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Background: Protein-protein interactions are essential to many biological processes. The binding site information of
protein-protein complexes is extremely useful to obtain their structures from biochemical experiments. Geometric
description of protein structures is the precondition of protein binding site prediction and protein-protein interaction
analysis. The previous description of protein surface residues is incomplete, and little attention are paid to the
implication of residue types for binding site prediction.
Methods: Here, we found three new geometric features to characterize protein surface residues which are very
effective for protein-protein interface residue prediction. The new features and several commonly used descriptors
were employed to train millions of residue type-nonspecific or specific protein binding site predictors.
Results: The amino acid type-specific predictors are superior to the models without distinction of amino acid types.
The performances of the best predictors are much better than those of the sophisticated methods developed before.
Conclusions: The results demonstrate that the geometric properties and amino acid types are very likely to determine
if a protein surface residue would become an interface one when the protein binds to its partner.
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Author summary: Subtle geometry and chemistry play important roles for protein-protein interactions. The amino acid
contact, void and exposure are subtle while significant. Amino acid type additionally determines the behavior when they
interacts. We built an integrated approach taking advantage of these features to obtain better protein-protein interface
prediction.

INTRODUCTION

Protein-protein recognitions are of great significance in
living systems. The interface of protein-protein complex
is crucial to understand the principle of protein-protein
recognitions. Many studies have been done to obtain
more knowledge of the mechanism of protein-protein
interactions [1–7]. But the mathematical and physical
descriptions of the principle of protein-protein interac-
tions are still ambiguous. It is difficult to find such
descriptions directly. So, starting from solving some
minor problems may be appropriate.
What makes a surface residue of a protein monomer

become an interface one when the monomer binds to the

partner? Is it possible to predict at least one true interface
residues from the surface residues for all the protein
monomers correctly? However, there are many methods
for protein-protein interface residue prediction[7–11], and
protein-protein interface residue prediction is still an
unsolved problem. The two key points of solving this
problem are the characterization of protein surface
residues and the combination of different characteristics
or features to discriminate the true protein-protein inter-
face residues from other surface residues. Because of the
structures of surface residues are geometric, it is natural to
describe surface residues using geometric features. The
widely used geometric features are absolute and relative
solvent accessibilities of surface residues [11]. There are
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also several commonly used geometric features to
describe the protein surface shape such protrusion index
which is a measure of concavity or convexity [12]. In
terms of geometric description of a single surface residue,
the absolute and relative solvent accessibilities are not
enough to characterize all the aspects of protein surface
residues. It is necessary to use new effective geometric
features to describe protein surface residues in detail.
Additionally, because of the differences between the
geometric structures of different residue types, the
discriminants of the 20 commonly occurring amino
acids for binding site prediction should be also different.
In fact, de Moraes et al. found that the performance of the
specific amino acid classifiers is better than the results of
classifiers without distinction of amino acid types [13]. In
their work, a large number of descriptors were selected to
characterize different type of amino acids and linear
discriminative analysis classifiers were formulated for
interface residue prediction.
Here, we found three new geometric descriptors of

protein surface residues and trained millions of residue
type-specific or non-specific neural network models
(nonlinear combinations of different features) for protein
binding site prediction. The residue type-specific pre-
dictors were integrated to form new models to predict
binding site or interface residue of any amino acid type.
Here in our paper, residue type-specific and amino acid
type-specific were two expressions with the same mean-
ing. The results showed that the new geometric features
are effective and the performances of the best predictors
are much better than the ones of other methods reported
previously.

RESULTS

The comparison of the results of different geometric
features

The three new geometric features used to characterize a
protein surface residue are exterior contact (EC) area with
other residues in protein monomer, exterior void (EV)
area which does not contact with other residues and
solvent, interior contact (IC) area which is the sum of the
contact areas between the atoms of the surface residue
(see Methods). The two commonly used geometric
features, absolute exterior solvent accessible area
(absEA) (see Methods) and relative exterior solvent
accessible area (relEA) are used as comparison.
The performances of the five geometric features were

evaluated in the whole datasets composed of 134 protein
monomers at unbound state. For any protein monomer,
the surface residues were ranked by the values of the five
geometric features in descending or ascending order
respectively. We calculated the Area Under receiver

operating characteristic (ROC) Curve (AUC) and
recorded the rank of the first binding site (RFBS) of
different protein monomers for the five geometric
features. The higher the AUC and the smaller the
RFBS, the better the performance. The perfect result is
that all the true binding sites are ranked before other
surface residues when AUC is equal to 1. RFBS is a
relatively weak measure which is only concerned with the
first true binding site.
The boxplot of AUC of different monomers for the five

geometric features is shown in Figure 1. The results of
absEA, relEA and IC in descending order (absEA_DO,
relEA_DO and IC_DO) are superior to the results in
ascending order (absEA_AO, relEA_AO and IC_AO)
respectively (Figure 1A, B and E). The performances of
EVand EC in ascending order (EV_AO and EC_AO) are
better than the ones in descending order (EV_DO and
EC_DO) respectively (Figure 1C and D). The mean
values of AUC of different monomers for absEA_DO,
relEA_DO, EC_AO, EV_AO and IC_DO are 0.62, 0.61,
0.55, 0.60 and 0.57 respectively. The boxplot of RFBS of
different monomers for the five geometric features is
shown in Figure 2. The performances of absEA_DO,
relEA_DO, EC_AO, EV_AO and IC_DO are better than
the ones of absEA_AO, relEA_AO, EC_DO, EV_DO
and IC_AO respectively, which is consistent with the
results shown in Figure 1. The mean values of RFBS of
different monomers for absEA_DO, relEA_DO, EC_AO,
EV_AO and IC_DO are 4.41, 5.16, 5.80, 6.52 and 3.47
respectively.
To compare the performances of the five geometric

features, the percentages of protein monomers in the
dataset were recorded when the RFBS of any one of these
monomers is smaller than N. These protein monomers are
called positive monomers. When N is from 1 to 30, the
results are shown in Figure 3. IC is superior to the other
four geometric features. When the number of retained
surface residues for any protein monomer is 3, the
percentages of positive monomers is 59.0, 50.0, 50.7,
44.0 and 67.9 for absEA, relEA, EC, EV and IC
respectively. All the 134 protein monomers are positive
ones when the number of retained surface residues are 22,
24 and 18 for absEA, relEA and IC respectively.

The best performance of models without distinction
of residue types

Generally, the models are trained, validated and tested in
the training, validation and test sets respectively. To find
the best model with strong generalization, a new criteria is
designed for protein-protein interface residue prediction.
When the number of retained surface residues is from 1 to
10 and the standard deviation of percentages of positive
monomers in the three sets (training, validation and test
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Figure 1. Comparison of the performances of the geometric features in descending and ascending orders with AUC. The results

of absEA, relEA, EC, EV and IC are shown in (A), (B), (C), (D) and (E) respectively. DO represents descending order and AO represents
ascending order. They are shown in red and blue respectively. The dots are the outliers.

Figure 2. Comparison of the performances of the geometric features in descending and ascending orders with rank of the first
binding site (RFBS). The results of absEA, relEA, EC, EV and IC are shown in (A), (B), (C), (D) and (E) respectively. DO represents
descending order and AO represents ascending order. They are shown in red and blue respectively. The dots are the outliers.
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sets) is equal or smaller than 10, the highest mean
percentage of positive monomers in the three sets and the
corresponding feature combination are recorded.
As shown in Table 1, when the number of retained

surface residues are 1, 3, 5 and 10, the mean percentages
of positive monomers are 52.6, 79.4, 92.0 and 100
respectively. There are 14 kinds of feature combinations
which can achieve the best performances. All the 14 kinds
of feature combinations incorporate IC, and IC reflects the
self-condition of a surface residue, which indicates that IC
is the most important feature among the nine features. The
second frequent feature is EC. EC is the only connection
between a surface residue and the protein monomer, and
its indispensability is foreseeable.

The results of residue type-specific predictors

For a specific amino acid type, when all the protein
monomers which possess interface residues of the amino
acid type are positive ones, the minimum number of
retained surface residues is recorded. For the best models
with the minimum of retained surface residues, the
percentage of interface residues among the retained
residues are calculated, the feature combination with the
highest percentage of interface residues is also recorded.
As shown in Table 2, among the feature combinations

corresponding different amino acid types, EC and IC are
the most frequent features, which is in accord with the
results of models without distinction of amino acid types.
The minimum number of retained surface residues for
different amino acid types is from 1 to 9, which is better
than the results of models without distinction of amino
acid types mentioned above. The correlation coefficient
between minimum number of retained surface residues
and the percentage of interface residues is – 0.90, the
minimum number of retained surface residues becomes
smaller with the increasing of the percentage of interface
residues, which indicates that enhancing the percentage of
interface residues is an effective way to reduce the
difficulty of interface residue prediction such as decom-
posing the dataset into different amino acid type-specific
dataset in this work. EC and IC are the most frequent
features among the 20 best feature combinations, which
suggests that their importance is not influenced by amino
acid type.
Additionally, the AUC in the validation and test sets

were calculated for the best 20 amino acid type-specific
predictors to investigate the differences of the perfor-
mances of these models. As shown in Table 3, TRP, LEU,
PHE, and CYS are among the 5 amino acid type with the
highest mean AUC, which is consistent with the previous
study [13]. The mean AUC of the best model for TRP is

Figure 3. Comparison of the performances of the geometric features. The results are the ones of absEA in descending order,
relEA in descending order, EC in ascending order, EV in ascending order and IC in descending order. The curves of absEA, relEA,
EC, EV and IC are shown in blue, red, orange, purple and green respectively. The horizontal coordinate is the number of retained

surface residues for any protein monomer. The vertical coordinate is the percentage of positive monomers for which there exist at
least one true binding sites among the retained surface residues.
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the highest among the 20 amino acid types. One of the
reasons may be that the percentage of interface residues
among surface residues for TRP is the highest. The third
highest mean AUC is the one of the best model for LEU,

but the percentage of interface residues for LEU is very
low (Supplementary Table S1). It may reflect that the
structures of interface residues and non-interface residues
for LEU are very different. ASN, GLU, ASP are among
the 5 amino acid type with the lowest mean AUC, which
is also consistent with the previous work [13].

The performance of models generated by
integrating residue type-specific predictors

To break through the limitation mentioned above, the best
models of different amino acid types were integrated to
generate new models for predicting interface residues
without distinction of amino acid types. There were
294,000 models trained in this step (see Methods).
As shown in Table 4, when the number of retained

surface residues are 3 and 5, the mean percentages of
positive monomers are 78.4 and 91.6 respectively. They
are a little worse than the results of models trained directly
in the set without distinction of amino acid types.
However, it just need to retain 9 surface residues when
all the protein monomers are positive ones. On the whole,
the way used to integrate the models here does not work
as effectively as expected. In the future, this is a direction
that can be improved.

Table 1 The best performance of models without
distinction of residue types

NRSR MPPM (%) FC

1 52.6 absEA, relEA, EC, IC, pKa2

2 69.6 relEA, EC, EV, IC, H1

3 79.4 absEA, relEA, EC, EV, IC, H1

4 87.2 EC, IC, H2, pKa1

5 92.0 absEA, IC, H1, pKa1, pKa2

6 95.2 absEA, EV, IC, pKa2

7 97.2 EC, IC, pKa1

8 97.8 EV, IC, H1, H2, pKa1, pKa2

9 99.0 relEA, EC, EV, IC, H1, pKa1, pKa2

10 100 EV, IC, H1, H2, pKa1

10 100 relEA, EC, IC, H1

10 100 absEA, EV, IC, pKa2

10 100 absEA, relEA, EC, IC, H2, pKa2

10 100 absEA, relEA, EC, EV, IC, H1, pKa1

NRSR: Number of retained surface residues; MPPM: mean percentage

of positive monomers; FC: feature combination.

Table 2 The best performance of residue type-specific
predictors

AAT NM FC MNRSR

TRP 1,302,000 absEA, relEA, EC, IC 1

MET 1,302,000 relEA, IC 2

CYS 2,646,000 absEA, relEA, EV, IC, pKa1 2

HIS 2,646,000 absEA, relEA, EC, IC 3

PHE 1,302,000 relEA, EC, EV, IC 5

TYR 2,646,000 relEA, EC, IC, pKa1 5

ASN 1,302,000 absEA, EV, IC 5

GLN 1,302,000 relEA, EC 5

GLY 1,302,000 relEA, EC, IC 6

LEU 1,302,000 absEA, EC, EV, IC 6

PRO 1,302,000 absEA, EC, EV, IC 6

ARG 2,646,000 absEA, relEA, EC, IC, pKa1 6

ALA 1,302,000 absEA, relEA, EC, EV, IC 7

VAL 1,302,000 relEA, EC, IC 7

GLU 2,646,000 absEA, EC, EV 7

THR 1,302,000 absEA, EC, IC 7

ASP 2,646,000 relEA, EC, EV, IC 8

SER 1,302,000 absEA, EC, EV, IC 8

ILE 1,302,000 relEA, EC, EV, IC 2

LYS 2,646,000 absEA, EC, pKa1, 9

AAT: amino acid type; NM: Number of models; FC: feature

combination; MNRSR: minimum number of retained surface residues.

Table 3 Comparison of residue type-specific predictors
with AUC

AAT MV SD

TRP 0.740691 0.026848

MET 0.709371 0.000889

LEU 0.691242 0.020786

PHE 0.681853 0.004221

CYS 0.673883 0.001095

VAL 0.655965 0.020019

ARG 0.643709 0.010168

HIS 0.623985 0.006025

ILE 0.619012 0.024085

GLY 0.617001 0.021070

TYR 0.605156 0.030080

PRO 0.603635 0.049412

GLN 0.598281 0.003730

LYS 0.591322 0.091578

SER 0.585913 0.002099

ASN 0.576256 0.020634

GLU 0.569275 0.087888

THR 0.558572 0.060780

MET 0.557027 0.048983

ASP 0.538908 0.046054

AAT: amino ccid type; MV: mean value of AUC in the validation and

test sets; SD: standard deviation of AUC in the validation and test sets.
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Comparison with other methods

In order to compare the performances of our method
(IAASP, integrated amino acid-specific predictor) and IC
with the ones of other sophisticated methods such as
meta-PPISP[14], VORFFIR[15] and PredUs [16], the
percentages of positive monomers for these methods were
calculated in the dataset composed of the validation and
test sets. The reason why we only chose IC rather than
other features was because IC was the most frequent and
important feature in both models with and without

distinction of residue types.
As shown in Figure 4, IC is the best predictor when the

number of retained residues is from 3 to 7. IAASP is the
best one with the number of retained residues higher than
7. VORFFIR and PredUs are better when only 1 or 2
residues are retained.
The main reason of the differences may be that the

other methods are developed to predict all the interface
residues correctly. The aim of method proposed here is
predicting at least one interface residues for every protein
monomer correctly. The experimental biologists may be
preferred to use our method.
An example (PDB code: 4H03) in the test set predicted

by our method is shown in Figure 5. The percentages of
interface residues of the receptor and ligand are 5.3 and
7.2 respectively. It is relatively difficult to predict the
interface residues for these two monomers correctly. The
rank of the first true interface residues for the two
monomers are 4, which illustrates the effectiveness of our
method.

DISCUSSION

The meaning of new geometric features

Protein binding site information is closely related to
protein function. Protein function is determined by
protein geometric structure. So, geometry could drive

Table 4 The best performances of the integrated amino
acid-specific predictors

NRSR MPPM (%)

1 33.9

2 47.8

3 78.4

4 86.7

5 91.6

6 94.1

7 97.5

8 99.2

9 100.0

NRSR: number of retained surface residues; MPPM: mean percentage

of positive monomers.

Figure 4. Comparison of the performances of the best integrated amino acid-specific predictor (IAASP) with other
methods. The curves of meta-PPISP, VORRIF, PredUs, IC and IAASP are shown in blue, red, orange, purple and green

respectively. The horizontal coordinate is the number of retained residues for any protein monomer. The vertical coordinate is the
percentage of positive monomers for which there exist at least one true binding sites among the retained residues.
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the discovery of protein binding site, and the geometric
description of protein surface residues is of great
importance for protein binding site prediction.
The new geometric features reflect different aspects of

protein surface residues. EC is the “bridge” between a
surface residue and protein monomer. The bridge will
become stable with the increasing of EC. On the other
hand, EC can be regarded as a measure of the strength of
the structural restriction imposed by protein monomer on
the surface residue. EV is a part of the residue surface and
uncommitted by other molecules. IC is the internal
condition of a surface residue. A higher value of IC
corresponds to a more compact structure. The new
geometric features and the frequent used ones such as
absEA and relEA influence each other and characterize a
surface residue together.

The implication of residue types

Generally, there are two factors influencing the perfor-
mance of protein binding site predictor. One is the
percentage of interface residues. If the percentage of
interface residues is 100, any protein binding site
predictor including random sampling can achieve the
perfect results. Another one is the divergence degree
between the interface and non-interface residues. The
higher divergence degree will make the prediction easier.
Both of the two aspects mentioned above for the 20

residue types are different. The root cause is that the
intrinsic geometric structures of different residue types are
different. Every residue type may have its own dis-
criminant for binding site prediction. Protein binding site

prediction is relatively easy for some residues types such
as TRP, METand CYS because of the high percentages of
interface residues. Although the percentage of interface
residues for LEU is not high, the mean value of AUC for
LEU is higher than those of many other residue types,
which suggests that the geometric structures of interface
and non-interface residues may be obviously different.
Some residue types may be more suitable for functional
signal recognition.

Why train millions of models?

Millions of models were trained in this work. There are
two concrete reasons for training so many models. One is
the large number of feature combinations. In order to find
the most effective features and feature combination for
protein binding site prediction, all the possible feature
combinations were considered to find their own best
models. Of course, there are many effective methods for
feature selection [17]. The enumeration method adopted
here is a little stupid, but effective. It is allowed by the
computational resources available. Another one is the
large number of structures of neural networks. The
number of hidden layers and the number of nodes in every
layer are adjustable, and the optimal structure of neural
network is unknown. The only way is training models in
some simple structures with one or two hidden layers and
a small number of nodes. Even so, there are still hundreds
of neural network structures. Additionally, because of the
limitation of optimization algorithm, 100 models were
trained for the fixed feature combination and neural
network structure. It indicates that human and computer
are not so clever as nature, so we have to try millions of
times to find the rule of nature.
Indeed, there are many available deep architectures for

pattern recognition. We have conducted some work about
the application of deep learning on protein-protein
interface residue pair recognition. Different from that
work, this work is conducted to investigate the impor-
tance of geometric properties and amino acid types on
protein-protein interface residue prediction. The method
adopted here and the results can illustrate the determina-
tive role of these two kind of factors. These results suggest
that geometric properties and amino acid types may
determine protein-protein interface residues.

CONCLUSIONS

In this work, different models with or without distinction
of amino acid types for interface residue prediction were
trained and compared, the amino acid type-specific
predictors are superior than the models without distinction
of amino acid types. Enhancing the percentage of
interface residues is an effective way to make interface

Figure 5. An example predicted by our method (PDB code:
4H03). The colors of the receptor and ligand are green and cyan

respectively. The first true interface residues among the retained
residues are shown in sphere model.
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prediction less difficult. No matter among the best amino
acid type-specific or non-specific models, EC and IC are
the most important features. Integrating the amino acid
type-specific predictors generates new models to predict
interface residues of any amino acid type. When the
number of retained surface residues is 9, the percentage of
positive proteins is 100. The result of the best model is
much better than the ones of the other methods developed
before. These results suggest that geometric properties
and amino acid types may determine protein-protein
interface residues.

METHODS

Constructing datasets

The procedure for constructing datasets is shown in
Figure 6. The datasets are constructed based on protein-
protein docking benchmark version 5.0 [18]. Protein-
protein docking benchmark version 5.0 is the recent
version of a public docking benchmark which is non-
redundant and reliable [18]. Although the benchmark is
constructed for developing and evaluating docking

methods, it can be also used to develop interface
prediction methods because the interfaces of the com-
plexes in the benchmark are representative for different
protein functional categories. There are 143 dimers
among the 230 complexes in protein-protein docking
benchmark version 5.0. In unbound state, there are 17
dimers in which there exists at least one position that are
indeterminable, 57 dimers in which at least one interface
residue is mutated or missing, and 2 dimers in which some
backbone atoms are missing. So, only 67 dimers (134
monomers) satisfy our request. These dimers are divided
into three subsets (training, validation and test sets)
according to the version of benchmark. The benchmark
version 5.0 was updated from benchmark version 3.0 and
4.0 [19,20]. Although the way of dividing the dataset is
not unique, the proteins updated in different versions are
not similar, the dividing way used here is one of
reasonable ways for which the expandability and
applicability of interface residue prediction method can
be tested in the updated datasets.
Then, the information of interface and surface residues

are obtained for all the monomers, and the values of
different features are calculated for these residues. Finally,

Figure 6. Procedure for constructing datasets. Firstly, protein dimers with high quality in protein-protein docking benchmark

version 5.0 [18] are selected to obtain the interface and surface residues. Then, the dataset composed of interface and surface
residues are divided into amino acid type-specific ones.
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the different information are integrated and the datasets
are divided into amino acid type-specific subsets.

Obtaining the information of surface and interface
residues

When the absolute exterior solvent accessible area of a
residue in a protein monomer is not zero, the residue is
defined as a surface residue. If a surface residue of a
protein monomer contact with the partner, the residue is
defined as interface residue.
There are 68, 40 and 26 monomers in training,

validation and test sets respectively (Supplementary
Table S2). The number of surface residues of the 134
monomers in benchmark version 5.0 is 26,934, the
number of interface residues is 3,575. The percentages of
interface residues among the surface residues are 13.8,
13.9 and 11.1 in training, validation and test sets
respectively. The percentage of interface residues
among the surface residues in the whole set is 13.3. The
probability that there exist at least one true interface
residues among the randomly sampled 10 surface residues
is 0.76, and the probability is almost zero that there exist
true interface residues for all the 134 protein monomers
when only 10 surface residues are randomly sampled for
each of them.
The data information for different amino acid types are

shown in Supplementary Table S1. Number of existing-
surface-residue-monomers (ESRM) is the number of
protein monomers which possess surface residues of

specific amino acid type. Number of existing-interface-
residue-monomers (EIRM) is the number of protein
monomers which possess interface residues of specific
amino acid type. Not all the 134 monomers have surface
residues and interface residues for every amino acid type.
The number of interface residues and surface residues in
the sets of EIRM for different amino acid types are also
shown in Supplementary Table S1. The percentages of
interface residues among surface residues for the 20
amino acid types are from 12.9 to 33.3. For every amino
acid type, the ESRM are also divided into three subsets to
train, validate and test amino acid type-specific interface
residue predictors according to the benchmark version as
the datasets without distinction of amino acid types. The
mean percentages of interface residues among surface
residues in the three subsets are from 19.5 to 51.8.

Calculating the values of different features

Nine features are used to characterize the surface residues.
The schematic diagram of geometric features of a surface
residue are shown in Figure 7. The absEA (Figure 7B) and
relEA are calculated by NACCESS [21]. EC is the sum of
the areas of a surface residue contacting with other
residues; IC is the sum of the contact areas between the
atoms of a surface residue (Figure 7C). They are
computed by Qcontacts [22]. The exterior void area
(EV, Figure 7D) are the whole exterior solvent accessible
area minus the sum of absEA and EC. The whole exterior
solvent accessible area is calculated based on the

Figure 7. Schematic diagram of the geometric features. (A) Schematic façade in 2D of the geometric features. The colors of

absolute exterior solvent accessible area (absEA), exterior contact area with other residues (EC), exterior void area (EV) and interior
contact area of a surface residue (IC) are black, red, brown and purple respectively. (B) The absolute exterior solvent accessible
area of a surface residue. The absEA is displayed in yellow mesh. (C) EC and IC of a surface residue. EC and IC are colored by red
and purple respectively. (D) EV of a surface residue. EV is colored by brown.
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coordinates of the surface residue which are extracted
from the protein structure.
In order to describe a protein surface residue better, two

versions of hydropath index (H1 and H2) [23,24] and the
computing and standard pKa (pKa1 and pKa2) [25] were
also used as the descriptors. The four features are also
related to geometric structures and residue types of
surface residues. The nine features are shown as follows:
(1) absEA: absolute Exterior solvent accessible Area
(2) relEA: relative Exterior solvent accessible Area
(3) EC: Exterior Contact area with other residues
(4) EV: Exterior Void area
(5) IC: Interior Contact area
(6) H1: Hydropathy index, version 1
(7) H2: Hydropathy index, version 2
(8) pKa1: computation
(9) pKa2: standard

Training neural network models

Models without distinction of residue types

The models were generated based on the training set
without distinction of amino acid types. They were
evaluated in the validation and test sets. The best models
were selected according to the performances in the three
sets. The workflow is shown Supplementary Figure S1.
In order to explore the best performance of the nine

features which can form 511 kinds of feature combina-
tions, we trained a lot of pattern recognition neural
networks and applied the back-propagation mechanism to
learn the weight of the network with scaled conjugate
gradient algorithm[26–28], and the hyperbolic tangent
sigmoid transfer function was adopted in the hidden
layers, the softmax transfer function in the output layer.
The formation of the hyperbolic tangent sigmoid transfer
function is as follows:

f ðxÞ= e x – e – x

e x þ e – x
: (1)

The target output of the network was set to 0 or 1, 0
represents the non-interface residue pairs, 1 represents the
interface residue pairs. The network could return a real
number between 0 and 1.
For any one of the 511 kinds of feature combinations,

the number of the hidden layers could be 1 or 2, the
number of neurons in every hidden layer can be from 1 to
10, so there are 110 different neural network architectures.
In order to search the optimal model in the situation that
the initial weights of the neurons are randomly assigned,
100 models were trained when the feature combination
and the network architecture were fixed, which was
restricted by our computing resources. Finally, 11,000
models were generated for every kind of feature

combination. So, there are 5,621,000 models for predict-
ing interface residues.
Although millions of neural network models were

trained in the training set, they were uncorrelated with the
validation and test sets, the models with overfitting can be
excluded according to the performance in the validation
and test sets.

Models with distinction of residue types

Because of the differences of geometric properties of the
20 residue types, their protein binding site predictors
should differ from one another. The models with
distinction of amino acid types were trained based on
the amino acid type-specific training set. They were
evaluated in the corresponding amino acid type-specific
validation and test sets. The best models were selected
according to the performances in the three sets. The
workflow is shown Supplementary Figure S2.
Because the two versions of hydropathy index and

pKa2 are constant for specific amino acid type, they do not
make differences on the performance of the amino acid
type-specific models. Additionally, the values of pKa1 are
zeros for some amino acid types. So, there are five or six
features employed to describe a surface residue. They can
form 31 or 62 kinds of feature combinations.
In order to find out the best performance of the features

for specific amino acid type, a large number of pattern
recognition neural networks were trained, the procedure
was similar as the one used above. The difference is that
the number of neurons in every hidden layer can be from 1
to 20, there are 420 different neural network architectures
because of less number of features. We let the number of
nodes of models with distinction of residue types be 20 in
exchange under the conditions of computing resources.
42,000 models are generated for each kind of feature
combination. Finally, there are 1,302,000 or 2,646,000
models for a specific amino acid type to predict interface
residues. In total, there are 7,896,000 models for the 20
amino acid types. These models are called amino-acid-
specific predictors (AASP).

Integrating residue type-specific predictors

For every amino acid type, there exist some models
whose performance are the best. The performance is
evaluated in the set of the monomers which possess
interface residues of the amino acid type. The workflow is
shown Supplementary Figure S3.
Because it is not necessary to know all the interface

information in biochemical experiments, and theoretically
predicting all the interface residues correctly is very
difficult, the performance of a predictor on a protein
monomer is estimated by the existence of true interface
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residues among the retained surface residues. If there are
at least one interface residues for the monomer among the
top N retained surface residues, the protein is called
positive monomer. The criterion is designed based on the
real requirement of biological experiments. Additionally,
signals on protein surface for protein-protein binding are
only a small part of the residues on protein-protein
interface. In other words, only a small fraction of protein-
protein interface residues play a key role in the formation
of protein-protein complex. It may be easier to recognize
these key residues than other interface residues theoreti-
cally.
When all the monomers in the set are positive ones, the

minimum number of retained residues and the corre-
sponding models are recorded. In those models, the best
model is the one whose percentage of interface residues
among the retained residues is the highest. The predicted
values by the best model are regarded as the combined
feature of surface residues of the amino acid type.
The procedure of constructing new datasets, generating

and analyzing new models is shown in Supplementary
Figure S3. The combined feature, H1 and H2 which can
form 7 kinds of feature combinations are used to describe
all the surface residues without distinction of amino acid
types. As we know, the models with distinction residue
type used 5 geometric features or 6 features combining 5
geometric features and pKa1. So the three features
contains both geometric and hydropathy information
were enough for modeling. According to the same
procedure of training models with distinction of amino
acid types, there are 42,000 models generated for each
kind of feature combination. Finally, there are 294,000
models to predict interface residues for any protein. These
models are called Integrated Amino Acid-Specific Pre-
dictors (IAASP).

Accuracy measures

Interface residue prediction can be regarded as a binary
classification problem, each residue in protein monomer
could be either interface (positive, P) or non-interface
(negative, N) one. Many accuracy measures are con-
structed base on the number of true positives (TP), false
positives (FP), true negatives (TN) and false negatives
(FN).
AUC is a metric to evaluate the discriminative ability of

the method. Its values range from 0 to 1, where 1
corresponds to a perfect prediction, 0 to a perfectly
inverse prediction. ROC curve represents the relationship
between False Positive Rate (FPR) and True Positive Rate
(TPR). TPR is the fraction of correctly predicted interface
residues:

TPR=
TP

TPþ FN
: (2)

FPR is the fraction of incorrectly predicted interface
residues:

FPR=
FP

FPþ FN
: (3)

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at https://

doi.org/10.1007/s40484-018-0138-5.
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