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Abstract
Purpose of review This article provides a brief overview of natural phytoprotective products of allium with a special focus on the
therapeutic potential of diallyl polysulfanes from garlic, their molecular targets and their fate in the living organisms. A comprehen-
sive overview of antimicrobial and anticancer properties of published literature is presented for the reader to understand the effective
concentrations of polysulfanes and their sensitivity towards different human pathogenic microbes, fungi, and cancer cell lines.
Recent findings The article finds polysulfanes potentials as new generation novel antibiotics and chemo preventive agent. The
effective dose rates of polysulfanes for antimicrobial properties are in the range of 0.5–40 mg/L and for anticancer 20–100 μM.
The molecular targets for these redox modulators are mainly cellular thiols as well as inhibition and/or activation of certain
cellular proteins in cancer cell lines.
Summary Antimicrobial and anticancer activities of polysulfanes published in the literature indicate that with further develop-
ment, they could be promising candidates for cancer prevention due to their selectivity towards abnormal cells.
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Introduction

Sulfur plays a major role in biology and is found in numerous
peptides, proteins, and low molecular weight metabolites.
Among the sulfur compounds found in plants, bacteria, fungi,
and animals are many agents with unique chemical and bio-
chemical properties linked to redox processes, metal binding,
and catalytic reactions to name a few.

Nature provides a range of sulfur redox modulators from
plants, fungi, bacteria, and animals that have been investigated
to determine their therapeutic potential. Of which the genus
allium presents a range of sulfur-based natural products with
many benefits to human health from antimicrobial to antican-
cer effects. These natural products are particularly prominent

in garlic (Allium sativum) and onion (Allium cepa) mainly
consisting of thiosulfinates and polysulfanes. The biological
activity of such compounds is often associated with a broad
spectrum of (bio)chemical properties. Their modes of action
are often associated with redox activity, catalysis, metal bind-
ing, enzyme inhibition, and/or radical generation allowing
these reactive sulfur species (RSS) to interact with oxidative
stressors, to affect the function of redox-sensitive cysteine
proteins, and to disrupt the integrity of DNA and cellular
membranes. This has been discussed in various reviews pre-
viously [1, 2]. In some cases, the biological activity of sulfur-
containing plant products depends on initial enzymatic activa-
tion, which allows thiosulfinates to be generated with high
target selectivity. The antibiotic and anticancer activities of
RSS make them interesting from a pharmacological perspec-
tive. Not surprisingly, research into the biochemical and phar-
macological properties of these sulfur chemotypes is advanc-
ing rapidly especially as anticancer agents [3].

In order to understand how these sulfur compounds devel-
op their biological activities, we need to consider the rather
complicated chemistry of various sulfur chemotypes and their
biochemical transformations. Sulfur redox networks provide a
glimpse of sulfur-centered formation and transformation path-
ways in vivo [4]. Although such networks are continuously
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expanding, they serve as a snapshot of the sulfur redox chem-
istry known to date and illustrate the complexity of redox-
active sulfur species. For full details on sulfur redox mecha-
nisms and pathways, a previous review article by Jacob is
worth reading to understand this chemistry [2].

Redox Sulfanes of Allium

Sulfur metabolism in plants provides a treasure of reactive
sulfur species (RSS) that includes several chemically unusual
substances, such as thiosulfinates and polysulfanes from
Alliums.

Polysulfanes are the most abundant organosulfur metabo-
lites produced by garlic (Fig. 1) and are the result of an enzy-
matic reaction involving the non-protein amino acid alliin (S-
allyl-L-cysteine sulfoxide), stored in large amounts in the cy-
tosol of the plant cells (5–14 mg/g fresh dry weight, 1.4% of
fresh weight) and an enzyme, allinase, present in the vacuole
[6]. Upon crushing the enzyme substrate reaction produces
and intermediate thiosulfinates, allicin which is not very stable
at room temperature (half-life 3.1 h at 20 °C) [7].

Upon heating, allicin undergoes a cascade of further chem-
ical rearrangements leading to other organosulfur molecules
such as ajoene, dithiines, and predominantly diallyl
polysulfanes (Fig. 1). The diallyl polysulfanes with DAS1-
DAS4 constitute a major part of garlic extract and oils with
others like methylated polysulfanes [8]. In this article, we will
limit discussion to the diallyl polysulfanes mentioned in Fig. 1.

These diallyl polysulfanes (DAS1-DAS6) depicted in
Fig. 1 exhibit distinct redox properties, which provide an in-
teresting spectrum of biological activities in vivo, such as
antibiotic, fungicidal, pesticidal, or anticancer activity. The
last decade has provided an insight into the molecular basis
for such activity and has achieved a better knowledge of the in

vitro properties of diallyl polysulfanes. This has led to an
improved understanding of their impact on intracellular redox
signaling and control pathways in living cells.

The full impact of sulfur in living systems becomes appar-
ent by considering the diversity of sulfur species and their
reactions. The biological activity of RSS can be attributed to
sulfur and its uniqueness to exist in various oxidation states
that exist naturally and able to transform in in vivo environ-
ments to plethora of different chemotypes. The oxidation
states and various chemotypes have been discussed in a de-
tailed review previously [2]. The redox-active sulfur species
are able to oxidize thiols to generate oxidative stressors (e.g.,
peroxides, hydroxyl radicals, hydropersulfides, persulfides)
which in turn results in cocktail of RSS that can adopt various
pathways in the cell.

Medicinal/Pharmacological Properties of Sulfanes

Antimicrobial Activity

The key studies accredited allicin as the main contributor for
the antimicrobial activity of garlic [9]. Allicin was found to
inhibit bacterial growth as a vapor of lung pathogenic bacteria
from the genera Pseudomonas, Streptococcus, and
Staphylococcus, includingmulti-drug-resistant (MDR) strains,
suggesting that it could be used to combat bacterial lung in-
fections via direct inhalation; currently, there are no volatile
antibiotics available to treat pulmonary infections [10].
Growth inhibition of Escherichia coli during allicin exposure
coincides with a depletion of the glutathione pool and S-
allylmercapto-modification of proteins, resulting in an overall
decreased total sulfhydryl levels, which is accompanied by the
induction of the oxidative and heat stress response. The mode
of action of allicin is a combination of a decrease of

Fig. 1 A selection of the redox-
sulfur chemistry found in garlic.
Garlic produces various other
chemicals which are not part of
this review. The polysulfanes
produced by garlic on crushing
vastly depend on methods of
extraction and temperature [5]. In
figure DAS1 (diallyl sulfane),
DAS2 (diallyl disulfane), DAS3
(diallyl trisulfane), DAS4 (diallyl
tetrasulfane), DAS5 (diallyl
pentasulfane)
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glutathione levels, unfolding stress, and inactivation of crucial
metabolic enzymes through S-allylmercapto-modification of
cysteines [11]. It is suggested that allicin’s ability to
permeabilize cell membranes may contribute to its antimicro-
bial activity independently of its activity as a thiol reagent [12].

Garlic oil and its major diallyl polysulfanes constituents, as
well as garlic extract, and allicin possess significant activity
against H. pylori [13]. DAS2 and DAS3 were found to be the
most abundant components in garlic oil. Interestingly, DAS4
also inhibits H. pylori, an activity which might be relevant in
the context of garlic consumption and stomach ulcers. The
minimum inhibitory concentrations (MICs) and minimum
bactericidal concentrations (MBCs) of DAS4 against the
NCTC 11637, and 107018 B strains of H. pylori are between
3 and 6 μg/mL, i.e., even lower than the values for allicin (6–
12 μg/mL). DAS1, DAS2, and DAS3 were less active, with
MIC values of 2074–4148, 100–200, and 13–25 μg/mL, re-
spectively [14].

There have been many studies using garlic to combat clin-
ically important bacteria and fungi. Garlic extract was tested
against three major antibiotic resistant pathogens: C. albicans,
MRSA, and P. aeruginosa. Interestingly, a synergism effect
was reported of garlic extract improving the effectiveness of
the antibiotics [15]. A separate study on 30 clinical isolates of
MRSA found that allicin, extracted from garlic, caused 88% of
the strains tested to have MICs of 16 μg/mL and all strains
were inhibited at 32 μg/mL [16]. Garlic extract was used in a
study on the drug resistant pathogens E. coli, P. aeruginosa, B.
subtilis, S. aureus, K. pneumoniae, S. sonnei, S. epidermidis,
and S. typhi.All pathogens showed high susceptibility to garlic
extract where the lowest MIC was 0.05 mg/mL [17]. Studies
using synthetic allicin, which included multi-drug resistant
(MDR) strains, showed that the growth of the majority of
Pseudomonas, Streptococcus, and Staphylococcus isolates
was completely inhibited by 64 μg/mL allicin. S. pyogenes
(SNo 67467), S. pneumoniae (SNo 68668), and S. aureus
(ATCC 43300) were completely inhibited by 32 μg/mL allicin
and all A. baumannii isolates were completely inhibited by
16 μg/mL. However, K. pneumoniae isolates were slightly
more resistant, with a MIC of 128 μg/mL. P. aeruginosa
(DSM2659) showed high resistance to allicin (MIC 512 μg/
mL) compared to P. aeruginosa (PAO1 SBUG8 and PAO25),
MIC 64 μg/mL. MDR and non-MDR S. pneumoniae strains
tested were equally susceptible to allicin and showed MICs
from 32 to 64 μg/mL allicin and MBCs from 64 to 128 μg/
mL allicin, respectively. This study shows that different strains
have different susceptibilities to garlic and its constituents [10].

Antifungal studies found that garlic oil can penetrate the
cell membrane ofC. albicans as well as organelle membranes,
such as mitochondria, which would result in destruction of the
organelle and ultimately cell death. Due to their lipophilic
nature, it is likely that many of the diallylpolysulfanes can
pass through membranes of various organisms [18] and they

have been shown to interact with membrane lipids to modify
membrane fluidity [19].

Garlic oil has been shown to induce differential expression
of important genes such as those involved in pathogenesis,
oxidation-reduction, and cellular response to drugs and star-
vation [20]. Allicin and aged garlic extracts exhibit antimicro-
bial properties against the Burkholderia cepacia complex
(Bcc), an intrinsically multi-resistant and life-threatening hu-
man pathogen showing the modification of cysteine residue
which suggest allicin ability as a general electrophilic reagent
targeting protein thiols [21, 22].

An important observation, which is demonstrated in
Tables 1 and 2, is the different susceptibilities of pathogens
to the different garlic constituents. DAS3 and DAS4 from
garlic exhibit a wide spectrum of antimicrobial, antibacterial
and antifungal activities For example, DAS3 and DAS4 both
inhibit S. aureus (MIC 2.0 and 0.5 μg/mL, respectively), S.
aureus (MRSA) (MIC 8.0 and 2.0 μg/mL, respectively), C.
albicans (MIC 1.0 and 0.5 μg/mL, respectively), C. krusei
(MIC 8.0 and 4.0 μg/mL, respectively), C. glabrate (MIC
4.0 and 2.0 μg/mL, respectively), A. niger (MIC 2.0and
1.0 μg/mL, respectively), A. fumigatus (MIC 8.0 and 4.0 μg/
mL, respectively), and A. flavus (MIC 4.0 and 2.0 μg/mL,
respectively). While the DAS3 is consistently less active,
DAS4 possesses an antibiotic activity comparable to that of
allicin. For example, againstH. pylori, DAS4 has a MIC of 3–
6 mg/L and allicin has a MIC of 6–12 mg/L [23].

Garlic was tested for synergistic effects with antibiotics
(levofloxacin, gentamicin, azithromycin, and doxycycline)
against Pseudomonas and Acinetobacter genera. This results in
a decrease in the antibioticMIC of 4-≥32, 4-≥2048, 2-≥2048 and
2-≥128 fold, respectively. The garlic increased the rate of lethal-
ity of the antibiotics against the bacteria. While these results
show a potential for the synergistic use of garlic with antibiotics,
a notable weakness of this study is it does not provide any details
of the garlic preparation that is used [37, 38]. This unfortunately
limits the meaningfulness of this piece of work.

Anticancer Activities

Polysulfanes have also been studied as a potential anticancer
agent. Most studies have been conducted on DAS3 which
shows this molecule as promising chemopreventive therapy
for cancer. Studies with polysulfanes on different cancer lines
and effective dose rates are summarized in Table 3. This re-
search area has developed in the last decade enormously and
various research groups have identified different targets in dif-
ferent types of cancer cell lines. The details of molecular targets
identified by polysulfanes are highlighted in next section. This
was noticed that some cancer cell lines are more sensitive to
polysulfanes than others (Table 3). For example, DAS3 was
effective at very low concentration (~ 2–9 mg/mL) in colon
and breast cancer compared to gastric and skin (~ 29 mg/mL).
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Table 1 MIC values (mg/L) of polysulfanes against different human
pathogenic bacteria. MIC values have been converted to mg/L where
other concentration units were reported in the literature

Garlic component/
preparation

Organism MIC
(mg/L)

Reference

Allicin H. pylori 6–12 [23]

Pseudomonas spp. 64 [10]

Streptococcus spp. 64

Staphylococcus spp. 64

P. aeruginosa 64

S. pneumonia 32

S. pyogenes 32

S. aureus 32

A. baumannii 16

E. coli 23 [11]

DAS1 H. pylori 2074–4148 [23]

B. cereus 64 [24]

C. jejuni 56

C. botulinium 64

E. coli 72

L. monocytogenes 48

S. enteric 54

S. aureus 64

V. cholerae 72

DAS2 S. aureus 2 [23]

H. pylori 100

B. cereus 14 [24]

C. jejuni 12

C. botulinium 20

E. coli 20

L. monocytogenes 8

S. enteric 12

S. aureus 16

V. cholerae 24

DAS3 S. aureus 0.5 [23]

H. pylori 13–25

B. cereus 4 [24]

C. jejuni 2

C. botulinium 4

E. coli 12

L. monocytogenes 2

S. enteric 2

S. aureus 8

V. cholera 12

M. tuberculosis 2.5 [25]

DAS4 H. pylori 3–6 [23]

B. cereus 1 [24]

C. jejuni 1

C. botulinium 1

E. coli 4

L. monocytogenes 0.5

S. enteric 0.5

S. aureus 2

V. cholerae 4

Table 1 (continued)

Garlic component/
preparation

Organism MIC
(mg/L)

Reference

Garlic oila H. pylori 8–32 [23]

B. cereus 40 [24]

C. jejuni 36

C. botulinium 32

E. coli 48

L. monocytogenes 20

S. enteric 32

S. aureus 36

V. cholera 40

S. boydii 2.75 [26]

S. flexnar 2.75

S. fluvialis 2.75–5.5

V. metschnikovii 0.34

V. parahaemoyticus 0.08

V. enterocolittica 0.68

C. coli 0.49

C. lari 0.49

B. fragilis 0.04

B. subtilis 0.17–0.68

E. aerogenes 0.68

E. faecalis 0.34

K. aerogenes 0.17

P. vulgaris 2.74

L. acidophilus 0.34–2.75

S. faecalis 0.34

S. mutans 0.08

S. pyogenes 0.04

Garlic extracta P. gingivalis 16.6 [27]

P. aeruginosa 6

A. actinomycetemcomitans 62.5

S. aureus 4 [28]

E.coli 7

B. subtilis 0.1 [29]

K. pneumonia 0.2

S. epidermidis 0.9

S. typhi 0.02

Proteus spp. 7–21 [30]

H. pylori 2–5 [31]

S. epidermidis 22.9 [32]

S. pneumoniae 30.3

S. pyogenes 33

H. influenzae 30.5

Shigella spp. 15.6

P. aeruginosa 3.5

S. mutans 4–32 [33]

a Activity depends on how garlic oil and garlic extract are manufactured.
Various papers depicting the biological activity of polysulfanes did not
mention the characterization of such preparations. The concentrations of
individual polysulfanes in an extract or oil widely depend on method of
extraction or distillation
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General reviews have been published on polysulfanes as
chemopreventives with a special focus on DAS3 for pediatric
cancer treatment. A recent review indicated that DAS3 is of
importance not only for its remarkable antitumor and cancer
preventive effects, as suggested by many in vitro and in vivo
studies, but also because of its many health benefits, like im-
provements to immune-system function, radioprotection, and
protection against microbial infections. These features make it
a potential candidate for the treatment of pediatric cancers.
Herman-Antosiewicz and Yi concluded the molecular targets
of polysulfanes in cellular environment showing that it selec-
tively targets the cancer cells [52, 53].

DAS3 is more potent than mono- and disulfides against
skin cancer. DAS3 inhibits cell growth of human melanoma
A375 cells and basal cell carcinoma (BCC) cells by increasing
the levels of intracellular reactive oxygen species (ROS) and
DNA damage and by inducing G2/M arrest, endoplasmic re-
ticulum (ER) stress. A recent review focuses on the molecular
mechanisms of garlic-derived allyl sulfides on skin cancer
prevention [54]. Similar findings were observed in human

colon cancer cells HCT-15 and DLD-1. The growth of the
cells was significantly suppressed by DAS3, but neither
DAS nor DAS2 showed such an effect [55]. An interesting
paper depicts that allyl group in polysulfanes are responsible
for the disruption of microtubule network formation in human
colon cancer cell line HT-29 cells [43]. The effective dose rate
in different cancer cell lines and their molecular targets are
summarized in Table 3 below.

Molecular Targets and Metabolism of Sulfanes

Low molecular weight (LMW) thiols such as glutathione
(GSH) serve as intracellular redox buffers in most aerobic
organisms. They play a central role in the essential mainte-
nance of an intracellular reducing environment and neutralize
the damaging effects of toxic oxidants. When the cellular con-
centrations of these LMW thiols are dramatically reduced, the
ability to defend against, and survive, oxidative stress is se-
verely impaired [56].

Table 2 MIC (mg/L) of
polysulfanes against different
pathogenic fungal species. MIC
values have been converted to
mg/L where other concentration
units were reported in the
literature

Garlic component/
preparation

Organism MIC (mg/L) Percentage inhibition
at MIC (%)

Reference

Allicin C. albicans 0.8 100 [34]
C. neoformans 0.3

C. parapsilosis 0.15

C. tropicalis 0.3

C. krusei 0.3

T. glabrata 0.3

Aspergillus spp. 8–32 100 [35]

T. rubrum 12.5 90 [36]

DAS2 C. krusei 8 100 [14]
C. albicans 1

C. krusei 8

C. glabrate 4

A. niger 2

A. fumigates 8

A. flavus 4

DAS3 C. krusei 2 100 [14]
C. albicans 0.5

C. krusei 4

C. glabrate 2

A. niger 1

A. fumigates 4

A. flavus 2

Garlic oila C. albicans 0.35 100 [20]
P. funiculosum 0.69

Garlic extracta Candida sp. 14.9 100 [32]

a Activity depends on how garlic oil and garlic extract are manufactured. Various papers depicting the biological
activity of polysulfanes did not mention the characterization of such preparations. The concentrations of
polysulfanes in an extract or oil widely depend on method of extraction or distillation
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Upon entering the target (i.e., microbes and cancer cells)
polysulfanes undergo rapid thiol-polysulfide exchange reac-
tions with these LMW thiols. The implications of this process
are twofold: (a) cellular LMW thiol concentrations decrease
making them more susceptible to oxidative stresses and (b) in
parallel, RSS such as allyl persulfide, hydropolysulfide spe-
cies are formed, which can enhance the production of toxic
oxidants (e.g., hydrogen peroxide, superoxide) thereby in-
creasing oxidative stress [2].

In addition, polysulfanes can also react with exposed cys-
teine thiols on proteins to form S-allyl modified proteins. Such
cysteinyl-S-allylations processes can result in altered/impaired
protein function [57]. In addition to the redox activity of these
molecules, their lipophilicity may contribute to their biologi-
cal activity (e.g., by interrupting membrane integrity, binding

to hydrophobic sites on proteins) [18, 58]. These different
modes of action are summarized in Fig. 2.

In pathological conditions, it has been shown that
organosulfur compounds from garlic have protective ef-
fects, which are mostly associated with antioxidant prop-
erties. Because of the ability of polysulfanes to target mul-
tiple biochemical pathways, many researchers have studied
their roles. The major metabolic pathways of sulfanes in
mammals include methylation, oxidation, glutathione, and
N-acetyl conjugations, and in certain instances, after inges-
tion of raw garlic by a human, allyl methyl sulfide, allyl
methyl disulfide, DAS2, and DAS3 were discovered in the
breath of tested volunteers [63], therefore providing an
early example of their biochemical transformations within
the body.

Table 3 Effect of polysulfanes on different human cancer cell lines and their molecular targets. The concentration units reported in the literature have
all been converted to mg/mL so they can be compared with the antimicrobial activities in Tables 1 and 2

Redox modulator Cancer type/cell line Dose (mg/mL) Target Effect Reference

Ajoene Leukemia 9.36 Bcl-2 Inhibition of proliferation and induction
of apoptosis

[39]
HL-60, U937, HEL

and OCIM-1
Caspase-3

DAS2 Breast cancer 2.6 Estrogen receptor (ER)-positive
(KPL-1 and MCF-7) and -negative
(MDA-MB-231 and MKL-F)

Growth inhibition of cancer cells by
inducing apoptosis

[40]
MDA-MB-231

DAS2 Breast 29.2 Kinase protein Inhibited proliferation of MCF-7 cells
and increased apoptotic ratio

[41]
MCF-7 Caspase-3

DAS2 Colon 29.2 Histone H3 and H4 Inhibition of caner proliferation by
interaction with HDAC pathway

[42]
Caco-2, HT-29

DAS3 Liver 35 Caspase-3 Increased H2O2 levels, lowered thiol
levels and inhibited cell proliferation

[3]
HepG2

DAS3 Colon 2.0 Tubulin Suppression of cell growth [43]
HCT-15 2.3
DLD-1

DAS3 Prostate 7.1 CDK1 Inhibition of cells by dose dependent
manner.

[44]
PC-3

DAS3 Gastric 20.5 Bcl-2 Inhibited viability of BCG-823 in vitro
and modulated Bcl-2.

[45]
BGC-823

DAS3 Breast 1.78 MMP2/9 Suppressed metastasis [46]
MDA-MB-231

HS 578t

DAS3 Colon 8.91 Focal adhesion kinase (FAK Inhibition of angiogenesis [47]
HT29

DAS3 A375 17.8 Mitochondrial caspase pathway Increase in ROS [48]
Skin

DAS3 Lymphoma 3.56 NF-κB Apoptosis in primary effusion
lymphoma [PEL]

[49]
BC2, BC3,

BCBL1, HBL6

DAS3 Prostate 3.56 Androgen receptor (AR) Decrease in AR levels [50]
LNCaP, C4-2,

TRAMP-C1

DAS3 Glioblastoma 17.8 Bcl-2 Inhibition and proliferation [51]
U87MG

Neuroblastoma

SH-SY5Y
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Recent studies in cancer cell lines investigated various
pathways of polysulfanes within cell that includes prolifera-
tion, G2/M phase arrest, and radical and triggering antioxidant
response [41, 52, 64–66]. Polysulfanes can also activate other
biochemical pathways, i.e., inducing caspase-3 activity, en-
hancing H2O2 levels, and strongly decreasing glutathione
levels, inhibiting the expression of estrogen proteins
[67–71], modulation of Bcl-2 family proteins [48], inhibition
of HDAC pathways [72], and angiogenesis [47].

The metabolic and fate of polysulfanes have not beenwide-
ly studied, but this subject has gathered attention in the last
few years. In relation to DAS1, it can form conjugates with
GSH and modified glutathione S-transferase, glutathione per-
oxidase, and glutathione reductase activities [73]. Some stud-
ies in rats conclude that DAS2 quickly produces allyl mercap-
tan, allyl methyl sulfide, allyl methyl sulfoxide, and allyl
methyl sulfone as major metabolites in rat liver. Similarly,
allyl mercaptan was isolated from rat liver and extracellular
fluid of primary rat hepatocytes when perfused with DAS2
(1 mM) after 90 min [74].

DAS2 and DAS3 can induce NAD(P)H:quinone oxido-
reductases 1 (NQO1) via nuclear factor erythroid 2 (Nrf2)
activation [75–78]. It has also been shown that DAS3 can
induce intracellular ROS accumulation, which would ac-
tivate Nrf2 by oxidation of cysteine residues [77]. DAS3

can also elevate intracellular ROS levels and the redox-
regulatory proteins, such as glutaredoxin (GRX) [79]. In
human cancer cells, this activates the ASK1-MEK-JNK-
Bim transduction-signaling pathway, which subsequently
triggers the Bax-dependent mitochondrial apoptotic path-
way resulting in apoptosis [80, 81].

As with all polysulfanes, increasing the H2O2 concentra-
tion can result in a cascade of molecular events due to specific
oxidation of signaling proteins including kinases, transcrip-
tion factors, and phosphatases. H2O2 can also react with low
molecular weight thiols, such as GSH and cysteine, by a nu-
cleophilic attack from the thiolate onto the reactive H2O2. The
acidity of the electrostatic environment around the –SH group
may increase which increases the reactivity towards H2O2.
This would result in a higher fraction of the thiolate form. In
cysteine residues, lower stability of the thiolate increases nu-
cleophilicity towards H2O2 of the thiolate [82]. Some studies
using a sulfane model suggest an important role for O2•- rad-
icals in inducing cell death (apoptosis) [83].

Polysulfanes have also been investigated as potent H2S
donors in the presence of thiols [84, 85]. Preclinical studies
have shown that enhancement of endogenous H2S has an im-
pact on vascular reactivity. In CVDmodels, the administration
of H2S prevents myocardial injury and dysfunction. It is hy-
pothesized that these beneficial effects of garlic may be

Fig. 2 A summary of diallyl polysulfane reactions/interactions in vivo
and their physiological consequences [1]. Once polysulfanes enter the
target cel l , they can react with thiols (GSH) to produce
hydropolysulfane (RSxH), which upon oxidation (ROS) can produce
perthiyl radicals (RSS•). Perthiyl radicals can decompose into thiyl
radicals (RS•), after accepting an electron they can result in formation
of thiols. The pathways of such species have been discussed previously,
and hence, will not be presented here [2, 4]. Diallyl polysulfanes can

either enhance or suppress cytochrome P450s, which are involved in
the detoxification process [59]. It is hypothesized that reduction of
polysulfanes leads to the production of allyl mercaptan (AM) which can
be further methylated by S-adenosyl methionine synthetase into allyl
methyl sulfide (AMS) [60, 61]. AM and AMS have been determined as
DAS1 and DAS2metabolites [62]. SAM S-adenosyl methionine, SAH S-
adenosyl homocysteine

Curr Pharmacol Rep (2018) 4:397–407 403



mediated by H2S-dependent mechanisms [86]. Computational
and experimental studies have revealed that glutathione and
cysteine are capable of releasing H2S from diallyl trisulfide
(DAS3), via thiol-polysulfide exchange pathways, but diallyl
disulfide (DAS2) is a much poorer H2S donor via an α-carbon
nucleophilic substitution pathway [87, 88].

Intraperitoneal (ip) administration of DAS1, DAS2,
and DAS3 in mice increased the activity of rhodanese.
Moreover, DAS2 and DAS3 increased the total sulfane
sulfur level and γ-cystathionase activity in the normal
mouse kidney. Aldehyde dehydrogenase activity was
inhibited in the kidney after DAS3 administration. The
results indicated that none of the studied polysulfanes af-
fected the level of bound sulfur or H2S. Thus, it can be
concluded that garlic-derived DAS2 and DAS3 can be a
source of sulfane sulfur for renal cells but they are not
connected with persulfide formation [89]. DAS1, DAS2,
and DAS3 dissolved in corn oil were given intraperitone-
ally to mice for 10 days. It showed that polysulfanes had a
beneficial effect in the mouse liver, decreasing reactive
oxygen species and malondialdehyde levels, and increas-
ing glutathione S-transferase activity and non-protein sulf-
hydryl group level. Moreover, DAS2 and DAS3 elevated
the total sulfane sulfur pool and activity suggesting its
antioxidant and regulatory capacities [90].

Some studies of DAS4 have shown that it induces reactive
oxygen species (ROS) in normal cells similar to cancer cells in
a time (0 to 60 min) and dose-dependent manner (0 to 50 μM)
[91]; it also activates both the eIF2α and Nrf2/HO-1 pathways
[92].

Conclusion

This review summarizes the numerous biological activities
garlic diallyl polysulfanes are involved in. While there is ex-
tensive evidence that show the various medicinal benefits of
garlic polysulfanes, there is a critical need for controlled clin-
ical studies to strictly evaluate the safety and efficacy of these
compounds for establishing sufficient application methods be-
fore medical use. Furthermore, polysulfanes are emerging as
promising, environmentally benign pesticides which are not
only safe for humans, but also various non-target species en-
dangered by synthetic chemical pesticides [8, 93]. With fur-
ther work, diallyl polysulfanes could provide the basis for the
innovative development of novel antibiotics, fungicides, pes-
ticides, and anticancer agents.
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