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Abstract Adverse weather has a considerable impact on

the behavior of drivers, which puts vehicles and drivers in

hazardous situations that can easily cause traffic accidents.

This research examines how drivers’ perceived risk chan-

ges during car following under different adverse weather

conditions by using driving simulation experiment. An

expressway road scenario was built in a driving simulator.

Eleven types of weather conditions, including clear sky,

four levels of fog, four levels of rain and two levels of

snow, were designed. Furthermore, to simulate the car-

following behavior, three car-following situations were

designed according to the motion of the lead car. Seven

car-following indicators were extracted based on risk

homeostasis theory. Then, the entropy weight method was

used to integrate the selected indicators into an index to

represent the drivers’ perceived risk. Multiple linear

regression was applied to measure the influence of adverse

weather conditions on perceived risk, and the coefficients

were considered as indicators. The results demonstrate that

both the weather conditions and road type have significant

effects on car-following behavior. Drivers’ perceived risk

tends to increase with the worsening weather conditions.

Under conditions of extremely poor visibility, such as

heavy dense fog, the measured drivers’ perceived risk is

low due to the difficulties in vehicle operation and limited

visibility.

Keywords Adverse weather � Driving simulation �
Perceived risk � Entropy weight method � Multiple linear

regression

1 Introduction

Driving performance changes when there is a variation in

the external environment. One of considerable factors that

affect driving performance is the weather condition, such

as fog, rain and snow. These weather conditions are asso-

ciated with visibility as well as the friction of the road

surface and further influence driving safety.

The parameters related to vehicle motion, such as

acceleration and headway time, can be used to measure

how drivers respond to the various driving conditions.

Many previous studies have analyzed driver behavior under

the influence of weather. Rahman and Lownes [1] studied

the impact of three weather conditions, no rain, light rain

and moderate rain, on car-following behavior by using the

time gap, following distance and vehicle speed as indica-

tors. The analysis indicated that rainy conditions caused a

greater time gap and spread in speed distributions than dry
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conditions did, and no statistically significant difference

was found in following distance. Billot et al. [2] analyzed

the effects of three types of weather conditions on driving

behavior. The results suggested that the percentage of

headways less than 2 s dropped by 18% and the percentage

of spacings less than 50 m decreased 20% on rainy days.

Saberi and Bertini [3] considered the effects of four levels

of rain intensity, very light rain, light rain, moderate rain

and heavy rain, on the maximum speed. The results indi-

cated a decrease in speed with increasing rain intensity.

However, in their study, the samples in heavy rain were not

sufficient to draw meaningful conclusions. The above-

mentioned studies are based on field-collected data with the

common problem that extreme weather conditions are

rarely considered due to the uncontrollable nature of

weather. Furthermore, weather also influences the traffic

condition, such as traffic volume, which also changes

driving behavior. These two problems complicate the

integrated analysis of driving behaviors under different

adverse weathers.

Driving simulation provides another method of analyz-

ing the influence of weather on driving behavior, as both

weather conditions and traffic environment can be well

controlled. Yan et al. [4] designed three levels of fog, no

fog, light fog and heavy fog, in a driving simulator and

found that drivers would reduce their driving speeds and

acceleration to lower driving risk. Konstantopoulos et al.

[5] designed rainy weather conditions in a driving simu-

lator and found that rainy weather had a significant effect

on the eye movement of drivers. Broughton et al. [6] used a

driving simulator to analyze the influence of visibility on

car-following behavior. The experiments indicated that

drivers were separated into two groups in foggy weather:

staying within and lagging beyond the visible range of the

lead car. Yamaguchi and Sakakima [7] used a driving

simulator to analyze the effect of a snow-covered road on

driving behavior. These studies have demonstrated the

effectiveness of driving simulators in simulating different

weather conditions and supporting driving behavior

analysis.

Due to the considerable impacts of weather on driving

behavior, the occurrence of adverse weather always puts

vehicles and drivers in hazardous situations and increases

the risk of traffic accidents. Although many researchers

have found driving behavior changes under adverse weather

conditions, how drivers perceive and react to environment

changes, i.e., the risk perception, remains unclear.

Risk perception is a concept that describes how a driver

recognizes the hazard level of the driving environment and

is used to explain why and how drivers adjust their

behavior when facing inclement weather. Risk perception

is a subjective concept and is typically measured by

questionnaires. Rhodes and Kelly [8] analyzed the

influence of age and gender on risky driving by a phone

survey. DeJoy [9] used self-reported data to measure the

gender difference in traffic accident risk perception.

However, different levels of risk perception will result in

different driving behaviors and vehicle motions, which can

in turn be used to measure the risk perception level of the

drivers. In Bella’s research [10], the effects of roadside

configurations on risk perception were analyzed with

vehicle speed and lateral position as indicators. Hjelkrem

and Ryeng [11] analyzed the perceived risk of drivers

under different levels of rain and snow based on field data.

Two earlier researchers used a risk compensation hypoth-

esis [12] and risk homeostasis theory [13], respectively.

The two theories are similar in that drivers dynamically

adjust their driving operations according to the continuous

comparison between the perceived risk level and target

level of risk (see Fig. 1). The target risk level is the level

that individuals are willing to take according to the real-

time driving environment, such as the road surface friction

or road alignment. Individuals generally believe that they

will not be trapped in an accident if the risk level that they

perceive is lower than or equal to the target level. In

contrast, if drivers perceive a risk level higher than the

target level, actions will be taken to decrease the risk level.

For example, drivers will decrease their speeds in a car-

following situation to avoid a rear-end collision when the

lead car is decelerating.

According to the risk homeostasis theory, we propose to

measure the risk perception level of drivers under different

weather conditions by utilizing vehicle motion parameters.

Although similar research has been conducted by Hjelkrem

and Ryeng [11], the previous research has a limitation in

field data; namely, few observations were made under

moderate/heavy rain/snow.

This paper is structured as follows: Sect. 2 introduces

the methodology of this paper, including the apparatus,

experiment design and indicator selection. The results are

presented in Sect. 3 and then discussed in Sect. 4. Finally,

conclusions are shown in Sect. 5.

2 Methodology

2.1 Apparatus

This research used a fixed-base driving simulator located in

the Key Laboratory of Traffic Engineering at Beijing

University of Technology. The simulator includes a mod-

ified car (replacing the original vehicle accessories with

computers or dynamic sensors), control computers and

video and audio devices. Driving circumstances are pro-

jected onto four large screens (three ahead of and one

behind the simulator car) and are displayed on two small
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screens on both sides of the car as side mirrors. This

simulator can record driver behavior responses (e.g., gas

pedal, brake pedal, steering wheel angle, and direction

indicator state) and vehicle operation data (e.g., speed,

acceleration, distance to lead/rear car, X/Y coordinates, and

lateral shift) at 1–50 Hz.

Previous research has verified the validity of this sim-

ulator in studying driving behavior [14, 15]. A total of 250

drivers in the past few years participated in driving simu-

lation experiments, and this simulator was evaluated

through questionnaires. The average score about how the

driving simulator reflects reality reaches 8 (1 for not real at

all and 10 for very real).

2.2 Scenario design

The design of the scenario is based on Beijing East 2nd Ring

Road from Zuoanmen Bridge to Xizhimen Bridge, which is

approximately 10 km long, as shown in Fig. 2. The

simulated road has three lanes in each direction, with a width

of 4 m per lane. There are seven interchange bridges (labeled

as �–þ in Fig. 2) in the selected range. According to the

design parameters obtained from the road management

department, 6 of the 7 interchanges (in terms of expressways)

have similar structures and road slope parameters. In the

simulation scenario, the same parameters (3 m height and

2 9 230 m length, with the slope of 1.3%) are used to model

the 6 interchanges (bridges 1, 2, 3, 4, 6, and 7 in Fig. 2). The

other interchange is different because it contains both a curve

and a horizontal slope (bridge 5 in Fig. 2). The simulated

road can be separated into two slopes at the interchange

regions: downslope and upslope. The roads between the two

interchange bridges are regarded as a basic segment. The

road on bridge 5 is not considered because of its complex

alignment. Thus, three road types are included in this sce-

nario: basic segment, upslope and downslope. The lengths of

the basic segment range from 700 to 1800 m, and the slope

length is 230 m for both upslope and downslope.

Fig. 1 Risk homeostasis theory

Fig. 2 Overall simulation scenario
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2.3 Weather design

In this research, 11 weather conditions were designed by

configuring three parameters in driving simulation soft-

ware: SetRain, SetSnow, and SetFog. By changing the

values of SetRain and SetSnow, the projected screens dis-

play the visual effects with different levels of rain or snow

intensity. The SetFog (ranging from 0 to 10,000 m) is used

to control the visibility distance.

SetRain and SetSnow are in percentage rather than in the

precipitation unit (mm/12 h). The values 0 and 1 (100%)

present two extreme cases: 0 stands for no rain/snow, and 1

for the heaviest rain/snow. Additionally, the road friction

coefficient (in %) that is a friction reduction coefficient

comparative to the one in sunny days cannot be modified

because it is set automatically by the driving simulation

software according to the value of SetRain or SetSnow. The

friction parameter has four levels (100%, 75%, 60%, or

45%) which correspond to the ranges of SetRain (0%–24%,

25%–50%, 21%–74%, and 75%–100%, respectively) and

has two levels (45% or 20%) which correspond to the ranges

of SetSnow (0%–50% and 51%–100%, respectively). Eleven

weather conditions (clear sky and ten types of adverse

weather conditions) were configured in the driving simula-

tor, and their parameters are shown in Table 1. Four/two

levels of rain/snow conditions were designed due to the road

friction partitions that are preset by the driving simulation

software. The four levels of fog come from the provisions of

the national standard [16]. The default setting in driving

simulator is clear sky and its visibility distance is set as

10,000 m; i.e., the fog has no effect on drivers.

A static weather matching experiment was conducted

with 30 student participants to establish the relationship

between the driving simulation weather environment and

actual weather grade used in the weather grading in China

[16–18]. Students chose the most similar actual weather

grade (the definitions of the grades of actual weather has

been informed to these students) for every simulated

weather condition after observing 11 weather scenarios on

screens in a random order. The matching results are shown

in Table 1. The visual effects of certain weather conditions

are shown in Fig. 3.

2.4 Car-following design

Referring to the actual car-following situation, three sim-

plified but typical car-following situations were designed

according to the operating states of the lead car: cruising,

accelerating and decelerating. In a simulation scenario, the

lead car is automatically controlled by the driving simu-

lation software. The lead car typically cruises at 40 km/h,

and participants must follow the lead car. When the fol-

lowing vehicle passes certain locations, the speed trajec-

tories of the lead car under these three conditions are

shown in Fig. 4.

The parameters were determined by repetitive adjust-

ments and tests and were thus considered to allow drivers to

have nearly real car-following experiences. In the following

analysis, the data obtained during a 5 s period are used.

The three car-following situations are uniformly and

randomly allocated on different road types (basic segment,

upslope and downslope). When approaching the designated

locations, the lead car will perform the designated motions.

2.5 Experimental procedure

Thirty-one paid participants (24 males and 7 females, age

30 ± 7.9 years) were recruited for this research. All the

participants are employees of a driving service company

with professional driving skills (driving age of

Table 1 Configurations of the 11 weather conditions

ID Configuration of three functions Matched weather condition (actual weather grade) Abbreviation

SetRain (%) SetSnow (%) SetFog (m) Friction (%)

1 – – 10,000 100 Clear sky CS

2 – – 1500 100 Light fog (1000 m\ S B 100,000 m) LF

3 – – 800 100 Fog (500 m\ S B 1000 m) F

4 – – 300 100 Dense fog (200 m\ S B 500 m) DF

5 – – 50 100 Heavy dense fog (50 m\ S B 200 m) HDF

6 20 – 2000 100 Light rain (0–9.9) mm/24 h LR

7 45 – 800 75 Rain (10.0–24.9) mm/24 h R

8 70 – 550 60 Heavy rain (25.0–49.9) mm/24 h HR

9 95 – 300 45 Extremely heavy rain (100.0–249.0) mm/24 h EHR

10 – 45 500 45 Snow (2.5–4.9) mm/24 h S

11 – 95 100 20 Extremely heavy snow (10–19.9) mm/24 h EHS

S denotes visibility distance
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15.8 ± 6.9 years) and driving experiences with multiple

types of vehicles.

Once a driver arrives at the driving simulation labora-

tory, a pre-driving tutorial that lasts for approximately

10 min must be performed to help the driver adapt to the

experiment equipment. Then, the participant was asked to

complete a questionnaire about basic information, includ-

ing age, age of driving, time to fall asleep, time to wake up,

and whether medication or alcohol is taken. If a driver slept

less than 6 h or took medicine or alcohol during the past

12 h, his/her experiment would be cancelled and adjusted

to a later time.

For each driver, 11 different scenarios are designed with

11 different weather conditions. Coupled with road type

and car-following situation, an 11 9 3 9 3 (weather con-

dition 9 road type 9 car-following situation) designed

experiment is performed. During the driving experiments,

participants were asked to follow the lead car. The average

driving time for each scenario is approximately 7 min. The

overall experiment time for each driver is approximately

90 min, including several rest periods between two sce-

narios. Driving behavior (e.g., gas pedal, brake pedal, and

steering wheel) and vehicle operation data (e.g., speed,

Fig. 3 Visual effects of the simulated weather

Fig. 4 Motion of the lead car
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acceleration and distance to the lead car) were recorded at

20 Hz concurrently during the driving simulation.

2.6 Indicator selection

This paper focuses on measuring the drivers’ perceived risk

level under different weather conditions. As introduced

earlier, several vehicle operation parameters are chosen

and then integrated into one index to represent the per-

ceived risk of the drivers. Then, multiple linear regression

is conducted, and the coefficients are used to measure the

influence of weather conditions and road type on the dri-

vers’ perceived risk.

As described in the introduction, several vehicle motion

parameters are selected as indicators, including headway

distance and acceleration. A traditional indicator, time-to-

collision (TTC), is not used in this paper because the lead

car has a stable speed, which makes the distance between

the lead car and the following car have a similar function as

TTC. In addition, in the case of the road surface with

reduced friction, the drivers focus more on the vehicle

speed control because both sharp acceleration and decel-

eration have potential hazards. These chosen parameters

can describe driver manipulation reacting to the lead car’s

motion and reflect drivers’ perceived risk levels. To better

depict driver reaction in different car-following situations,

these parameters are selected with different forms. The

selected indicators are listed in Table 2, and their rela-

tionships with perceived risk are also provided.

The selected indicators are denoted as X, Y and Z ac-

cording to the following rules: X represents the car-fol-

lowing situation; Y represents the parameter; and

Z represents the statistical measure used to deduce the

indicators with the parameters.

The different values (PA and NA) of the acceleration

parameters are used according to the car-following situa-

tions. Three different indicators, C.H.Ave, A.H.Max and

D.H.Min, are deduced from the headways with different

statistical methods for three car-following situations:

• For the acceleration car-following situation, the max-

imum headway indicates the response of drivers to the

lead car acceleration (a large maximum headway

indicates a low state change of the following vehicle,

indicating high cautiousness and a high perceived risk

level);

• For the deceleration car-following situation, the min-

imum headway is more suitable.

• For the cruising car-following situation, the average

headway is selected due to the stable speed of the lead car.

When conducting the driving simulation experiments, a

non-car-following state is observed, particularly in low-

visibility scenarios, such as heavy dense fog, extremely

heavy rain and extremely heavy snow. Because the average

traffic flow speed is 40 km/h and the minimum visibility

distance is 50 m (heavy dense fog), the data with a high

Table 2 Selected parameters

Abbreviation Description Relationship with

perceived risk*

In the cruising car-following situation (C)

C.H.Ave (m) Average headway (H) C.H.Ave:, perceived
risk:

High perceived risk

makes drivers keep far

away from the lead car

to achieve the target

risk

C.PA.Ave

(m/s2)

Average (Ave) positive

acceleration (PA) of

the following vehicle

C.PA.Ave;, perceived
risk:

High perceived risk

caused by friction

reduction leads

moderate acceleration

C.NA.Ave

(m/s2)

Average negative

acceleration (NA) (i.e.,

the deceleration value)

of the following

vehicle

|C.NA.Ave|;, perceived
risk:

High perceived risk

caused by friction

reduction leads

moderate deceleration

In the accelerating car-following situation (A)

A.H.Max

(m)

Maximum headway A.H.Max:, perceived
risk:

High perceived risk

makes drivers

negatively follow the

lead car to achieve the

target risk

A.PA.Ave

(m/s2)

Average positive

acceleration of the

following vehicle

A.PA.Ave;, perceived
risk:

High perceived risk

caused by friction

reduction leads to

moderate acceleration

In the decelerating car-following situation (D)

D.H.Min (m) Minimum headway D.H.Min:, perceived
risk:

High perceived risk

makes drivers

positively decelerate to

achieve the target risk

D.NA.Ave

(m/s2)

Average negative

acceleration (i.e., the

deceleration value) of

the following vehicle

|D.NA.Ave|;, perceived
risk:

High perceived risk

caused by friction

reduction leads to

moderate deceleration

*C.H.Ave :, perceived risk :’ means ‘the increase of C.H.Ave rep-

resents that driver perceived risk increases. Other indicators has

similar logit relationship
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average headway ([ 50 m) are determined to be a non-car-

following state and are deleted in the dataset.

3 Results

In this paper, basic segment and clear sky are regarded as

normal conditions. There are two aspects in the analysis on

the effect of adverse weathers on traffic flow. First, the

influence of weather on each indicator is analyzed. Then, a

comprehensive index used to assess drivers’ perceived risk

is proposed using the entropy weight method and a linear

regression model is established to quantitatively evaluate

the influence of weather and road types on perceived risk.

3.1 Influence of weather condition and road type

on car-following behavior

Repeated measures analysis of variance (RANOVA) is

used to analyze the influence of two factors (road type and

weather conditions) on the values of the selected indicators.

The test results are provided in Table 3.

Table 3 shows that both road type and weather condi-

tions have a significant influence on the majority of indi-

cators. However, no significant influence on any of the

indicators from the interaction of two factors is observed.

These indicators are classified according to their phys-

ical meanings, and their variations under different condi-

tions are plotted in Fig. 5.

In Fig. 5a, the three headway-related indicators increase

with the worsening weather conditions. For every indicator,

the perceived risk level is the highest under EHS condition.

In Fig. 5a, b, the values of the three headway-involved

indicators are obviously related to the operation methods.

In Fig. 5c–f, the absolute values of A.PA.Ave and

D.NA.Ave are larger than the absolute values of C.PA.Ave

and C.NA.Ave, respectively, due to the different lead car

motions in the three car-following situations.

Table 3 indicates that weather condition has no signifi-

cant effect on C.PA.Ave, as can be seen in Fig. 5c. This

suggests that the perceived risk when a driver follows a

cruising vehicle is not influenced by weather condition.

The A.PA.Ave values of adverse weather conditions are

lower than that under CS, which indicates that adverse

weather conditions will lead to high perceived risk. In

addition, A.PA decreases (the perceived risk increases)

with a deterioration in the weather conditions for each

weather category (rain, snow and fog). The exceptions are

in the conditions of extremely adverse weather, such as

heavy dense fog and extremely heavy rain, partly because

of the significant reduction in visibility when drivers tend

to keep up with the lead car in these situations.

In Fig. 5e, C.NA.Ave does not show significant differ-

ence for weather conditions, which is in accordance with

the results of Table 3. For CS, there is a lowest D.NA.Ave.

The absolute D.NA.Ave values in adverse weather condi-

tions correspond to similar A.PA.Ave values, demonstrat-

ing that the perceived risk increases in adverse weather

conditions. Comparison between absolute values of

A.PA.Ave and values of D.NA.Ave indicates that drivers

are more cautious toward the speed reduction of lead car

than the acceleration of the lead car.

In Fig. 5b, C.H.Ave, A.H.Max and D.H.Min have the

highest values on the basic segment. For both A.H.Max and

D.H.Min, the values of downslope are higher than of

upslope, indicating that drivers are aware of higher risk on

a downslope than that on an upslope.

In Fig. 5d, C.PA.Ava and A.PA.Ave have the highest

values on downslopes and basic segments, respectively.

This result may be attributed to the road slope and different

levels of drivers’ attentiveness.

In Fig. 5e, the absolute values of C.NA.Ave are smaller

on the basic segments than on other road types. There is no

significant difference in D.NA.Ave under the different road

types.

Table 3 Multivariate test results

Indicator name Weather conditions Road type Weather conditions 9 road type

F(10, 963) Sig. F(2, 963) Sig. F(32, 963) Sig.

C.H.Ave 3.909 0.000** 14.808 0.000** 0.588 0.923

C.PA.Ave 0.681 0.743 34.897 0.000** 0.472 0.977

C.NA.Ave 1.016 0.428 6.764 0.001** 0.527 0.956

A.H.Max 2.279 0.012** 11.725 0.000** 1.290 0.176

A.PA.Ave 3.013 0.001** 8.539 0.000** 0.331 0.998

D.H.Min 2.074 0.024** 3.937 0.020** 0.489 0.971

D.NA.Ave 6.013 0.000** 1.607 0.201 0.662 0.865

**Influence is significant at the 0.01 level

*Influence is significant at the 0.05 level
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3.2 Influence of weather conditions and road type

on the perceived risk of drivers

In this study, the entropy weight method and multiple

linear regression are used to explore the effect of different

weather conditions on the perceived risk level of drivers.

The entropy weight method is used to integrate the selected

indicators into one index that represents the perceived risk

levels of drivers under adverse weather conditions. Then,

the multiple linear regression is used to evaluate the

influence of weather conditions and road type on the per-

ceived risk level via regression coefficients.

Fig. 5 Influence of weather conditions and road types o indicators
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Before applying the entropy weight method, the selected

indicators are normalized to eliminate the influence of

dimensionality and ensure the consistency of indicator

influence on the perceived risk of drivers.

3.2.1 Normalization of the original evaluating matrix

In this work, there are 7 indicators and 33 objects for

evaluating (11 weather conditions 9 3 road types), which

form an original evaluation matrix X = (xij)3397. In this

matrix, the value of each object is an average of all drivers’

data.

Range normalization is used to normalize the indicators.

Indicators are classified into two categories, positive or

negative indicators, according to their relationship with

perceived risk. Positive indicators are those whose values

are positively correlated with perceived risk, whereas

negative indicators are those whose values are negatively

correlated with perceived risk. According to Table 2,

C.H.Ave, C.NA.Ave, A.H.Max, D.H.Min and D.NA.Ave

are positive indicators, and C.PA.Ave and A.PA.Ave are

negative indicators. The normalization algorithms for

positive and negative indicators are presented in Eqs. (1)

and (2):

y
p
ij ¼

xij �Minxj

Maxxj �Minxj
; ð1Þ

ynij ¼
Maxxj � xij

Maxxj �Minxj
; ð2Þ

where y
p
ij is normalized positive indicator; ynij is normalized

negative indicator; xij is the value of the ith evaluating

object of the jth indicator; Minxj is the minimum value of

the jth indicator, and Maxxj is the maximum value of the

jth indicator.

Equations (1) and (2) are used to obtain the normalized

matrix Y = (yij)3397, yij [ [0,1]. All the indicators are

positively correlated with the perceived risk.

3.2.2 Entropy weight method

According to the information theory, high entropy denotes

small variations for the indicator, which indicates that this

indicator provides less information. Thus, the indicator has

less weight in the integrated index. The entropy of the jth

indicator is defined as

Hj ¼ �k
X33

i¼1

fij ln fij; i ¼ 1; 2; . . .; 33; ð3Þ

where fij ¼ yij=
P33

i¼1 yij, and suppose that when fij ¼ 0,

fijlnfij ¼ 0k = 1/ln33.

Then, the weight wj of the entropy of the jth indicator

can be defined as

wj ¼
1� HjP7

j¼1 1� Hj

� � ; ð4Þ

where 0�wj � 1 and
P7

j¼1 wj ¼ 1.

A normalized evaluating matrix and the entropy weight

are used to calculate the perceived risk index (PRI):

PRIi ¼
X7

j¼1

ðwj � yijÞ: ð5Þ

A higher PRI indicates a higher perceived risk level.

3.2.3 Measurement of perceived risk using multiple linear

regression

Multiple linear regression is used in this research to

quantitatively measure the changes in the PRI under dif-

ferent driving conditions. In the regression model, weather

condition and road type are taken as arguments, and the

PRI is taken as dependent variable. Due to the discrete

features of the arguments, the two arguments are trans-

formed into two and ten binary variables (taking values of

0 or 1), respectively. Interaction influence is not considered

because the weather conditions and road types have no

significant interaction effects on the indicators, as shown in

Table 3.

The regression results are shown below, and the residual

plot is shown in Fig. 6.

PRI ¼ 0:461� 0:112xUphill � 0:217xDownhill � 0:010xLF

þ 0:075xF þ 0:110xDF þ 0:017xHDF � 0:034xLR

þ 0:1756xR þ 0:156xHR þ 0:146xEHR þ 0:149xS

þ 0:318xEHS;R
2 ¼ 0:924;

ð6Þ

where arguments, e.g., xUphill; xDownhill and xLF, are the

binary variables for road type and weather condition.

As the R-square is high enough and the residual plot

shows an unbiased and homoscedastic distribution, the

results of linear regression is thought to be valid.

The values of the coefficient represent the influence of

factors on the PRI. The reference values are the ones of

basic segment and clear sky, which are implied in the

constant; their influence value is zero. The coefficients of

weather condition and road type are plotted in Fig. 7.

3.2.4 Influence of road type

Figure 7 shows that the perceived risk when driving on

slopes is lower than those when driving on the basic seg-

ment, as illustrated by their negative coefficients. This

result may be caused by large headway distance and high
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absolute value of NA when driving on the basic segment,

as shown in Fig. 5.

3.2.5 Influence of weather condition

Light fog and light rain have a minor influence on the

perceived risks, as illustrated by their small coefficients

(nearly zero).

For fog conditions, with the exception of HDF, per-

ceived risk levels increase with fog intensity due to the

reduction in visibility. The exception for HDF may be

attributed to the extremely poor visibility, which influences

the car-following behavior considerably, and leads to a

small headway such that the lead car can stay in sight.

With regard to the rain conditions, rain, heavy rain and

extremely heavy rain have close coefficients, which means

that the perceived risk in rainy days will not increase with

rain intensity after it approaches a limit value.

For snow weather conditions, the perceived risk level

increases with rain and snow intensity. In particular,

extremely heavy snow greatly increases the perceived risk

level for drivers due to the low road surface friction.

The model can also be regarded as a prediction model to

obtain the PRI before adverse weather occurs, which may

help develop traffic management strategies to improve the

cautiousness of drivers and further reduce the number of

accidents. In Fig. 7, the PRI value in heavy dense fog is

low, which indicates that specific countermeasures should

be taken if the HDF weather is forecasted. Besides, PRI

values of both the upslope and downslope are lower than

that of basic segment, which suggests that drivers need to

pay more attention to their manipulations when driving on

slopes.

4 Discussion

Due to the limitations in the road friction settings in the

driving simulation software, four/two levels of rain/snow

weather conditions are considered in this work. The

advantage of driving simulator experiment is that it can

control experimental conditions. In our experiment, the

speed of lead car and surrounding environment are fully

controlled by driving simulator software and only weather

condition varies. Besides, when conducting the experiment,

external factors such as the experiment time, and drivers’

mental state are also fully controlled. Compared with the

field data research, this experiment can obtain drivers’

perceived risk in extreme weather conditions and then help

managers to take special countermeasures to reduce crash

risk.

In this simulation experiment, the single speed design

was used due to the fact that traffic is typically slow under

adverse weather conditions. In future work, other traffic

situations will be considered to further understand the

impacts of adverse weather on drivers’ perceived risk.

In Fig. 3, the road surface during snow is black instead

of white. This is because the simulator cannot display the

scene of snow on pavement. This is one of shortcomings in

our snow scenario. However, the visual effect of snowfall

looks desirable and the friction of road surface also chan-

ged. Actually, the snow on pavement in cities like Beijing

will be cleared soon. So participants did not pay attention

to this shortcoming. In this sense, this scenario can be used

to analyze the influence of snow on driver behaviors.

TTC, an indicator widely used in previous driving risk

literature, is not considered in this paper. The reason is that

the speed of the lead car is fully controlled by the driving

software, which is low and consistent in our driving sim-

ulation experiment in most of the time and only changes in

acceleration or deceleration car-following situation.

Besides, drivers follow the lead car within a close distance

and the acceleration values of lead car is very small (3.33

or - 3.33 km/h). Thus, the distance is thought to be a more

direct measure for drivers to assess their risk. Therefore,

headway or time headway is more appropriate when con-

sidering the perceived risk in the experiment than TTC.

In terms of the influence of road type on perceived risk

for drivers, the results demonstrate that drivers perceive
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low risk on slopes. This is difficult to explain but it sug-

gests that the difficulty of vehicle operation on slopes

makes the vehicle follow the lead car closely and needs

large accelerations, thus giving rise to a lower PRI. Slope

grade may be an important influential factor; however, only

one level is considered in our study (1.5%). Unlike road

type, weather conditions affect the perceived risk in a

different way, and further analyses should be performed to

study the difference.

5 Conclusions

This work quantitatively describes the influence of adverse

weather on the perceived risk for drivers during car fol-

lowing based on a driving simulation experiment. Weather

condition and road type have been taken as two factors.

Several driving behavior indicators related to risk are

selected based on risk homeostasis theory, and the driver’s

PRI is proposed and calculated using the entropy weight

method. Then, multiple linear regression is introduced to

measure the effects of both weather conditions and road

type on the PRI.

This work allows the drivers’ perceived risk level to be

determined in advance. In addition, together with the data

from road accidents, it can help develop proper strategies

to improve driver cautiousness and further reduce the

number of road crashes.

The conclusions are summarized as follows:

• Both weather condition and road type have significant

impacts on most of the driving behavior indicators. No

interaction influence between these indicators is

observed.

• Low-intensity fog and rain have a minor influence on

drivers’ perceived risk, whereas the snow has a

significant effect on perceived risk.

• The drivers’ perceived risk increases with a deteriora-

tion in the weather conditions. The drivers’ perceived

risk decreases under the conditions of extremely poor

visibility, such as HDF.

• Specific countermeasures should be taken in heavy

dense fog weathers.

• Drivers need to pay more attention to their manipula-

tions when driving on slopes.
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