
Vol.:(0123456789)1 3

https://doi.org/10.1007/s40495-021-00270-9

NEUROPHARMACOLOGY (G ASTON-JONES, SECTION EDITOR)

Neuroinflammation in Epilepsy—Diagnostics and Therapeutic 
Perspectives

Piotr Lach1 · Wiktoria Klus1 · Krystian Zajdel1 · Adam Szeleszczuk1 · Ewelina Komorowska1 · Klaudia Burda1 · 
Przemysław Kurowski2,3 

Accepted: 30 November 2021 
© The Author(s) 2021

Abstract
Epilepsy is a neurological disease that affects approximately 1% of the world’s population. Epilepsy is characterized by the 
occurrence of repeated epileptic seizures due to abnormal neuronal activity. Although this disorder is currently incurable, 
it can be controlled for years with the appropriate therapy and patient adherence. Inflammation is an organism’s natural 
response to a pathological stimulus, aimed at eliminating the triggering factor. Multiple studies point out a significant cor-
relation between an increased level of inflammatory mediators and the frequency of epileptic seizures. Increased levels of 
IL-1β, IL-2, IL-4, IL-6, IFN-γ, and TNF-α were found in the serum of patients with epilepsy. Additionally, pro-inflammatory 
cytokines were found to be upregulated during epileptic activity in rodents: CCL2 and CCR2 receptor expression was shown 
to be upregulated during inflammation induced by lipopolysaccharide administration, and CXCR5 was found to be primar-
ily upregulated in brain cells. Early detection of the described factors may serve as a biomarker for epilepsy but also hold 
potential in developing novel immunomodulating therapies. Thus, a better understanding of the immune system’s involve-
ment is necessary for the development of new therapeutic perspectives in epilepsy.
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Introduction

Epilepsy is commonly understood to refer to a group of 
chronic neuronal disorders having a complex and multifac-
torial background, characterized by recurrent seizures [1]. 
Cognitive deficits and mood disorders often accompany 
epileptic seizures [2]. Epilepsy is a brain dysfunction with 

a paroxysmal character. Spontaneous attacks are triggered 
by erroneous synchronous discharges of neurons, which 
manifest themselves as loss of consciousness, tonic mus-
cle contraction, and sensory and vegetative disorders [3]. 
A wide range of antiepileptic drugs (AEDs) have been used 
to treat patients with epilepsy. However, about one-third of 
individuals with epilepsy still experience seizures that do 
not respond to medication [4]. Therefore, understanding the 
cellular mechanisms involved in epileptogenesis is neces-
sary for the development of new drugs that may be useful 
in treating epilepsy.

Epilepsy

The appearance of epileptic seizures is related to the sum of 
the ensuing neuronal discharges that result from prolonged 
bursts of action potentials, followed by neuronal hyperpo-
larization [5, 6]. Symptoms of an epileptic seizure depend 
on the brain region of the attack. They arise in certain areas 
of the brain and can then spread to the cerebral hemispheres 
or remain in the place of origin. The mechanism underlying 
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formation of the epileptic focus is still not fully understood. 
Most likely it is associated with mutation in the genes 
encoding voltage-dependent subunits of sodium channels; 
as a result, glutamatergic neurons become overactive and 
glutamate is released in excess or fails to be inhibited by 
gamma-aminobutyric acid (GABA) [7]. Recent studies have 
shown that the brain tissue of patients with epilepsy, before 
or during an attack, contains elevated glutamate concentra-
tions, especially at the epileptic focus itself. This increase 
may also be due to a failure in glutamate uptake, as well as 
glutamate-dependent changes in receptor function [8]. An 
increase in glutamate binding by NMDA receptors has been 
demonstrated in patients with epilepsy, leading to a sodium 
and calcium influx into the neuronal cell [9, 10].

Epilepsy treatment is based on blocking pre- and post-
synaptic sodium channels through antiseizure drugs, thus 
reducing the activity of the epileptic seizure and reduc-
ing the chance of its spread [11]. Nevertheless, a signifi-
cant group of epilepsy patients still do not respond to the 
drugs currently in use. It should also be noted that current 
medications only reduce the intensity of epileptic seizures. 
Despite continuous pharmacological developments and cur-
rently available surgical treatments, limited by an insufficient 
understanding of the mechanisms underlying the develop-
ment of epilepsy, some patients still remain symptomatic 
even with optimal available therapies [12].

During the discharges that stimulate glutamatergic neu-
rons under physiological conditions, inhibitory interneurons 
are also activated. GABA binds to the ionotropic GABAA 
and metabotropic GABAB receptors. Activation of GABAA 
receptors leads to Cl− anions entering the neuronal cell, 
leading to hyperpolarization or preventing depolarization of 
the neuron. Several studies suggest that mutations in the α1 
and γ2 subunits of the GABAA receptor underlie the devel-
opment of idiopathic epilepsy [13, 14]. These mutations lead 
to disturbances in ion permeability and receptor transport on 
the cell surface. The basic mechanism of antiepileptic treat-
ment is restoration of inhibition mediated by GABA [15]. 
Barbiturates and benzodiazepines that bind to the GABAA 
receptor increase the effect of endogenous GABA, which 
leads to an increase in the opening time and the frequency of 
opening of the chloride channel [16]. Many AEDs increase 
the concentration of endogenous GABA, including modulat-
ing the action of GAD glutamate decarboxylase—an enzyme 
critical to GABA synthesis—which also leads to increased 
availability of this neurotransmitter [17]. On the other hand, 
the inhibition of GABA aminotransferase, which is respon-
sible for catalyzing the decomposition of GABA, leads to its 
accumulation, which also reduces epileptic symptoms [18].

The occurrence of mutations in voltage-dependent 
sodium channels and increased binding of glutamate by 
AMPA and NMDA receptors induces hyperactivity of gluta-
matergic neurons leading to the release of excess glutamate 

[19]. In these neuronal cells, decreased glutamate reuptake 
has also been observed, and the resulting accumulation of 
neurotransmitter increases the sensitivity of AMPA and 
NMDA receptors. At the same time, hyperactive neurons 
activate GABAergic inhibitory interneurons, which, due 
to the GABA receptor mutation, fail to inhibit hyperactive 
neurons [15]. Together, these phenomena lead to a wave of 
excessive excitation between neuronal cells.

Neuroinflammation in Epilepsy

Recent studies have confirmed that epilepsy may have not 
only a neuronal but also a non-neuronal pathogenesis, e.g., 
glial cells or brain vascularization [20, 21]. Glial func-
tions that are regulated unpredictably can trigger an attack 
and thus promote epileptogenesis, a mechanism based on 
increasing neuronal excitability and inflammatory pro-
cesses. Various glial abnormalities, including chronically 
activated astrocytes or microglia, glial scars, and a variety of 
gliomas, often form epileptic centers in the brain [22]. The 
central nervous system (CNS) shows a strong inflammatory 
response not only upon exposure to infectious agents such as 
LPS- or TLR receptors but also in the case of injuries such 
as epileptic seizures. The outcome of inflammation on cells 
depends mainly on the amounts of cytokines produced and 
the length of time the tissue is exposed to them and the bal-
ance between neurotrophic factors and inflammatory factors 
produced by the cells responsible for them [23].

Changes in the structure of the blood–brain barrier (BBB) 
can be caused by trauma, seizures, or infections in the CNS 
[24]. Many neurological diseases share the common trait of 
inflammation and a weakening of the integrity of the BBB 
[25]. The resulting exogenous inflammatory mediators have 
the ability to reduce the threshold for epileptic seizures, 
thereby altering the sensitivity of the channels, the uptake 
or release of neurotransmitter, and the glia-related regulation 
of extracellular ion concentration [26, 27].

There is a multitude of evidence that epilepsy is associ-
ated with inflammation and with increased levels of pro-
inflammatory cytokines in neural tissues, the cerebrospinal 
fluid, and blood plasma. The concentration of cytokines in 
the cerebrospinal fluid of patients with epilepsy correlates 
with both frequency and duration of seizures [28]. Simul-
taneously, the inflammatory reactions in the brain can lead 
to BBB damage, causing an influx of albumin from the 
blood to the brain, increasing the production of cytokines 
and inhibiting the reabsorption of glutamate and potassium 
ions, which leads to neuronal hyperactivity [22]. Together 
with albumin leakage, leukocyte leakage occurs, which pro-
gresses inflammation further. All of this can create loops 
in which seizures and inflammation recur with each other.
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Inflammatory Mediators in Epilepsy

Cytokines are primarily produced by glial cells and neu-
rons during brain inflammation. Sinha et al. [29] supported 
a theory of cytokine production in the brain triggered by 
seizure activity. According to this postulation, these pro-
teins stimulate various inflammatory pathways that can 
lead to nervous system damage and excessive excitability 
of nerve cells. Vezzani et al. [28] found that induced sei-
zures cause a time-dependent increase of pro-inflamma-
tory cytokines. Sinha et al. [29] observed a high increase 
in levels of IL-1β, IL-2, IL-4, IL-6, IFN-γ, and TNF-α in 
serum from patients with epilepsy when compared to the 
control group. A study by Numis et al. [30] showed that 
neonates with acute seizures had higher levels of IL-1, 
IL-6, IL-8, IL-9, IL-13, and TNF-α than neonates without 
acute seizures.

However, only elevated levels of pro-inflammatory 
cytokines (IL-1β, IL-6, TNF-α) as well as IL-9 were asso-
ciated with later development of epilepsy in these children. 
Upregulation of pro-inflammatory cytokines was present 
during epileptic activity in rodents [31]. Mice overexpress-
ing the IL-1 receptor antagonist (IL-1Ra) were less sus-
ceptible to seizures [28]. Increased IL-1β was detected in 
the peripheral blood in dogs with epilepsy regardless of 
the cause [32]. In the CSF of dogs with naturally occurring 
seizures, significantly higher TNF-α and IL-6 concentra-
tions were found [33]. In the forebrain of rats, IL-6 and 
TNF-α levels were increased after acute seizure, but only 
briefly, in contrast to IL-1β, which did not return to base-
line levels even after the seizure had subsided [34]. Con-
centrations of IL-6 in the serum of patients with refractory 
epilepsy were significantly increased compared to healthy 
people [35]. Moreover, the level of IL-6 was higher in 
patients receiving polytherapy compared to patients 
receiving monotherapy. Levels of IL-6 were shown to 
depend on seizure type. For instance, Il-6 concentration 
was significantly increased even at the 6-h time point after 
tonic–clonic seizures compared to simple partial or com-
plex partial seizures [36]. Patients with temporal lobe epi-
lepsy had higher IL-6 serum concentrations than patients 
with extratemporal lobe epilepsy. Furthermore, it has been 
demonstrated that lamotrigine remarkably decreases the 
levels of IL-6, as well as IL-1β [37].

The cytokine CCL2 has been shown to be involved in 
neurodegenerative diseases such as Alzheimer’s disease 
and multiple sclerosis [38]. CCL2 acts through activation 
of G protein-coupled receptors such as the chemokine 
receptor CCR2. Some AEDs, including topiramate and 
valproic acid, moderate influx of calcium ions. It has been 
demonstrated that inflammation induced by lipopolysac-
charide administration may increase seizure frequency 

[39]. Furthermore, expression of the CCR2 receptor has 
been found upregulated. Cerri et al. [39] provided evidence 
that CCL2/CCR2 antagonists suppress lipopolysaccharide-
induced seizures. CSF levels of multiple cytokines, includ-
ing CCL2, were elevated in patients with febrile infection-
related epilepsy syndrome and febrile status epilepticus 
[40]. Increased levels of CCL2 and the CCR2 receptor 
were observed in patients with intractable epilepsy [41].

A study by Wu et al. [42] highlights a crucial role for micro-
RNA miR-206 in epilepsy. Induced expression of miR-206 
could alleviate seizures in a kainic acid (KA)–induced epilepsy 
model. It has been shown that the CXCR2 receptor was also 
upregulated in patients with temporal lobe epilepsy [43]. The 
CXCR2-selective antagonist SB225002 could importantly 
prevent CXCR2 expression.

The chemokine CXCL13 is highly expressed in CNS, and 
its only specific receptor is CXCR5. Both were found upregu-
lated in the brain tissue of patients with epilepsy and rats with 
temporal lobe epilepsy. CXCR5 was primarily upregulated in 
brain cells [44].

TNF-α appears to be clearly involved in the pathogenesis 
of epilepsy. Mean serum TNF-α levels were significantly 
increased in patients with febrile seizures [45]. Moreover, 
TNF-α correlated with seizure recurrence. Another study 
reported that, in a Theiler’s murine encephalomyelitis virus 
(TMEV)–induced mouse model of limbic epilepsy mRNA, 
protein levels of TNF-α and TNF-α receptors were sig-
nificantly upregulated in the hippocampus, a structure criti-
cally involved in seizure initiation [46]. TNF-α most likely 
acts through the TNFR1 receptor, increasing glutamate 
transmission.

Anti‑inflammatory Therapy—a Future 
Perspective

One-third of patients with epilepsy do not respond efficiently 
to AEDs [47]. For this reason, it is important to the devel-
opment of novel treatments that prevent epileptic seizures or 
reduce seizure burden. Numerous studies indicate that the 
activation of a cellular pathway linked to inflammation is a 
common feature of different types of epilepsy [23, 48–50]. The 
disruption of this cellular mechanism may be a novel potential 
target for new anti-epileptic therapies. In addition, classical 
AEDs do not target the reason for epilepsy, but only on its 
symptoms. Anti-inflammatory drugs may help to target the 
underlying causes. On the other hand, anti-inflammatory drugs 
could have unpleasant side effects.
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Conclusion

Epilepsy is commonly understood to refer to a group of 
chronic neuronal disorders with a complex and multifac-
torial background, characterized by recurrent seizures. 
Results from recent studies increasingly demonstrate that 
the immune system is an important factor in epileptogen-
esis. Particular interest has begun to focus on the role of 
cytokines in this process. Under normal physiological con-
ditions, cytokine expression in the brain has been demon-
strated to be relatively low [23, 51]. However, accumulat-
ing evidence suggests that it increases during chemically or 
electrically induced seizures in experimental models and in 
clinical cases [23, 29, 52]. Additionally, central and periph-
eral inflammation may play a significant role in the patho-
genesis of epilepsy and peripheral inflammatory cytokines 
may importantly be able to cross the BBB and affect the 
CNS [23, 39]. Therefore, a better understanding of the role 
of the immune system in epilepsy is vital for the develop-
ment of novel therapeutic perspectives.
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