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Background: More and more high-throughput datasets are available from multiple levels of measuring gene
regulations. The reverse engineering of gene regulatory networks from these data offers a valuable research
paradigm to decipher regulatory mechanisms. So far, numerous methods have been developed for reconstructing
gene regulatory networks.
Results: In this paper, we provide a review of bioinformatics methods for inferring gene regulatory network from
omics data. To achieve the precision reconstruction of gene regulatory networks, an intuitive alternative is to integrate
these available resources in a rational framework. We also provide computational perspectives in the endeavors of
inferring gene regulatory networks from heterogeneous data. We highlight the importance of multi-omics data
integration with prior knowledge in gene regulatory network inferences.
Conclusions: We provide computational perspectives of inferring gene regulatory networks from multiple omics data
and present theoretical analyses of existing challenges and possible solutions. We emphasize on prior knowledge and
data integration in network inferences owing to their abilities of identifying regulatory causality.
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Author summary: In this paper, we summarize and comment recent progresses in the important bioinformatics field of
gene regulatory network inference from quantitative gene expression profiles, especially focus on the endeavors for
improving the inference precision by integrating multiple resources. The paper will potentially facilitate scientists who are
interested in reversely engineering gene regulatory network to quickly obtain an integrative overview and follow the start-of-
the-art computational techniques.

INTRODUCTION

Due to the availability of biomedical big data, the research
paradigm of biomedical science is undergoing unprece-
dented changes and challenges [1]. Gene regulations play
central roles in transforming genotypic information to
phenotypic performance [2]. Many biomolecules are
involved in the biological processes of gene regulations,
and their relationships are often modeled as gene
regulatory networks [3]. Where the nodes are these
players and the edges are their regulatory interactions. In
healthy states, the dynamics underlying gene regulatory
networks orchestrate a perfect concerto of various
physiological processes in a cell, while they perform

disorders to dysfunctions to diseases when the harmony in
the network system has been broken [4]. Temporospa-
tially rewiring regulations indicate the causality of
phenotypic transitions and differences [5].
The high-throughput techniques such as ChIP-Seq

provide direct recognitions of protein-DNA interactions
by mapping specific binding sites [6]. The prior knowl-
edge about gene regulations such as specific transcription
factor (TF) and gene binding sites can be utilized to
design and analyze the ChIP-Seq data [7]. But the
production of antibodies for specific TFs and the
sensitivities are still limited in these experiments. Mean-
while, there are more and more gene expression profiling
datasets available for measuring the global transcriptomic
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status [8,9]. The epigenetic data such as DNAmethylation
and RNA modification provide more resources for
deciphering gene regulations [10,11]. How to reconstruct
gene regulatory network with these heterogeneous data
have attracted dense attentions in bioinformatics research
community since these transcriptomic data are available
[3].
In this work, we offer a brief review with perspectives

about these computational methods of reconstructing
gene regulatory network from transcriptomic data. We
firstly introduce the problem and the computational
complexity of inferring gene regulatory network. Then,
we review some available data resources and existing
methods for network inference. We summarize the two
types of errors in these methods individually. To achieve
precision network reconstruction, these methods are
formulated to remove the two types of errors in the
inference, especially false positives. We highlight the data
integration of prior knowledge and multiple-level omics
for accurately reconstructing a comprehensive gene
regulatory network, respectively.

INFERRING GENE REGULATORY
NETWORKS

The problem of gene regulatory network reconstruction is
a reverse engineering of inferring gene regulations from
gene expressions, which are measured from the high-
throughput techniques such as microarray [12] or RNA-
Seq [13]. The transcriptomic concentrations measure gene
expressions in parallel manners. The gene relationships
are expected to be reconstructed from their expression
profiles in the samples. The gene regulatory relationships
will be built up from the data in the form of a network
representing their causal interactions.
Usually, gene expression data is represented by matrix
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where aij represents the gene expression value of the j-th
gene (1£j£n) in the i-th experiment (1£i£p). Noted
that i refers to the sample and j refers to the gene. The
framework of gene regulatory network inference is shown
in Figure 1. The task is to reversely induce the regulatory
relationships as shown in Figure 1B from gene expression
profiles (Figure 1A). For the paramount importance of
gene regulations, numerous methods have been proposed
to tackle gene regulatory network inference from data
matrix G.
Biologically, the experiments are often designed to

access specific physiological conditions with limited
number of samples and necessary biological replicates.
For instance, a gene expression profiling experiment is
designed to study the Huh7 cells after hepatitis C virus
(HCV) infection. It contains three replicates at 6, 12, 18,
24, and 48 h post-infections respectively [14]. Totally,
there are 18 samples of microarray with 3 controls before
HCV infection. The gene chip platform contains about
25,000 genes. In this case of network inference, the aim is
to reconstruct the gene regulatory network of these human
cells in response to HCV infection. In these experiments,
we can find that the gene expression profiles only refer to
several snapshots of gene expression abundancy at
several time points after viral infection. While our task
is to figure out a global map of regulatory relationships in
the thousands of genes. This is very similar to re-outline a
48-h movie only by 5 blurred pictures at 5 screenplays, at
least for deducing the relationships among the 25,000

Figure 1. The framework of reconstructing gene regulatory network (B) from gene expression profiling data (A).
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performers (genes). The difficulty underlies the substance
of reversely engineering gene regulatory network from
expression data, not to mention the noise of these high-
throughput data-generating techniques in their developing
periods [15].
Methodologically, gene regulatory network inference is

essentially difficult because of the curse of dimension-
ality. It is a typical large n, small p problem, which
indicates the dimension (gene number) of the inference
problem is very big (large n, often ~30,000), while there
are only a few samples from the high-throughput
experiments (small p, often ~10), i.e., p << n. The
constraints generated from these samples are such few
that there are many possible combinatorial solutions (the
regulatory interactions of gene relationships), which
makes the feasible solution space become very huge,
then makes the search of optimal solution of genuine
regulations become very difficult.
In computational details, supposing there are n genes in

a regulatory network, we model their regulatory dynamics
by the ordinary differential equations (ODE) of their
expression levels as follows:

 

gí1 =
dg1
dt

=c11g1 þ c12g2 þ � � � þ c1ngn

gí2 =
dg2
dt

=c21g1 þ c22g2 þ � � � þ c2ngn

� � �
gín =

dgn
dt

=cn1g1 þ cn2g2 þ � � � þ cnngn

8>>>>>>>>><
>>>>>>>>>:

(1)

where gíj simply refers to the first order derivative of the
expression level of gene gj. Under the linear assumption
of gene regulatory relationships, the derivative change is
caused by the combinatorial regulations of the other genes
in the system reflecting by their expression levels. Thus,
the gene regulatory network inference is formulated to a
parameter identification problem of these equations.
When the coefficients cij are determined by leveraging
gene expression data, their regulatory relationships are
coordinated and the regulatory network is then recon-
structed.
Compare to standard linear equations in algebra, the

variables in Equation (1) are different and converse.
We suppose the number of experiments is p. Let
ðc11, c12, � � � , c1nÞT be ðx1, x2, � � � , xnÞT , the determination
of these coefficients for gí1 is formulated as linear
equations with standard formats.

a11x1 þ a12x2 þ � � � þ a1nxn=b11

a21x1 þ a22x2 þ � � � þ a2nxn=b21

� � �
ap1x1 þ ap2x2 þ � � � þ apnxn=bp1

8>>>>><
>>>>>:

(2)

where matrix A=ðaijÞp�n refers to the gene expression
values, aij is the gene expression of gj in the i-th
experiment. bi1   ð1£i£pÞ refers to the derivation values
of gí1 in the i-th experiment, which is often evaluated by
approximation [16]. In the ubiquitous experiment design,
the experiment number p is often small due to the limited
resources. Thus, RankðAÞ£p << n, and there are infi-
nitely many solutions for these equations. It is very hard
to achieve an optimal solution under few additional
constraints for g1. Note the equations in Equation (2) are
only for the coefficients of gí1 . For the other genes, the
similar cases exist in these equations because the left-
hands of gene expressions are same and only the response
derivatives on the right-hands are different. The solution
space of these coefficients in Equation (1) is so huge that
it is difficult to achieve the optimal solutions for
individual genes, i.e., the inferred regulatory coefficients
between genes.
Theoretically, the parameters of the ODE system in

Equation (1) are identifiable by achieving unique
solutions when there are enough experimental gene
expression datasets. For practical experiment constraints,
the limited observational data cause the gene regulatory
model partially identifiable [17]. The former model is
very simple when compared with true gene regulatory
processes in cells. Advanced models including time-
varying parameters, dynamic gene interactions and higher
order derivatives of gene expression will make the
computational tasks of gene regulatory network inference
much more complicated [16].

AVAILABLE RESOURCES AND METHODS

Due to the centrality of gene regulation in biological
processes, numerous resources have been available for
characterizing gene regulatory systems from multiple
molecular levels. As described in the former section, the
original gene regulatory network reconstruction is from
gene expression profiling data, which are deposited in
databases such as GEO [8], ArrayExpression [9] and SRA
[18]. Table 1 [19–44] lists some currently available
resources for inferring gene regulatory networks. For
instances, the main components in gene regulations, such
as gene, TF, miRNA and protein can be accessed from
GenBank [21], UniProt [43], miRBase [38] and PDB
[42], respectively. The other elements and effects such as
ncRNA [33], RNA methylation [26] and chromatin
accessibility [41] are gradually recognized for under-
standing gene regulations in much more details. Some
prior gene regulation information are also deposited in
databases such as RegNetwork [32], which collects the
known and predicted transcriptional regulations (TF-
gene) and posttranscriptional regulations (miRNA-
mRNA) from various databases and literature. The
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Table 1 Some available data resources for inferring gene regulatory networks
Category Representative Description Refs.

Disease/Expression/

RNA

TCGA The cancer genome atlas (TCGA) generates comprehensive maps of genomic changes in

more than 30 types of cancer from more than 11,000 patients

[19]

ICGC The international cancer genome consortium (ICGC) obtains comprehensive descriptions

of genomic, transcriptomic and epigenomic changes in 50 different tumor types

[20]

DNA GenBank GenBank is the genetic sequence database, with the multiple annotations of all DNA

sequences publicly available

[21]

DNA/RNA/Protein ENCODE ENCODE project is a public research consortium to identify all functional elements in

human genome

[22]

modENCODE It identifies all of the sequence-based functional elements in some model organisms [23]

Epigenomics ROADMAP Epigenomics It contains the maps of histone modifications, chromatin accessibility, DNA methylation,

and mRNA expression across various human cell types and tissues

[24]

NCBI Epigenomics A new public resource for exploring epigenomic data sets in NCBI [25]

RNAMDB A database about RNA modifications containing in many of the known RNA species [26]

MODOMICS MODOMICS is a comprehensive database of RNA modifications with integrated

information related to RNA epigenetics

[27]

IHEC The international human epigenome consortium coordinates the production of reference

epigenome maps of various tissues and cell types

[28]

Expression GEO The widely accessed database for depositing gene expression data of microarray and RNA-

Seq techniques at NCBI

[8]

ArrayExpress It is the data archive of storing data from high-throughput functional genomics

experiments, microarrays and RNA-Seq at EBI

[9]

GTEx The genotype-tissue expression (GTEx) program provides the information about gene

expression and regulation in multiple tissues

[29]

SRA The database provides a repository for the studies of RNA-Seq and ChIP-Seq, as well as

human microbiome project and the 1000 genomes project

[18]

Gene regulation TRANSFAC It provides the transcription factors of data on eukaryotes, and their consensus binding sites

and target genes

[30]

JASPAR JASPAR contains the curated transcription factor binding profiles and sites for eukaryotes [31]

RegNetwork An integrated database of transcriptional and posttranscriptional regulations [32]

ncRNA NONCODE NONCODE is an integrated knowledge database of non-coding RNAs, especially for

lncRNA

[33]

RNAcentral RNAcentral is a comprehensive database of non-coding RNA sequences [34]

TarBase A comprehensive database of experimental microRNA targets [35]

Lncipedia A database of human annotated lncRNA transcript sequences and structures [36]

lncRNAdb lncRNAdb contains a comprehensive list of lncRNAs that are related to biological

functions

[37]

miRBase miRBase is a searchable database of published miRNA sequences and annotation [38]

circBase circBase is a comprehensive database for circular RNAs in multiple organisms [39]

ncRNA/Interaction/

Expression

ChIPBase A database about transcriptional regulations of long non-coding RNA and microRNA

genes from ChIP-Seq

[40]

Modification CR Cistrome A database of chromatin regulators and histone modification linkages collected from ChIP-

Seq

[41]

Protein PDB PDB is the resource of 3D shapes of proteins, nucleic acids, and complex assemblies [42]

UniProt UniProt provides a comprehensive, high-quality and freely accessible data about protein

sequences and functional annotations

[43]

Protein interaction STRING STRING is a database of the known and predicted protein-protein interactions [44]
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existing resources provide the materials for building
computational methods of reconstructing regulatory net-
works.
The corresponding regulatory components and infor-

mation documented in various databases also bring great
challenges for integrating these available data. These
elements located in different databases are often curated
by different research groups and institutes. Thus, the
uniform identifiers (ID) for these regulators and targets
are often very important in the concrete network
inferences. The ID mappings are always time consuming
and some ID mapping tools, such as that of UniProt [43],
provide the online services for interchanging the
component IDs of different databases. In the inference
of gene regulatory network, the ID should be consistent
when we integrate data from diverse sources.
So far, numerous methods have been proposed for

reconstructing gene regulatory networks. Table 2 lists
some of the representative methods. We group them into
six categories, i.e., association methods, Bayesian
methods, Boolean networks, differential-equation-based
methods, knowledge-based methods, and machine-learn-
ing-based methods. Here, we briefly introduce the main
ideas of each category individually and please see our
paper [3] and the references therein for much more details
of these available methods.
The first is the association-based methods. These

methods are to calculate the expression relationships
between genes by defining association measures. The
gene pairs will be identified as regulatory interactions
when their associations are significant, such as WGCNA
[59]. Let gene X and gene Y with their expressions be
X=ðX1,X2, :::,XpÞ and Y=ðY1, Y2, :::, YpÞ respectively.
Based on the two sample vectors, Pearson’s correlation
coefficient (PCC) can be easily calculated. WGCNA

defines SunsignedXY =jcorðX ,Y Þj or SsignedXY =
1

2
þ 1

2
corðX ,Y Þ

as their association scores for unsigned regulation or
signed regulation. Based on these pairwise correlation
values, it uses a concept of topology parameter to set the
threshold of linking edges between genes. Thus a gene
coexpression regulatory network will be built up.
Similarly, the other association measures such as mutual
information can be employed in the calculation. Specifi-
cally, mutual information between X and Y in terms of
entropy is IðX ,Y Þ=HðX Þ þ HðY Þ –HðX ,Y Þ, where
HðX Þ, HðY Þ and HðX ,Y Þ are the marginal entropies of
X and Y, and their joint entropy, respectively. There are
many other association-based methods have been pro-
posed for its simplicity. The association network is often
the first try of investigating relationship between genes.
For their popularity, we provided a comprehensive
comparison study of their performances of reconstructing
gene regulatory network in [60].
Due to the indirect relationships in calculating these

associations, some association-based methods improve
the network inference by conditional probability such as
partial correlation coefficient and conditional mutual
information [60]. By introducing the other gene or gene
set in evaluating the association values, the false positives
of indirect regulations will be eliminated for improving
the inference accuracy. In this sense, an effective method
named ARACNE [61] employs the information equality
formula to remove the indirect mutual information
between gene pairs. We proposed such a method named
PCA-CMI [45] based on conditional mutual information.
The strategy is proven to be effective to eliminate false
positive inferences. We will introduce it in details in the
next sections.
The second category is based on Bayesian network

Table 2 The main categories of these methods for inferring gene regulatory networks from high-throughput data
Category Representative Description Refs.

Association methods WGCNA, MINET,

ARACNE, PCA-CMI

Calculating the association value between genes as their regulatory

potential. Some of them have been improved for removing false positives

[45–48]

Bayesian methods BNFinder, BNLEARN Modeling the regulatory interdependence between genes by Bayesian

statistics. The regulatory links will be built up from the posterior

probability between structure and data

[49,50]

Boolean methods BoolNet,

PBN

The logical operations are employed to model the decision-makings of

gene regulatory interactions

[51,52]

Differential-equation-

based methods

D-NetWeaver, Inferelator,

GeneNetWeaver

The derivatives of gene dynamics are modeled as the responsive variable

of a set of regulatory factors. Then network inference is to identify the

parameters of differential equations

[16,53,54]

Knowledge-based

methods

Network Screening

SITPR

Reconstructing gene regulations from high-throughput data by cooperat-

ing the prior knowledge of gene regulations

[55,56]

Machine-learning-based

methods

TIGRESS, GENIE3 Learning the patterns of existing gene regulatory interactions by a

machine-learning algorithm and predicting new regulations by the

trained classifiers

[57,58]

They are alphabetically ranked by “Category”
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models. They are typical graphical models of representing
the gene interdependence via a directed graph. Supposing
a directed acyclic graph (DAG) of regulatory network be
G, the probability of the consistency between graph and
data be PðGjDÞ. According to Bayesian theorem

PðGjDÞ=PðDjGÞPðGÞ
PðDÞ , the posterior of measuring the

consistency can be evaluated from this formula [62]. For
extending DAG to general network structure, dynamic
Bayesian network is employed to tackle the time series
data [63]. Dynamic Bayesian network models display
their powerful ability and flexibility of inferring gene
regulatory networks from time-course gene expression
data. These methods achieve successful applications in
identifying various regulatory circuits [64].
The third category is based on Boolean networks. The

logic operators “AND (^)”, “OR (_)”, and “NOT (:)” are
employed to address the decision-making regulatory
processes of gene expressions [65]. Supposing gene X,
Y, Z are in a Boolean network GðV ,FÞ, where V is its
node set, and F is its function set. The gene expression of
Z is determined by the Boolean operation on the
expressions of X and Y, such as Z=f ðX ,Y Þ=X ^ Y ,
f∈F. The Boolean assumption often corresponds to the
“ON” and “OFF” of gene regulations [66]. Due to the
stochastics underlying gene regulations, Boolean net-
works have been extended to include the possibilities in
the logic operations, i.e., probabilistic Boolean networks
[51]. The state transitions of gene regulations are shown
to be feasible by modeling them as combinatorial logic
computations. For the loose requirement of experimental
samples in the logic computation, these methods are
feasible for inferring gene regulatory networks from few
samples of gene expression in single cell.
The fourth category is based on differential equations.

As described in the former sections, the derivatives of
gene expression are modeled as the response variable
(gene) of some dependent variables (genes), i.e.,
dxj
dt

=
Xn
i=1

βxi þ β0, j=1, :::, n. After solving the para-

meters of these differential equations, the regulatory
system will be built up for describing the gene regulatory
interactions [16]. Equations with higher order of depen-
dent variables and variable interactions generate more
complicated models [53].
The fifth category is knowledge-based methods, which

are based on the prior knowledge domain about gene
regulations. For instance, if there is a regulation relation-
ship between TF X and gene Y validated by experiments
and documented in literature. The priors can be accessed
freely from RegNetwork [32]. With these priors, the
inference is constrained to be kept in the feasibility. For
example, if we know X always activates Y, the following
model constrains the knowledge of X ↕ ↓Y during the

inferences, which benefits to avoid the possible mis-
identification and randomness of this regulation. With this
in mind and to specify whether the regulation is existed in
specific cases and conditions, the type of methods is to
evaluate the probability of regulatory existence between X
and Y in particular circumstances [67]. The consistency
between knowledge regulation and phenotypic data are
assessed for recognizing gene regulations. For instance,
we proposed a network-based screening method for
evaluating the prior regulatory networks in response to the
gene expression profiling by graphical models [55,56].
The maximum likelihood of the consistency between
them can be evaluated by a mathematical programming.
For documented regulatory pathways, we identified the
activated regulations in cell cycles [55] and during viral
infections [56], respectively.
Last but not least, the machine-learning-based methods

transform the inference of regulation between gene X and
Y to a prediction of their regulatory interaction by a
trained classifier [3]. The basic idea of the classifier is
firstly to learn these corresponding features underlying the
known regulatory relationships from gene expressions
and/or sequences of X and Y. For instance, the
corresponding regulatory relationship is modeled as R=
f ðX ,Y Þ by a machine learning method, where f is an
abstract function often without its explicit form [68]. R is
binary with label 1 representing the regulation between X
and Y, with label 0 otherwise. Given new gene expression
profiles, the trained machine-learning classifier predicts
the new interacting events between the two genes. As
listed in Table 2, TIGRESS presents a LARS (least angle
regression) based classification with resampling the
samples and variables [57]. It formulates gene regulatory
network inference to feature selection. Some other
machine-learning-based methods are based on sequence
and/or structure features of TF and binding sites of
operons [69]. The similar processes of training in the
known gene regulations and predicting novel regulatory
pairs are implemented to reconstruct gene regulatory
networks.

TYPE I AND II ERRORS IN INFERENCE

In gene regulatory network inferences, Figure 2 shows the
two types of errors, i.e., type I error and type II error. The
two errors are the main barriers of precisely reconstruct-
ing gene regulatory network from data. While the reasons
of generating false positive and false negative inferences
underlie at least three aspects. The first is the complicated
regulatory relationships between transcriptional regula-
tors and targets. The second is the developing periods of
high-throughput technologies of generating the measured
data. The third is about the proposed reverse engineering
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methods.
The gene expressions are controlled by many levels of

regulators. TFs and cofactors perform their initialization
of gene transcriptions. The products of mRNA are
silenced by small noncoding RNAs (ncRNA), e.g.,
miRNA [70]. The long non-coding RNA (lncRNA) is
found to be crucial to coordinate gene expressions with
combinatorial regulations of mRNA expression levels
[71]. Recently, circular RNAs (circRNAs) are also found
to be sponges to regulate gene expressions [72]. These
provide clues and indications of the complexity of gene
regulatory network. There might be some important
regulators that still have not been revealed of performing
crucial roles in controlling gene expressions.
The gene expression profiling techniques, such as

microarray [12] and RNA-Seq [13], generate the high-
dimensional data describing the expression abundancies.
These techniques are still in their developing and
maturing periods [73]. For instance, microarray splits
each gene into several oligonuclotides and elaborately
designs them on the probes of a microarray for measuring
the expression of the corresponding gene by fluorescence
[74]. The pipelines of following data preprocessing are
still needed to be improved optimally. Thus, the measured
datasets strongly affect the accuracy of gene regulatory
network inference.
The reverse engineering methods implement various

strategies of inferring the gene regulatory relationships
via the measured datasets [3]. The noise of measured
expressions during RNA extraction from samples, as well
as the former-mentioned complexity of gene expressions
restrict our precise inference [15,75]. The assumption and
limitation of these computational methods also constraint
the accuracy of inferring gene regulatory network from
data.
Towards precise reconstruction of gene regulatory

network from data is essentially to reduce the two types
of errors in the inferences. Specifically, type I error is the
false positive, which refers to the inferred regulations
between genes which are not exist in truth. Type II error
refers to the false negative, which is exist but is not
inferred (as shown in Figure 2B). Moreover, the false
positive inferences inherently contain numerous possibi-
lities. The first is about the regulatory directions. As
shown in Figure 2A, gene regulatory network is an
oriented graph. The upstream regulators locate in the arc
ends and their downstream targets locate at the arc heads.
During the inferences, if the arc is upside down for some
unknown reason, it will result in a wrong inference. The
second is about positive and negative regulatory direc-
tions. The positive regulation is to enhance the gene
expression by promoting transcriptions, while the nega-
tive regulation is refer to the inhibition of gene expression
by repressing the transcriptional functions of TF, RNA

polymerase, and their effective interactions with gene
promoters and enhancers [76]. If the up- or down-
regulations are upside down in some context-specific
physiological processes, we can only obtain wrongly
inferred regulations. The third is the inferences of non-
existent regulations between genes, which are the major
part of these false positives.
The major part of false positives are caused by many

reasons, such as gene cooperation in regulations. For
existing methods of reverse engineering, the inferences
often reach concrete quantitative scores of gene regulation
between regulator and target. The decision of the
existence or non-existence of a regulatory relationship
between two genes is often made by the score. As shown
in Figure 2C, the regulatory information transferring from
X to Y is assessed by a probability (score) PðX ; Y Þ. In fact,
the high score between X and Y is caused by Z, which
means X and Z contain the regulatory cooperation of Y.
The strong implication of a direct regulation between X
and Y is caused by Z and gene Z directly regulates gene Y.

Figure 2. The false positives and false negatives in the
inference network. (A) The true and the inferred gene
regulatory networks, with their differences. The differences

refer to the false positives and false negatives in the network
inference from data. (B) The definition of two types of errors
referring false positives and false negatives in the inference.

Type I error: false positive (FP) refers to the inferred regulations
which are not correct, Type II error: false negative (FN) refers to
the inferred non-regulations which are not correct. (C) The

possible reasons of false positives and false negatives. To
achieve precision reconstruction of gene regulatory network, it
is to remove the two types of errors for the possible reasons by
introducing other gene or gene set.
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The combinatorial gene regulations of X and Z cause the
indirect regulations between X and Y, which is a false
positive regulation. We can use this philosophy to remove
the indirect false positive regulations by introducing the
other genes in the calculation of regulatory possibility. If
the regulatory possibility conditioned on Z, PðX ; Y jZÞ
becomes bigger, this implies the regulation between X and
Y is false positive. The indirect regulation between X and
Y are caused by the direct regulation between X and Z and
that between Z and Y. The other reasons might underlie
the proposed methods, such as kernel canonical correla-
tion analysis (CCA) of measuring the regulatory associa-
tions between genes. Kernel CCA extracts the partial
correlations between genes, which easily results in high
coefficient values then cause false positive inferences
[60]. Due to the sparseness of gene regulation network,
we can add a regularization to control these false
positives.
The false negatives of type II error refer to the true

regulations between genes which cannot be recognized by
the proposed inference methods. There are many reasons
for causing false negative inferences. The hardness of a
single threshold or cut-off is such a reason of generating
the false negative inferences. That is to say, we often only
use a single threshold to evaluate all these candidate
regulations with no regards of their temporal and spatial
features underlying these regulations. For instance, the
inferred coefficient between gene X and gene Y is 0.4,
there is a true regulatory relationship between them
during cell proliferation. When the threshold used for
determining the existence of regulation between genes is
0.7, we will generate a type II error inference. The
unsuitable threshold causes the missing regulatory
relationship in the specific condition.
Compared with the analysis of type I error from a

systematic perspective of gene regulatory cooperation, the
type II errors are majorly caused by gene competition. For
one target gene, the competition between several TFs will
result in the dominant gene regulatory relationships
between some TFs with their targets. As shown in Figure
2C, the regulatory score PðX ; Y Þ between X and Y is
smaller than PðZ; Y Þ between Z and Y. Moreover, if the
value of PðX ; Y Þ is smaller than those of all the other
pairs, the false negative will be generated after setting up a
threshold for selecting the top-scored pairs if there really
exists a regulation between X and Y. The weak regulatory
signal between them causes the false negative inference.
It is very hard to remove the false negatives because the

standard of threshold is often consistent for all gene pairs.
The weak signal-noise-ratio of the true regulations cause
the missing inferences [77]. The false negatives are
caused by competitive values between gene pairs. If we
can propose a dynamic threshold strategy by intelligently
using different thresholds for different gene pairs

according to their context-specific regulatory pathways,
physiological processes and phenotypic conditions. The
number of false negative interactions will be possibly
decreased. That is to say, if we can optimally set up
different thresholds for determining regulations in
different contexts, the false negatives will be greatly
reduced accordingly.

REMOVING FALSE POSITIVE
REGULATIONS

To achieve accurate reconstruction of gene regulatory
network from transcriptomic data, some methods have
been proposed to remove the false positive predictions. So
far, these available methods are often based on condi-
tional probability and information theory. As discussed in
the former sections, another gene or gene set will be
introduced in the evaluation of regulations from a system
biology perspective. Figure 3A demonstrates the main
idea of employing the additional information from the
third-party gene or gene set. For evaluating the regulatory
score PðX ,Y Þ between X and Y, the other related gene or
gene set will be gradually introduced in the calculation to
remove possible biases and obtain a genuine regulatory
score.
Suppose there is another gene or gene set Z, the

conditional probability theory takes Z as conditions for
accessing the genuine regulation between gene X and
gene Y, i.e.,

IðXi;YjjZkÞ=
X

Xi∈X ,   Yj∈Y ,  Zk∈Z

PðXi;Yj; ZkÞ

$log
PðXi; YjjZkÞ

PðXijZkÞPðYjjZkÞ
:

As mentioned in the former section, when
IðXi; YjjZkÞ > IðXi; YjÞ, the false positive regulation
between X and Y is caused by the coexistence of gene Z
or gene set Z. The indirect regulation between X and Y can
then be removed and the inference accuracy can then be
improved. Similarly, partial correlation coefficient can
also be used to remove the false positives. It is defined as

rXY$Z=
rXY – rXZrYZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 – r2XZÞð1 – r2YZÞ
p ,

where r�� refers to the PCC between two genes, and rXY$Z
between X and Y is to extract the correlation between X
and Y by removing the effects of Z [78].
Based on conditional mutual information (CMI) and

path consistency algorithm (PCA), we have proposed a
network inference method named PCA-CMI for remov-
ing false positive inferences [45]. As shown in Figure 3B,
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we firstly build a complete association network via mutual
information. Then we employ the high-order CMI to
eliminate the false positive regulations between genes
iteratively. Under the PCA scheme, the iterative algorithm
will be terminated if a consistent network has been
achieved at the steps of the k-th order CMI and the
(k+ 1)-th order CMI. Because we start our inference from
a complete graph, there are no false negative regulations,
i.e., no type II errors at the initialization step of our
algorithm. The reference or background network has
n

2

� �
possible regulations for chosen. With the condi-

tioned gene or gene set, the false positives of indirect
regulations will be removed gradually. From computa-
tional perspective, CMI can practically calculate small- or
middle-size network. Fortunately, we have improved it to
be a whole-genome-wide reconstruction method by
parallel computing [79].
In fact, we provide a very general strategy of inferring

gene regulatory networks by controlling the type I errors.
For the tremendous difficulty of controlling the type II
errors, we start from a complete network without any false
negative although it is still possible to contain type II
errors in the finally reconstructed network. It is easy to
change CMI to partial correlation coefficient in the
strategy. We can also calculate the conditional association
when we have a prior knowledge network in some
specific conditions. By introducing the related gene or
gene set, the indirect regulatory relationships will be
removed from the background network to achieve
accurate inference of responsive gene regulations.

IMPROVING INFERENCE BY PRIOR
KNOWLEDGE

Pure data-driven methods cannot always guarantee the
accurate inference of gene transcriptional regulations in
many aspects, such as the upside and downside from
regulators to targets, the positive and negative regulatory
directions. For instances, the former reviewed association
network inference methods based on mutual information
contain no such ability of distinguishing regulatory
directions. Without the prior knowledge about regulators
such as TFs, the improved conditional association-based
methods still cannot obtain such information. As for our
method PCA-CMI [45], it reconstructs an undirected
association network without the regulatory directions
indicating information transmission, i.e., which ones are
the regulators and which are the corresponding targets.
The causality between genes cannot be modeled and
revealed [60]. Easily, if we set up the prior TFs in the
inference, the association-based networks will be oriented
and signed. For this perspective, we need combine the
prior knowledge about gene regulations with the high-
throughput data to achieve more accurate network
reconstruction.
Although these pure data-driven methods of inferring

gene regulatory network seem to be very flexible in scope,
it is impossible to infer all the negative regulations
between miRNAs and targets without any incorrect
identification. In our knowledge, miRNAs almost always
perform their negative regulatory functions by silencing

Figure 3. The employee of additional information from other genes to remove false positives. (A) Conditioning on other genes

gradually to evaluate current regulation for identifying direct regulatory interaction. The conditioned gene Z1 and gene set {Z1, Z2,…}
for genes X and Y. (B) The framework of our proposed method PCA-CMI by eliminating indirect regulations from a complete network.
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gene transcripts. If we do not include such information
and infer the posttranscriptional regulations only from
data, the inference will definitely contain many false
positives. For instance, we employ Pearson’s correlation
coefficients as the quantitative association measures to
access the regulatory relationships between miRNAs and
their targets using the gene expression profiles of human
liver tissues of HCC [80]. The values are between – 1 and
1, and the negative and positive regulations are also
defined accordingly. For the documented miRNA-mRNA
interactions downloaded from RegNetwork [32], Figure
4A illustrates the frequency distribution of these pairwise
PCC values underlying these miRNA-target pairs. We can
find that almost half number (47.8%) of the correlations
are with positive values, which indicate that all these pairs
with positive PCC values will result in false positive
regulations if we purely implement the network inference
from data. As for the gene pairs with absolute values over
than 0.7, we can find most of them are with positive
PCCs. They are false positive inferences if we employ the
PCC-based methods. The example clearly motivates the
integration of such prior knowledge with pure data-driven
methods. If we constrain the negative coefficients in the
inferences, we will achieve precise reconstruction of gene
regulations [81].
For the urgent requests of combining the prior knowl-

edge of transcriptional and posttranscriptional regulations
in network inference, we built RegNetwork for docu-
menting the available regulatory interactions [32]. We
integrated the experimental regulations from numerous
databases as well as the predicted regulations from TF-
binding sequence motifs. Currently, RegNetwork con-
tains two genome-wide regulatory networks of 300,000+
edges and 20,000+ nodes for human and mouse

respectively. If we start from the prior regulatory network,
with the profiling data of gene expressions, we can
identify the activated gene regulatory networks in
response to specific biological processes and phenotypic
conditions. To this end, we inferred a regulatory network
during influenza A virus infection in human cells by
integrating prior genome-wide networks and condition-
specific gene expressions. The known regulations such as
the downregulation of miRNAs are introduced as the
constraints of negative coefficients, i.e., CXY£0 between
miRNA X and its target Y [81]. Under the constraints of
prior regulations, the reconstructed gene regulatory
network implies the synergetic regulations between
transcriptional regulations and posttranscriptional regula-
tions by the cooperation between TF and miRNA with
high accuracy [81].
For accessing the transcriptional activity of prior

regulatory network in specific conditions, we proposed
a network screening method of identifying responsive
gene regulations by measuring the consistency between
network structure and expression profiles [55]. The
consistency between them is measured by a maximum
likelihood value of the graph consistency with the data,
and then a permutation test is performed to evaluate its
statistical significance. In other words, we transform the
problem of reconstructing network from data to selecting
a responsive network possibly with minor modifications
by accessing the match between network structure and
measured data. Different conditions and differential gene
expression status will result in different activated
regulatory network structures. The obtained gene network
structure reflects the specific gene regulations in which
their gene expressions have been measured by transcrip-
tomic techniques. In different philosophy, we change a

Figure 4. The PCCs betweenmiRNAs and targets in the cases of HCC. (A) The distribution of PCCs betweenmiRNA and target

gene expressions. (B) The interactions with absolute PCCs over than 0.7. The miRNA-target interactions are downloaded from
RegNetwork.
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reverse engineering of inferring gene regulatory network
from expression data to a forward engineering of
designing network structure based on prior knowledge
to achieve its match with the data [3].
Harnessing prior knowledge of gene regulations can

avoid many potential pitfalls of inaccurate network
inferences. If we know which one are the upstream
regulators and which one are the downstream targets, we
will reach a suitable inference by integrating the priors in
the model. Moreover, prior knowledge indicates the truth
and standard. When we set up which is regulator and
which is target, the models of inference become
purposeful. And in the conditional probabilities, we
cannot calculate all the possible combinations in these
conditioned genes. While with the guidance of prior
knowledge, we can formulate the regulatory processes
into a rational model of describing causal regulations
[16,56]. The prior knowledge narrows down the search
space of solutions and the identification of regulations
become much easier. It highly benefits the precision
inference of gene regulatory network from data.

IMPROVING INFERNECE BY
MULTI-OMICS DATA

In current big data era, it is promising to accurately
reconstruct gene regulatory network by integrating omics
data. There are two lens of data integration. The first is to
combine all the related data such as transcriptomics in an
integrated manner. For instance, there are three datasets
about the study of hepatocellular carcinoma caused by
HCV infection. To achieve an accurate inference of the
responsive regulations between gene X and gene Y, we
need to investigate the different cases of data collection to
achieve a robust inference of regulatory relationship
between X and Y. The gene regulations are temporal and
spatial. The data integration from various laboratories,

groups, platforms and institutes will build consistent and
cross-data-validated gene regulatory networks [82]. The
false positives will be controlled from double-checks
from multiple transcriptomic datasets.
The second aspect of data integration refers to integrate

multi-level omics data for characterizing gene regulations
in cells. To achieve precision reconstruction of gene
regulatory network, we should integrate multi-level omics
data and infer hierarchical gene regulations. Compared
with the former aspect of “deep” data integration, the
hierarchical regulatory network locates special emphasis
on the “wide” or “broad” data integration. The determi-
nants of gene expression coordinate in the central dogma
that DNA makes RNA and RNA makes protein. The
genetic information transformation from DNA to RNA to
protein constructs a hierarchical information system with
many events related to the transcriptional level where
gene regulation takes place. The regulatory components
and elements often function in specific conditions. The
measured gene expressions often refer to some very
specific conditions. For accurately inferring a casual
regulatory network of controlling gene expression, it is
needed to integrate the data of various levels to build a
comprehensive regulatory map.
Figure 5 illustrates the hierarchical levels of gene

regulation. For transcription, it is initialized with the
binding events of RNA polymerases and TF recognition
of a gene promotor region. In current high-throughput
techniques, the expression-level measured data are mainly
from microarray [12] and RNA-Seq [13]. Tens of
thousands of gene expressions are measured from the
extracted RNA concentrations. The transcriptional-level
DNA modifications such as methylation and demethyla-
tion, chromatin open status of protein-DNA contacts
highly affect gene expressions [83]. In the posttranscrip-
tional level, the non-coding RNAs will highly affect RNA
abundancies, such as miRNA, lncRNA and circRNA

Figure 5. The hierarchical gene regulatory information flows in the central dogma. The major parts of gene regulatory

network inferences refer to the transcriptional and posttranscriptional regulations, and the translational and posttranslational
regulations have profound impacts for upstream information fluids and circuits, such as the activities of TF and RNA polymerase.
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[84]. Moreover, the translation and posttranslational
modifications will also affect the TF activity of protein
abundancy [85]. In practice, gene regulations function as
an integrated system. Genetics and epigenetics elements
perform their critical roles in gene regulations under
different temporal and spatial conditions [76]. If multi-
level omics data about them are available, we should
integrate these data in a hierarchical manner to build an
integrative network between these regulatory compo-
nents.
So far, some methods have been proposed to integrate

multi-omics datasets for inferring gene regulatory net-
works [86]. They can roughly be categorized into three
pipelines. The first is based on regression. Supposing
there are M types of multi-omics data, i.e., D1, D2, � � �,
DM . The expression gi of gene i is modeled as the
response variable of these regulators (explanatory vari-
ables) such as TF fj according to these multi-omics data.
At the time point t, the regression model is formulated as

git=αi þ
XM
j

βjDijfjt þ εit, εit � Normalð0,�2Þ:

where βj is the ordinary regression coefficient. Dij is the
coefficient of individual factor on the TF activity fj. The
multiple effects are from the multiple TF-influence
datasets, and they are integrated into these independent
variables (regulators). The problem of inferring gene
regulations from multi-omics data is thus changed to
identify these parameters in the linear regression
equations [87]. More complicated regression techniques
joint with the latter categories are expected to achieve
more precision reconstruction [57,88–90].
The second is based on Bayesian theory. Similar to the

first pipeline, the second category models the gene
expression as a joint probability of TFs and the influence
factors of TFs, i.e., git=PðfitjD1t,D2t, :::,DMtÞ. Accord-
ing to the Bayesian theorem, the intra-relationship
structure of these factors in the multi-omics can be
represented as

PðD1t,D2t, :::,DMtÞ=
XM
i, j, k

PðDitjDjt, :::,DktÞ:

Joint with the combinatorial control from regulators,
the combinatorial factors to these regulators reflecting in
these multi-omics make the network inference model very
complicated [91–93]. With prior knowledge such as the
information flow in the central dogma will make sense of
the former probability expansion from biological per-
spectives, such as TF in transcriptional regulation,
miRNA in posttranscriptional regulations, and phosphor-
ylation in posttranslational modification. In this sense, we
proposed a method named SITPR to integrate multi-

omics data for inferring TF-miRNA cooperative regula-
tory network by prior knowledge of gene regulations, TF-
binding sequence motifs, protein-protein interactions, as
well as mRNA and miRNA expressions [56]. We
reconstructed a comprehensive transcriptional and post-
transcriptional regulatory map during influenza A virus
infection in human epithelial cells.
The third is based on machine learning. In this category,

the methods consider all the related multi-omics data as
the regulatory features and used them to train a machine
learning classifier [94,95]. It often achieves good
inference performance in the tests and validations
[58,95]. However, the inference results is hard to be
interpreted due to the “black-box” paradigm of machine
learning classifiers [68]. They focus on the binary
decision-making of the existence of regulations, and
many inter- and intra-relationships among variables
(genes, regulators, cofactors, and effectors) are often
missing. In the former two pipelines, the regulatory
principle and mechanism can be easily revealed due to the
causal information flows underlying these modeling
variables.
Currently, the high-throughput microarray and next-

generation-sequencing techniques are always implemen-
ted for cell populations [96]. The cell types and their
status are mixed together with few information about the
specific transcription status. In fact, the gene expressions
are related to these former mentioned factors, such as
DNA modifications, ncRNA and RNA epigenomics,
protein translation and modification [97]. Their mixed-
effects of gene expressions are still not intensively
considered in the network inferences. The biology of
life activity is dependent on the contexts of DNA, RNA
and protein and their inter- and intra-regulations in single
cells [98]. To study specific cell types in different time and
space by their expressions and relationships in specific
organism is an alternative way to clearly understand gene
regulatory mechanisms [99]. With the advance of single
cell genomics and sequencing, more specific contexts of
these microenvironments of gene expression will enhance
to build more accurate gene regulatory networks when
these data are available [100].
From computational perspectives, the multi-level

omics data integration provides a promising way to
tackle the difficulty of inferring of gene regulatory
network. If multi-level omics data are available, we can
figure out the trajectory of the dynamics of gene
expressions. And the measured gene expression profiles
will be modeled as the integrated results of these
regulators by matching their cooperation. Generally, it is
difficult to build a rational model of describing the
hierarchical regulatory structures. In special cases such as
with Gaussian distribution function assumptions, the
mixed-effects model of these regulators is expected to
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generate an accurate approximation gene expressions
measured from multiple experiments, i.e.,

Y=
Xm
i

αiXi þ
Xn
j

βjZj þ ε, where the gene expression

of Y is a response variable of the fixed effects of multi-
omics information of X, and the random effects Z of the
hierarchical multi-omics information of X and that of Y
and their combinations. ε is an error. The information
hierarchy of multiple omics can also be modeled in it by
introducing causal dependences, i.e., PðXik1 ↕ ↓Xik2Þ,  k1, k2
∈fig in X [3]. In the near future, with the development of
single cell techniques, the purity of gene expressions in
single individual cells will bring more clean data with less
noise and then achieve more accurate inference of gene
regulatory networks. With more and more advanced
techniques, we will definitely achieve higher resolutions
of regulatory maps by data integration. The dynamics will
be finally reconstructed for describing regulatory com-
plexity with the assistance of more advanced technology
such as real-time single-molecule observation [101].

CONCLUSION AND OUTLOOK

The difficulty of reversely engineering gene regulatory
network from data essentially caused by the signal-noise
ratio underlying the data. If our computational methods
can distinguish noises from signals and the inference
accuracy will be improved. For removing the two types of
errors, i.e., false positives and false negatives, in the
inference, we can integrate the available gene expression
profiles in deep and multi-level omics datasets in broad to
build a comprehensive regulatory network. In this work,
we provided a review of gene regulatory network
inference from the perspectives of computational com-
plexity, available resources, existing methods, and the
endeavors of reducing the substantial two types of errors.
We highlighted the importance of data integration to
achieve accurate inferences, especially prior knowledge
and multiple omics. The systems biology approaches
seem to be the rational alternatives of deciphering gene
regulations from data. Due to the temporal and spatial
features of gene regulation, we also need to focus on
specific individual conditions and single cells, and then
concentrate them into the whole gene transcriptional
regulatory processes. If the resolutions of experimental
measures will be improved, the globally dynamic movie
of gene regulations will be clearly reconstructed by
integrating available high-throughput datasets.
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