)). 

The natural frequency of the pin was determined by 

impacting the pin and measuring its damped oscillation 

with a laser vibrometer (Fig. 8(b)).  

As the determined natural frequency was around 

800 Hz, the usual method of exciting oscillations with 

built-in piezo-elements could not be used, and the  

tribometer was extended with an electromagnetic 

shaker as shown in Fig. 8(a). The frequency of the 

shaker was tuned to the natural frequency of the pin, 

thus creating the conditions of the resonant case IV. 

The results are presented in Fig. 9. In contrast with 

non-resonant cases, where the COF increases mono-

tonically with increasing velocity, in the resonant case 

it was approximately constant (within the relatively 

large stochastic error). 

8 Summary 

We presented a general theoretical analysis of the 

influence of out-of-plane oscillations on the macros-

copically observed coefficient of friction. Unlike 

previous works, we explicitly took into account both 

the contact stiffness and the stiffness of the measuring 

system.  
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Fig. 8 (a) A photograph of the experimental set-up: a pin-on-disc 
tribometer is equiped with an electromagnetic shaker producing 
out-of-plane oscillations at the resonant frequancy of the pin.   
(b) The resonant frequency was determined by impacting the pin 
in the tangential direction and determining the Fourier spectrum 
of the response. The measured natural frequency of the pin was 
about 800 Hz. 

 
Fig. 9 Dependence of the coefficient of friction on velocity  
for the resonant case. The oscillation amplitudes were: (1) 1.3 μm; 
(2) 5.4 μm; (3) 8.2 μm; (4) 60 μm. 

The main governing parameters of the resulting 

system appear to be the ratios of two natural fre-

quencies of the system (one related to the contact 

stiffness of the system and the other to combined 

stiffness of the system and contact) to the frequency of 

the normal oscillation. As observed in previous works, 

the velocity-dependence of the COF was found to 

have two main reference points: 

(1) The value at vanishing sliding velocity (static 

coefficient of friction), which naturally does not depend 

on the dynamic properties and is solely determined by 

the smallest normal force during the oscillation cycle. 

(2) The characteristic velocity above which the COF 

no longer depends on the sliding velocity and is equal 

to its microscopic value 
0

 . 

The only exceptions from this rule are the two 

resonant cases: One where the COF is constant and 

equal to 
0

  at all velocities (III) and a second case 

where the oscillation frequency is equal to the natural 

frequency of the pin. In this latter case the COF tends 

to a plateau value below 
0

  and does not have a 

maximum velocity above which the reduction of the 

COF disappears. To the best of our knowledge, this 

resonance case was not studied yet and is described 

here for the first time. 

Figure 10 summarizes schematically the main 

findings of the present paper. Contrary to the previous 

figures, we use the non-normalized coefficient of 

friction and the non-normalized sliding velocity 
0

v ,  

 

Fig. 10 Schemetic representation of the law of frition (dependence 
of the friction coefficient on the macroscopic sliding velocity) for 
different relations between the contact and system stiffness as 
well as eigenfrequencies and the oscillation frequency.  
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as this better highlights the main tendencies and is 

easier to compare with experiment. 

All dependencies of the macroscopically observed 

coefficient of friction start at the same static value 

0 N N,0
(1 / )F F   , which is determined by the smallest 

normal force during the oscillating cycle. The further 

shape of the law of friction depends strongly on the 

dynamical properties of the system.  

The case of the very soft system (and stiff contact), 

which was studied theoretically in Refs. [7] and [14], 

is shown in Fig. 10 with a blue line. In this case, the 

coefficient of friction first increases very rapidly from 

the static value, reaches the macroscopic value 
0

  at 

the critical velocity 
0 N

/F m   and does not further 

change with increasing velocity. The critical velocity, 

in this case, depends solely on the inertial properties 

of the system, but not on its stiffness. However, in 

this approximation the theoretical predictions showed 

poor fit with experimental data [7]. According to Ref. [7] 

a much better fit to experimental data is achieved if 

the contact stiffness is taken into account.  

The case of finite contact stiffness and very rigid 

measuring system was considered in detail in the first 

part of this series [19] and is represented in Fig. 10 

with a black curve. The curve starts at the same static 

value 
0 N N,0
(1 / )F F    of the COF and increases with 

increasing velocity, however not as rapidly as in the 

case of the soft system. After reaching the value 
0

  

at the critical velocity 
0 ,c ,c

/
z z x

u k k  , it remains 

constant. In this case the critical velocity does not 

depend on inertial properties of the system. However, 

the contact stiffness also does not enter explicitly into 

the critical velocity; only the ratio of the normal and 

tangential stiffness (the Mindlin ratio) appears in the 

equation. This ratio only depends on the Poisson ratio 

of the contacting partners and is equal to 1.25 for   

the typical case of 1 / 3  . As shown in this paper, 

this case is also applicable at very high oscillation 

frequencies independently of contact and system 

stiffness. 

The law of friction in the transition region between 

soft and stiff system is schematically represented by 

the green curve in Fig. 10. In the transition region  

the dependencies of the coefficient of friction on the 

sliding velocities can have a complicated shape and 

are sensitive to the parameters of the system and the 

frequency of oscillations (see Figs. 5 and 6). Regardless 

of this complexity, all curves start at the same static 

friction value 
0 N N,0
(1 / )F F    and reach 

0
  at the 

critical velocity given by Eq. (12). Depending on 

parameters, this velocity can range from zero to 

infinity.  

When approaching the resonant case IV where the 

frequency of the external oscillation is equal to the 

natural frequency of the system, the critical velocity 

tends to infinity and the COF reaches a plateau value 

less than 
0

 . For the exactly resonant case, the COF 

does not exceed the value 
0 N N,0
(1 / (2 ))F F   , which 

is larger than the static value 
0 N N,0
(1 / )F F   , but 

smaller than 
0

  even at very high sliding velocities. 

In conclusion, we would like to stress once again 

that the entire analysis of this paper is based on the 

assumption that Coulomb’s law of friction with a 

constant coefficient of friction is valid locally, in the 

immediate contact point. We have shown that the 

macroscopic behavior can be very non-trivial despite 

the simplicity of the underlying local law of friction. 

However, a more general analysis taking into account 

system dynamics, contact stiffness and changes of 

local friction may eventually achieve the best fit with 

experimental data. Nonetheless, we believe that 

changes in the local COF will not impact the overall 

classification of the discussed dynamic cases. One of 

the most robust predictions of the present analysis is  

the existence of the characteristic velocity above which 

the coefficient of friction does not depend any more 

on the presence of oscillations. The existence of such 

velocity was already confirmed for a more general 

case of a contact with a viscoelastic material [20]. 
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