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Opinion statement

Drug addiction is a disease that manifests as an inappropriate allocation of behavior
towards the procurement and use of the abused substance and away from other behaviors
that produce more adaptive reinforcers (e.g., exercise, work, family, and social relation-
ships). The goal of treating drug addiction is not only to decrease drug-maintained
behaviors but also to promote a reallocation of behavior towards alternative, nondrug
reinforcers. Experimental procedures that offer concurrent access to both a drug reinforcer
and an alternative, nondrug reinforcer provide a research tool for assessment of medica-
tion effects on drug choice and behavioral allocation. Choice procedures are currently the
standard in human laboratory research on medications development. Preclinical choice
procedures have been utilized in biomedical research since the early 1940s, and during the
last 10–15 years, their use for evaluation of medications to treat drug addiction has
increased. We propose here that parallel use of choice procedures in preclinical and clinical
studies will facilitate translational research on development of medications to treat
cocaine addiction. In support of this proposition, a review of the literature suggests



strong concordance between preclinical effectiveness of candidate medications to modify
cocaine choice in nonhuman primates and rodents and clinical effectiveness of these
medications to modify either cocaine choice in human laboratory studies or metrics of
cocaine abuse in patients with cocaine use disorder. The strongest evidence for medica-
tion effectiveness in preclinical choice studies has been obtained with maintenance on the
monoamine releaser d-amphetamine, a candidate agonist medication for cocaine use
analogous to use of methadone to treat opioid abuse or nicotine formulations to treat
tobacco dependence.

Introduction

Drug addiction is a significant and global public health
problem [1]. Although there are Food and Drug Admin-
istration (FDA)-approved pharmacotherapies for addic-
tion to some drugs, such as heroin, nicotine, and etha-
nol, FDA-approved pharmacotherapies are absent for
addiction to many other abused drugs, such as cocaine,
methamphetamine, and marijuana. Moreover, the de-
velopment of safer and more efficacious medications to
treat addiction to all classes of abused drugs remains a
priority for drug abuse research. Preclinical drug self-
administration procedures have been invaluable in
identifying neurobiological and environmental mecha-
nisms that contribute to abuse-related drug effects [2]. In
addition, preclinical evaluation of effects produced by
candidate medications on drug self-administration has
demonstrated good, but not perfect, concordance with
both medication effects in human laboratory drug self-
administration studies and metrics of drug abuse in
clinical trials [3–5]. Two experimental features that ap-
pear to promote accurate translation of preclinical to

clinical results are (1) repeated treatment with the can-
didate medication to match the subchronic-to-chronic
treatment regimens commonly employed in clinical
drug abuse treatment and (2) assessment of medication
effects on choice between the target drug of abuse and an
alternative nondrug reinforcer such as food (in labora-
tory animals) or money (in humans). Accordingly, this
review has two goals. First, we provide a brief overview
of drug self-administration procedures that provide con-
current access to a drug and an alternative, nondrug
reinforcer, and we discuss the rationale for using these
procedures in the medication development process.
Second, we discuss the major findings of both phar-
macological and non-pharmacological treatments
on intravenous cocaine vs. food choice in preclinical
studies. The objective is to assess the translational
validity of candidate medication treatment results
from preclinical cocaine vs. food choice studies to
results from human laboratory studies and clinical
trials.

Core attributes of preclinical choice procedures

In both preclinical and human laboratory drug self-administration procedures,
the performance of some operant behavior (e.g., pressing a response key) pro-
duces the delivery of a unit drug dose (e.g., intravenous (IV) cocaine delivery via
an indwelling IV catheter). If responding for any dose of a given drug occurs at
higher rates than responding for vehicle, then the drug is considered to function
as a reinforcer and to produce reinforcing effects [6]. A well-established concor-
dance exists between drugs that function as reinforcers in drug self-administration
procedures and drugs that are abused by humans [6]. Overall, there is a rich body
of literature suggesting that preclinical drug self-administration procedures are
good models of human drug abuse and addiction.

Drug self-administration procedures are also widely used to assess potential
treatments for drug abuse and addiction [3, 7]. Althoughmany variants of drug
self-administration procedures exist, this review will focus on preclinical drug
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vs. food choice procedures [8, 9]. In a drug vs. food choice procedure, behavior
is maintained on two different response manipulanda by two different conse-
quent stimuli. For example, responding on onemanipulandum results in the IV
delivery of a drug dose, and responding on a different, concurrently available
manipulandum results in the delivery of a food pellet. Thus, these drug self-
administration procedures are often referred to as Bchoice^ procedures because
research subjects allocate behavior, or Bchoose,^ between the concurrently
available consequent stimuli. Three main reasons support the use of preclinical
choice procedures to evaluate candidate treatments for drug addiction. First,
drug addiction is defined by maladaptive allocation of behavior and has been
defined as a Bdisorder of choice^ [2, 10]. Specifically, drug addiction implies
maladaptive behavioral allocation towards drug use at the expense of behaviors
that producemore adaptive and socially acceptable reinforcers. Furthermore, the
ultimate goal in treating drug addiction is not merely to decrease drug-
maintained behavior but also to increase behavior maintained by nondrug
reinforcers [11, 12]. Preclinical choice procedures allow for explicit assessment of
behavioral allocation between concurrently available reinforcers during a phar-
macological treatment. Second, human laboratory drug self-administration
studies rely almost exclusively on drug vs. nondrug choice procedures to assess
candidate medication efficacy [4, 5, 13], and increased homology between
preclinical and human laboratory experimental procedures can reasonably be
expected to facilitate translation of results. Lastly, choice procedures generate
dependent measures that facilitate interpretation of medication effects. Thus, a
goal of any candidatemedication is to decrease drug-taking behavior; however, a
decrease in drug self-administration can be achieved either by a selective reduc-
tion in reinforcing effects of the abuse drug (a desirable outcome that preserves
other behaviors) or by a nonselective decrease in a broad range of behaviors (an
undesirable outcome suggestive of behavioral or physiological toxicity). Choice
procedures generate distinct dependent measures for medication effects on drug
reinforcement (measured by allocation of behavior) and general behavioral
competence (measured by rate of behavior) (Fig. 1). In choice procedures, an
idealmedication effect is a reduction in drug choice accompanied by a reciprocal
increase in choice of the alternative, nondrug reinforcer. Conversely, undesirable
medication effects would include (a) no change in behavior, (b) an increase in
drug choice, or (c) a reduction in choice of both drug and the nondrug alterna-
tive without a change in the proportion of behavior allocated to drug.

Evaluation of candidate medications in preclinical drug vs. food
choice procedures

Preclinical drug vs. food choice procedures were established first in nonhuman
primates, and these procedures have been used formore than 30 years to evaluate
candidate medications. The development of choice procedures in rodents has
been a more recent development, but conduct of choice procedures in rodents is
accelerating. A literature search of PubMed revealed a total of 21 published
studies that have determined subchronic (≥3 consecutive treatment days) phar-
macological experimental treatment effects on cocaine vs. food choice in rats and
nonhuman primates. This body of preclinical literature is summarized in Table 1.
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Monoamine releasers
Monoamine releasers, such as d-amphetamine, represent a class of drugs that
function as substrates for dopamine (DA), norepinephrine (NE), and/or sero-
tonin (5HT) transporters (DAT, NET, and SERT) and exert their pharmacolog-
ical effects by promoting neurotransmitter release independent of neuronal
activity [14]. Several monoamine releasers are currently FDA-approved and
clinically used as pharmacotherapies for attention deficit hyperactivity disorder,
obesity, and narcolepsy, and they may also have utility as Bagonist-based^
medications for cocaine addiction analogous to use ofmethadonemaintenance
for opioid abuse or nicotine formulations to treat tobacco dependence [15, 16].
The prototype monoamine releaser amphetamine has been the most exten-
sively studied monoamine releaser as a candidate medication to treat cocaine
abuse. Amphetamine maintenance has demonstrated efficacy in most, but not

Fig. 1. Choice between different unit cocaine doses (0–0.1 mg/kg/injection) and 1-g food pellets in rhesus monkeys under a
concurrent FR10:FR100 schedule of cocaine injections and food availability. Amphetamine [21••] and lisdexamfetamine treatment
[32••] results have been previously published. Abscissae: unit dose of cocaine in milligrams per kilogram per injection. Top left
ordinate: percent cocaine choice. Top right ordinate: percent food choice. Bottom ordinate: Rates of operant responding in responses
per second. All dashed lines represent the mean (±SEM) of three consecutive days of saline treatment before pharmacological
treatment initiation. Data points represent the mean of last three treatment days of each 7-day treatment period. Filled symbols
indicate statistical significance (pG0.05) compared to saline conditions. These results demonstrate three main findings from drug
vs. food choice procedures. First, cocaine vs. food choice increases in a monotonic function as the unit cocaine dose increases.
Second, rates of operant responding are not predictive of cocaine vs. food choice nor are rates of responding predictive of
pharmacological treatment effects on cocaine vs. food choice. Finally, subchronic treatment with amphetamine or
lisdexamfetamine decreased cocaine choice and produced a reciprocal increase in food choice.
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Table 1. Summary of published manuscripts reporting subchronic (≥3 consecutive days) candidate medication
treatment effects on IV cocaine self-administration under a concurrent choice schedule

# Cocaine Dose
(mg/kg/inj)

Alternative
reinforcer

Species Main treatment
examined

Effect on
cocaine choice

Ref

Monoamine releaser treatments
1 0.0032–0.1 Food pellet Rhesus monkey d-Amphetamine ↓ [22]
2 0–1 Ensure liquid food Rat d-Amphetamine ↓ [23•]
3 0.0032–0.1 Food pellet Rhesus d-Amphetamine,

phenmetrazine, and
phendimetrazine

↓ [21••]

4 0.0032–0.1 Food pellet Rhesus 5 monoamine releasers ↓ [27]
5 0.0032–0.1 Food pellet Rhesus Phenmetrazine ↓ [28]
6 0.0032–0.1 Food pellet Rhesus Phendimetrazine ↓ [31]
7 0.0032–0.1 Food pellet Rhesus Lisdexamfetamine ↓ [32••]
8 0.0032–0.1 Food pellet Rhesus PAL-542 — [29]

Monoamine uptake inhibitor treatments
1 0.0032–0.1 Food pellet Rhesus Cocaine — [22]

Dopamine receptor antagonist, partial agonist, and agonist treatments
9 0.05–0.3 Food pellet Rhesus Haloperidol and

chlorpromazine
↑ [58]

1 0.0032–0.1 Food pellet Rhesus Flupenthixol ↑ [22]
10 0.003–0.3 Food pellet Rhesus Quetiapine — [59]
11 0.01–1.0 Food pellet Rhesus Buspirone and

PG01037
— [62]

12 0.003–0.1 10 % Condensed
milk

Squirrel monkey Aripiprazole — [68]

13 0–1 Ensure liquid food Rat Aripiprazole — [67]
14 0.003–0.1 Food pellet Cynomolgus

monkey
Aripiprazole —/↓ [69]

15 0.01–1.0 Food pellet Rhesus PG619 — [77]
14 0.003–0.1 Food pellet Cynomolgus (−)-NPA —/↓ [69]

Opioid agonist and antagonist treatments
16 0.0032–0.1 Food pellet Rhesus Methadone — [77]
17 0.0032–0.1 Food pellet Rhesus U50,488 ↑ [73]
17 0.0032–0.1 Food pellet Rhesus nor-BNI — [73]
18 0.0032–0.1 Food pellet Rhesus nor-BNI — [74]

Other treatments
19 0.1–0.3 Food pellet Rhesus Lithium — [79]
20 0.25 Saccharin Rat Diazepam ↓ [81••]
21 0–1 Ensure liquid food Rat Xanomeline ↓ [82••]

Columns show cocaine dose(s), the alternative reinforcer(s), the species in which studies were conducted, the primary treatment examined and
outcome, and the reference. Studies are categorized as treatment compound classes as discussed in the manuscript. A downward arrow (↓)
represents a pharmacological treatment that decreased cocaine choice. An upward arrow (↑) represents a pharmacological treatment that
increased cocaine choice. A horizontal dash line (—) represents a pharmacological treatment that did not significantly alter cocaine choice up
to doses that produced other behavioral effects, such as suppression of rates of operant behavior
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all, double-blind, placebo-controlled clinical trials [17–20]. Consistent
with results from these clinical trials, preclinical choice studies in both
nonhuman primates [21••, 22] (Fig. 1) and rats [23•] and human
laboratory choice studies [24, 25] have also reported that subchronic d-
amphetamine treatment decreases cocaine choice. Altogether, amphet-
amine treatment has consistently displayed efficacy to decrease cocaine
choice across a broad range of experimental conditions and species.

The efficacy of monoamine releaser treatments to decrease cocaine choice
has been extended to other monoamine releasers, such as methamphetamine,
and other monoamine releaser formulations, such as prodrugs, that are me-
tabolized to an active monoamine releaser metabolite. For example, metham-
phetamine treatment decreased cocaine use in a double-blind, placebo-
controlled clinical trial [26]. Consistent with this clinical trial, subchronic
treatment with methamphetamine attenuated cocaine vs. food choice in rhesus
monkeys [27]. In addition to methamphetamine, the monoamine releaser
phenmetrazine has also demonstrated efficacy to decrease cocaine vs. food
choice in nonhuman primates [21••, 27, 28]. However, selectivity for releasing
dopamine (DA) vs. serotonin (5HT) appears to be an important determinant of
monoamine releaser treatment effects on cocaine vs. food choice, such that
higher selectivity for releasing DA compared to 5HT was associated with greater
reductions in cocaine choice [27, 29]. Regarding prodrugs, there are currently
two clinically available compounds that produce pharmacological effects using
this mechanism: phendimetrazine and lisdexamfetamine. Phendimetrazine is a
schedule III controlled substance and is theN-methyl analog of phenmetrazine,
and it functions as a prodrug for the monoamine releaser phenmetrazine
[30]. Consistent with preclinical results described above with phenmet-
razine treatment, phendimetrazine treatment also decreased cocaine vs.
food choice in nonhuman primates [21••, 31]. Similarly consistent with
the amphetamine treatment results described earlier, the amphetamine
prodrug lisdexamfetamine also decreased cocaine vs. food choice in
nonhuman primates [32••] (Fig. 1). Overall, these preclinical data extend
the spectrum of monoamine releasers that possess therapeutic efficacy
and that have potential to serve as candidate medications for the treat-
ment of cocaine addiction.

Monoamine uptake inhibitors
Another Bagonist-based^ pharmacotherapy approach for cocaine addiction
might be othermonoamine uptake inhibitors because these compounds would
share the same mechanism of action as cocaine. To date, treatments with four
different monoamine uptake inhibitors on cocaine-maintained behaviors have
been examined in both human laboratory studies and clinical trials: mazindol,
methylphenidate, bupropion, and modafanil. Both mazindol [33, 34] and
bupropion [35, 36] failed to significantly decrease cocaine use in clinical trials.
Methylphenidate attenuated cocaine vs. money choice in a one human labo-
ratory study [37], but it did not significantly alter cocaine use in clinical trials
[38–41]. Modafanil decreased cocaine vs. money choice in one human labo-
ratory study [42] and cocaine use in one clinical trial [43]; however, a more
recent human laboratory study [44] and four other clinical trials [20, 38, 45, 46]
reported no significant effect of modafanil on cocaine use. In contrast to this
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extensive literature on effects ofmonoamine transporter inhibitors in humans, to
date, none of the compounds referenced above have been examined as treat-
ments in preclinical cocaine vs. food choice procedures. However, consistent with
the generally poor effectiveness of other monoamine transporter inhibitors to
decrease cocaine use in humans, subchronic treatment with cocaine itself did not
significantly attenuate cocaine vs. food choice in rhesus monkeys [22].

Dopamine antagonists and partial agonists
Some classes of abused drugs act at receptors for which antagonists are avail-
able, and in these cases, antagonists have been evaluated for their effectiveness
to reduce drug-taking behavior. For example, opioid agonists like heroin pro-
duce their effects by binding to and activating mu opioid receptors, and the mu
opioid antagonist naltrexone is an FDA-approved pharmacotherapy for the
treatment of opioid abuse, although patient compliance remains a significant
obstacle for sustained naltrexone treatment efficacy [47]. Consistent with the
therapeutic efficacy of mu opioid antagonists in detoxified heroin-dependent
humans [48], chronic treatment with naltrexone or another mu opioid antag-
onist, naloxone, decreased heroin choice and increased food choice in non-
opioid-dependent nonhuman primates [49]. Cocaine produces its abuse-
related effects primarily by binding DA transporters and inhibiting DA uptake,
and drugs that block cocaine binding without also blocking DA uptake
have not been identified. However, cocaine effects on DA transporters
indirectly increase synaptic DA levels and subsequent activation of DA
receptors, and as a result, DA receptor antagonists have been evaluated
as candidate pharmacotherapies for treating cocaine addiction.

In clinical trials, DA D2 receptor antagonist-based pharmacotherapy with
either risperidone [18, 50–53] or olanzapine [54–56] failed to demonstrate
therapeutic efficacy for cocaine addiction, and this approach is generally asso-
ciated with poor patient compliance [57•]. In agreement with these clinical
results, subchronic treatment with the DA D2 antagonists flupenthixol, halo-
peridol, chlorpromazine, and quetiapine did not decrease and sometimes
increased cocaine choice in nonhuman primate preclinical studies [22, 58, 59].
Consistent with these published results, subchronic treatment with DA antag-
onist risperidone also failed to attenuate cocaine vs. food choice in rhesus
monkeys (Hutsell, Negus, and Banks, unpublished observations).

Targeting other DA receptor subtypes, such as D1 or D3 receptors, has not
improved therapeutic efficacy of DA antagonists to reduce cocaine use in choice
studies. For this approach, buspirone has received the most recent attention.
Buspirone is a partial agonist at serotonin 1A receptors that also functions as a
DA receptor antagonist with selectivity for D3 and D4 receptors compared to
D2 receptors [60]. Buspirone did not significantly attenuate cocaine use in
either a clinical trial [61] or in nonhuman primates choosing between cocaine
injections and food pellets [29]. Moreover, subchronic treatment with another
selective DA D3 antagonist (PG01037) also did not attenuate cocaine vs. food
choice in nonhuman primates [62]. Finally, D1 antagonists have not yet been
tested in preclinical studies of cocaine vs. food choice, but subchronic treatment
with the D1 antagonist ecopipam (SCH39166) increased cocaine choice in
humans [63]. Overall, this body of literature does not support utility of DA
antagonists as pharmacotherapies for cocaine abuse.
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DA receptor partial agonists have also been examined as candidate
pharmacotherapies with the idea that they might attenuate cocaine
effects while producing fewer undesirable effects than DA receptor an-
tagonists; however, these partial agonists have also failed to produce
favorable effects. Both human laboratory studies [64, 65] and clinical
trials [66] reported no significant effect on cocaine use during treatment
with the DA D2 partial agonist aripiprazole. Consistent with these
human results, subchronic aripiprazole treatment also failed to attenuate
cocaine vs. food choice in both rats [67] and nonhuman primates [68,
69]. Similarly, subchronic treatment with a DA D3-selective partial ago-
nist (PG619) also failed to attenuate cocaine vs. food choice in non-
human primates [70].

Opioid agonists and antagonists
The dynorphin/ kappa opioid receptor (KOR) system has also been implicated
as another potential therapeutic target in the treatment of cocaine addiction
[71]. To date, no double-blind placebo-controlled clinical trials have been
conducted with either kappa opioid agonist or kappa opioid antagonist treat-
ments in cocaine-addicted individuals. In a human laboratory study, pretreat-
ment with the kappa agonist enadoline did not alter cocaine vs. money choice
[72]. Negus [73] reported that subchronic treatment with the kappa-opioid
agonist U50,488 produced a dose-dependent increase in cocaine vs. food
choice, and this U50,488 effect was blocked by the kappa antagonist nor-
binaltorphimine (nor-BNI). Nor-BNI treatment alone has failed to alter cocaine
vs. food choice under multiple experimental conditions [73, 74]. However,
until data are available from either human laboratory or clinical trials, the
predictive validity of kappa antagonist treatments in preclinical models of
cocaine addiction remains unknown.

Other opioid receptor mechanisms have also been examined. Subchronic
treatment with the mu opioid partial agonist buprenorphine decreased cocaine
vs. money choice in humans [75, 76] whereas treatment with themu opioid full
agonist methadone was ineffective [76]. Consistent with this human laboratory
study, subchronic treatment with the mu opioid agonist methadone did not
significantly decrease cocaine vs. food choice in nonhuman primates [77].
Recently, a clinical trial has been initiated determining the efficacy of
buprenorphine treatment for cocaine addiction [78]. Overall, this body of
literature suggests more research is warranted to ascertain the efficacy of
buprenorphine as a pharmacotherapy for cocaine addiction.

Other pharmacological treatments
Three other classes of pharmacological compounds have been examined using
subchronic treatment regimens in preclinical cocaine vs. food choice proce-
dures. First, treatment with the mood-stabilizing compound lithium did not
attenuate cocaine choice in nonhuman primates [79]. These lithium treatment
effects in nonhuman primates are consistent with clinical studies examining
lithium treatment in humans [80]. Second, treatment with the GABA-A
receptor positive allosteric modulator diazepam attenuated cocaine vs. saccha-
rin choice in rats [81••]. Lastly, treatment with the muscarinic receptor M1/M4
agonist xanomeline attenuated cocaine vs. food choice in rats [82••]. These
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later two studies represent the first preclinical studies to demonstrate a reduc-
tion in cocaine choice during subchronic treatment with a non-dopaminergic
compound.

Non-pharmacological treatment strategies
In addition to these pharmacological treatment approaches, two general cate-
gories of non-pharmacological approaches have also been evaluated. The aim
of these non-pharmacological approaches is to model aspects of broader social
programs such as aftercare programs or punishment associated with law en-
forcement, as well as more targeted contingency management approaches that
reinforce drug abstinence or punish drug use. The goal of all these non-
pharmacological approaches is to manipulate choice contingencies and reallo-
cate behavior away from drug choice and towards more socially appropriate
reinforcers.

First, the simple introduction of an alternative, nondrug reinforcer decreases
cocaine self-administration in rats [83], nonhuman primates [22, 84], and
humans [85, 86•]. Increasing the magnitude of the concurrently available
alternative reinforcer also attenuates cocaine choice [22, 23•, 84, 85]. Further-
more, both preclinical and human laboratory studies have demonstrated that
cocaine choice is sensitive to manipulations in the relative Bcost^ of cocaine or
the alternative reinforcer. For example, increases in the cost for cocaine injec-
tions or decreases in the cost for the alternative reinforcer attenuates cocaine
choice in rodents [23•], nonhuman primates [22, 28, 87], and humans [85,
86•]. Conversely, increases in cocaine choice can be produced by either in-
creases in the cost for the alternative reinforcer or decreases in the cost for
cocaine injections in rodents [23•], nonhuman primates [22, 28, 87], and
humans [85, 86•]. Moreover, a recent human laboratory study reported cocaine
use patterns to be sensitive to income and cost variables [88•]. Overall, this
body of literature supports treatment strategies that attempt to increase avail-
ability and reduce cost of nondrug alternative reinforcers while simultaneously
raising the cost of drugs. An example of this type of non-pharmacological
approach would be clinical contingency management programs [89].

A second non-pharmacological variable that has been examined in preclin-
ical drug choice studies is the utility of punishment to decrease drug choice.
Punishment, e.g., arrest by a police officer, is used within society as a potential
method for decreasing drug-taking behavior. The most recent data from the
National Survey on Drug Use and Health estimates 24.6 million persons in the
USA aged 12 or older were current illicit drug users [90]. Insofar as drug abuse
necessarily involves repeated episodes of drug use, a conservative estimate of 50
drug use episodes per year per user would implymore than one billion drug use
episodes per year across all users. As an index of the frequency with which these
drug use episodes resulted in arrest, the Federal Bureau of Investigation reported
that approximately 1.5 million persons were arrested on drug abuse violation
charges in 2013. This represented 13.3 % of all arrests in the USA for that year
[91], but these data suggest that roughly only 0.1 % of illicit drug use episodes
resulted in punishment in the form of arrest by a police officer. Pre-
clinical data from drug vs. food choice studies suggest that this low
probability of punishment likely limits its effectiveness. In nonhuman
primates, for example, pairing a punisher (intravenous histamine

144 Substance Use Disorders (FG Moeller, Section Editor)



injection) with cocaine injections reduced cocaine choice and promoted
reallocation of behavior to food choice, and the effect of the punisher
increased with its intensity; however, reducing the probability of pun-
ishment from 100 % (punisher paired with every cocaine injection) to
33 % (punishment paired with every third injection) completely elimi-
nated the effect of punishment [92]. Moreover, the effectiveness of
punishment also decreases hyperbolically with the delay to its delivery,
such that the longer the delay between delivery of cocaine and delivery
of the punisher, the less effective the punisher is to decrease subsequent
cocaine choice [93]. It should also be noted that preclinical studies have
demonstrated that punishment of choice maintained by nondrug alter-
native reinforcers can increase cocaine choice [92]. An understudied
implication of this phenomenon is that high rates of drug use clinically
may sometimes involve undesirable and/or unintentional punishment of
alternative behaviors, and under these conditions, cocaine use can be
expected to decline if punishment of alternative behaviors is reduced or
eliminated.

Implications and future directions

Preclinical drug vs. food choice procedures offer an increasingly prominent
methodology for evaluating candidate medications for treatment of addiction
to cocaine and other drugs. These procedures model the human clinical context
of cocaine use in a complex economy with multiple concurrently available
reinforcers, are homologous to choice procedures used to assess candidate
medications in clinical laboratory studies, and generate a rate-independent
measure of cocaine’s reinforcing efficacy. In studies conducted to date, cocaine
choice is most reliably decreased by chronic treatment with monoamine
releasers such as amphetamine. Novel compounds, such as the muscarinic
agonist xanomeline, have also demonstrated treatment efficacy to decrease
cocaine vs. food choice in preclinical studies. Drug choice can also be reduced
by non-pharmacological manipulations that include (1) environmental en-
richment that increases availability of alternative reinforcers, (2) increasing the
relative cost of cocaine and/or decreasing the relative cost of alternative rein-
forcers, and (3) increasing the reliability of punishment for cocaine use and/or
decreasing punishment of alternative behaviors. However, each of these
treatment strategies is associated with obstacles. Pharmacotherapies pro-
duce side effects. For example, cardiovascular concerns of monoamine
releaser treatment may hinder broad clinical deployment, but see Negus
and Henningfield [16] for a commentary on potential side effects asso-
ciated with monoamine releasers as candidate medications for cocaine
addiction. Non-pharmacological treatments may be difficult to reliably
institute. Conversely, cocaine vs. food choice is not reliably reduced, or
is increased, by treatment with monoamine uptake inhibitors, DA re-
ceptor antagonists and DA receptor partial agonists, mu opioid receptor
agonists, kappa opioid receptor agonists and antagonists, and other
treatments including lithium.

One potential future direction will be to examine the role of certain
biological variables, such as gender or genotype, as determinants of
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both drug vs. food choice and the sensitivity to pharmacological and
non-pharmacological treatment manipulations. For example, gender dif-
ferences have been reported in preclinical cocaine vs. food choice pro-
cedures [94•, 95]. These preclinical results are consistent with potential
gender differences in human laboratory cocaine vs. money choice studies
[96]. The degree to which these gender differences may impact sensitiv-
ity to candidate medications or non-pharmacological treatment strategies
remains unexplored.

A second potential future direction to determine the predictive valid-
ity of preclinical drug vs. food choice procedures would be the deter-
mination of candidate medication effects for treatment of abuse to other
drugs. For example, a recent preclinical study demonstrated no effect of
bupropion treatment on methamphetamine vs. food choice in nonhu-
man primates [97]. Moreover, these preclinical results are consistent
with both human laboratory [98] and double-blind placebo-controlled
clinical trial recent demonstrating that bupropion did not decrease
methamphetamine use [99]. The degree to which preclinical drug vs.
food choice procedures are predictive of candidate medication effects for
abused drugs other than cocaine remains to be fully ascertained. How-
ever, one roadblock in assessing the predictive validity of preclinical
drug vs. food choice procedures is the availability of pharmacological
compounds that have demonstrated therapeutic efficacy for decreasing
drug use in humans. To date, no such compounds have been identified
for methamphetamine addiction.
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