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Owing to its interdisciplinary nature, quantitative biology is playing ever-increasing roles in biological researches. To

make quantitative biology even more powerful, it is important to develop a holistic perspective by integrating

information from multiple biological levels and by considering related biocomplexity simultaneously. Using complex

diseases as an example, I show in this paper how their ontological connections can be revealed by considering the
diseases on a common ground. The obtained insights may be useful to the prediction and treatment of the diseases.

Although the example involves only with cancer and diabetes, the approaches are applicable to the study of other

diseases, or even to other biological problems.
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INTRODUCTION

The 21st century has witnessed flourish of quantitative
biology, which includes two broad and related areas. The
first is bioinformatics and computational biology, which
focuses on dealing with information technologies and
computational methodologies that can efficiently and
accurately manipulate omics data and transform mole-
cular information into biological knowledge [1]. The
other is systems and synthetic biology, which focuses on
complex interactions in biological systems and the
emergent functional properties, and on the design and
construction of new biological functions and systems.
These rapid developments notwithstanding, quantitative
biology is often regarded to be secondary to the traditional
biology. Biological researches generally start from a
working hypothesis. To test the hypothesis, one performs
experiments, from which data are generated. There are
generally two approaches to process the data. The first is
the model driven approach, which relies on a mathema-
tical model of the underlying biological system. The
second is the data driven approach, whereby patterns in
the data can be discovered by exploiting generic statistical
and/or dynamical properties, without a specific model of
the underlying system [2]. Because most collaborations
between biologists and quantitative scientists do follow

the aforementioned way, many get the erroneous
impression that quantitative biology is non-essential and
mathematical models are only tools to elaborate empiri-
cally-derived biological patterns but not to independently
make substantial new advances [3].

Owing to its interdisciplinary nature, quantitative
biology actually can achieve a holistic grasp of biological
systems through integrating information spanning multi-
ple levels from molecules to the organism. In comparison,
traditional biological studies usually follow a reductionist
approach, dividing the complex cell into many individual
parts, studying each part in great detail, and then trying to
understand the whole cell by integrating partial informa-
tion. This reductionist approach has been successful, with
the help from technological advancements that allow us to
penetrate into the subcellular world and to quantify its fine
details. However, unlike a linear system in which the
whole is always the sum of its constituents, biological
systems are highly nonlinear; and simple accumulation of
local data does not automatically lead to the emergence of
systems-level properties [4,5]. To achieve a quantum leap
of our understanding of life, interdisciplinary sciences
such as quantitative biology are desperately needed.

To make quantitative modeling more powerful, the key
is to look at many problems at once and to obtain a global
quantitative characterization of the biological system
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under study. To that end, it is imperative to gather
information from multiple biological levels (evolutionary
scale, organismal, cellular and molecular levels) so that
one develops the necessary vision to ponder fundamental
aspects of biology and to discover emerging properties
from mathematical modeling and analysis. In the
following, I will show how the philosophy of global
quantitative biology helps to study complex diseases.
Instead of studying one specific disease, the conceptual
framework requires the study of multiple related diseases
together, from which novel insights can be gained
including ontological connections between the diseases.

ANALYSIS OF DIFFERENT DISEASES ON
A COMMON GROUND

One major health care problem of our time is the
simultaneous epidemics of cancer and diabetes, which
are escalating in recent years [6,7]. In the US, about two
thirds of the population is overweight; about one third of
children born after year 2000 would develop diabetes;
about one third of women and half men would develop
cancer during their lifetime [8]. These epidemiological
data imply that cancer and diabetes have intricate
connections. Many clinical studies also arrived at the
same conclusion. Patients diagnosed with metabolic
diseases showed increased incidence and aggressiveness
of cancer development [9,10]. Conversely, diabetics
treated with metformin to lower insulin levels have
reduced chances of cancer in comparison to untreated
individuals [11,12]. However, these data basically just say
that the two diseases can promote each other, which are
not essential connections.

Ontological connection between the diseases

Ontological connection refers to how the nature of beings
is related. Because a single disease is already complex, it
seems difficult to examine multiple diseases on a common
ground and even more difficult to seek their ontological
connections. Fortunately, most complexities of a disease
are only symptoms, namely non-essential body reactions;
they are not defining features of the disease and are less
relevant when considering ontological connections. Dat-
ing back from the onset of symptoms, there was a long
period of clinical latency, during which the disease state is
only slightly different from the normality. In the
following, we still use “disease” to refer to its existence
during the latency phase, although ‘pre-disease’ may be
more accurate. Therefore, a disease is intimately con-
nected with the normality: their difference is small but is
gradually amplified. Since the normality can be disturbed
in different ways, one might as well identify all the
patterns of deviation around the normality. Each pattern

represents a family of disturbances that are qualitatively
the same; and may correspond to a specific disease. In this
way, one can include multiple diseases into the same
global picture, in which the diseases are qualitatively
different but interconnected entities that bifurcate from
the normality (Figure 1A). Such a holistic perspective
could facilitate a deeper understanding of complex
diseases and contribute to their prevention and treatments.

Figure 1A is just a sketch of disease evolution. How to
map it to a biologically meaningful one? One needs to
consider these diseases within the same conceptual
framework, including a candidate biological system that
underlies all these diseases. By mathematical modeling on
the biological system, one may find characteristic
representations (e.g., geometric objects) of these diseases.
By presenting these geometric objects in the same global
picture, their ontological connections may become
intuitive. The scheme is generally practical, because one
needs only to consider the latency phase, during which the
deviation of diseases from the normality is quite small. In
this event, infinitesimal methods of mathematical analysis
can be used to study the early evolution of the diseases.

It should be emphasized that the intricacy of the
discovered ontological connections depends on the
complexity of the underlying biological system. By
studying a relatively small system, one has better chance
to uncover the ontological connections with reasonable
computational costs. Although the uncovered connections
are likely to be limited, they may provide hitherto
unimagined insights and constitute a good starting point
for future researches.

Molecular network underlying cancer and diabetes

In the cell, it is the complex interaction network between
biomolecules that provides functional output. By exam-
ining major signaling pathways, I found that many of
them are relevant to cancer and diabetes, with the PI3K/
Akt/mTOR pathway especially important. This pathway
is a cellular pivot responding to extracellular stimuli such
as insulin, insulin-like growth factor (IGF), epidermal
growth factor (EGF), and fibroblast growth factor (FGF).
It carries out a large spectrum of biological functions
including cell survival, growth, migration, proliferation,
polarity, and metabolism (lipid and glucose); cell cycle
progression; muscle and cardiomyocyte contractility;
angiogenesis; and self-renewal of stem cells [13-15].
Unsurprisingly, deregulation of the pathway is implicated
in many diseases including cancer and diabetes [16].
Among the signaling molecules of the pathway, Akt (also
known as the protein kinase B) is the central regulator and
its level of phosphorylation is an indicator of the pathway
activity. I therefore used the response curve A(/) to define
the pathway functionality [17], where A represents the
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Figure 1. Evolution of diseases. (A) A sketch. (B) A hypothetical, biologically meaningful illustration.

percentage of the phosphorylated Akt over the total Akt; /
represents the stimulus concentration. In the following,
the shape of A(/) is used to characterize the health state.

Mathematical analysis of the molecular network

Although a disease may come into being by gradual
deviating from the normality, it will become qualitatively
different from the normality sooner or later. In terms of
the response curve A(/), this means that its shape deviates
slowly from normal throughout the time. Initially the
change is only quantitative, but at some time point a
transition occurs, after which 4(/) becomes qualitatively
different. This qualitative transition can be mathemati-
cally characterized by catastrophe theory, or singularity
theory for some authors [17—19]. The boundary between
qualitatively different entities is called singularity.
Dynamics around singularities is interesting and has
been exploited to study important biological problems
[2,20,21].

Being mathematically special, singularities are much
easier to determine (numerical computations can be
simplified or even avoided by applying analytical
techniques). Once the boundaries (each consisting of
many singularities) are determined, the landscape of
responses has already been illuminated. To understand
this argument, one may use an analogy with drawing an
object. By tracing out the boundary between the object
and air, the object has already been drawn. One needs not
to fill in every point of the object.

The steady state of the pathway can be described by
[17]

G4, I, K, a)=0, (1)

where K and a are two distinguished parameters in the
system. Because A4, I, K, and o are constrained by
Equation (1), the shape of A(/) changes when K or «a
changes. On the plane spanned by K and «, each point
corresponds to a shape of A(/). The plane can thus be
divided into different regions, each consisting of points
whose corresponding response curves are of the same
kind. The boundary between two regions consists of those
points whose corresponding A(/) has “critical shape”.
These boundary points are known as nonpersistent points
[19]. There are four kinds of nonpersistent points:
hysteresis point, isola center, simple bifurcation point,
and double limit points [19]. They are described
respectively in the first, second, third, and fourth rows
of Figure 2. In the first row, for example, the middle graph
presents A(/) with the corresponding (K, @) being the
hysteresis point, while the left and right graphs present
A(l) when (K, a) are perturbed away from the hysteresis
point.
The four kinds of nonpersistant points all satisfy

G=0, 2
GA = 05 (3)
where Equation (2) is the same as Equation (1); and G4 in

Equation (3) denote 0G/0A. Similarly, G, shall be used
to denote 0 G/ d A*, etc. To distinguish these nonper-
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Figure 2. The four types of nonpersistent points (the middle column) and their perturbations (the left and right columns).
(A) Hysteresis point. (B) Isola center. (C) Simple bifurcation. (D) Double limit points.

sistant points, additional conditions are required. Their
normal form conditions are written with red color in
Figure 2. The “double limit points”, for example,
correspond to the two solutions to Equations (2) and
(3). They are indicated by the blue and purple dots in
Figure 2D-b. In contrast, all the other three nonpersistent
points correspond to the unique solution to their
respective normal form equations.

The present mathematical model has one hysteresis
point solution but no solutions of isola center, simple
bifurcation point, and double limit points [17]. As the

parameters change, the hysteresis point changes accord-
ingly, tracing out the blue curve in Figure 3. One sees that
it is indeed a boundary dividing the parameter plane into
two regions. In the region below the blue curve, any
point’s corresponding response curve is a monotonically
increasing function. In the region above the blue curve,
any point’s corresponding response to the stimulus
manifests bistability.

The area above the blue curve can be further divided. A
bistable response has two thresholds /1, and /¢ . The sign
of I is of great biological significance. When [ ;< 0,
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Figure 3. A phase diagram of physiologic and pathologic
phenotypes arising from the PI3K/Akt/mTOR pathway. The
graph A(/) is the response curve of the pathway. K and « are two
distinguished parameters of the system. As the two parameters
change, the shape of A(/) changes. The phase diagram reveals
three qualitatively different response curves, which from the top
down are the irreversible switch, the toggle switch, and the
monotone type.

the “jump-down” part of the response curve is cut off by
the vertical axis, which causes constitutive activation of
Akt. That is, once Akt is activated, it will remain
activated, even after the stimulus is completely gone. This
subtype is thus called irreversible switch. When /¢ > 0,
both activation and deactivation of Akt are under the
control of realistic insulin concentrations; and this
subtype is called toggle switch. In Figure 3, the red
curve corresponds to the critical condition /¢ = 0, which
separates the region with /,;<0 from the region with
Lye> 0.

Phase diagram of the diseases

Mathematical analysis has revealed that the PI3K/Akt/
mTOR pathway has only three kinds of steady-state
response. They are presented in Figure 3, which from the
top down are the irreversible switch, the toggle switch,
and the monotone type. Because no other steady-state
responses exist [17], it is reasonable to relate the three
kinds of response to physiologic/pathologic phenotypes
of the pathway.

Cancer. The irreversible switch shown in Figure 3 may
correspond to the cancer phenotype. Suppose initially the
concentration of the growth factor (insulin, insulin-like
growth factor, epidermal growth factor, etc.) is zero (/= 0)

and Akt is not activated (4 = 0). As [ increases over the
threshold 1, Akt is fully activated (4 = 1). Remarkably,
this activation becomes permanent. To deactivate Akt, the
growth factor concentration has to be negative (to make /
even smaller than the negative /,¢), which is impossible.
In this event, a transient stimulus gives rise to
constitutively active Akt. That is, a single pulse of the
growth factor can trigger the permanent activation of Akt,
as long as the peak of the pulse is over /,. This activation
pertains even if future stimulations will never arrive. It is
well known that Akt is an oncoprotein that promotes
carcinogenesis from many aspects. The constitutive
activation of Akt promotes massive and continuous
glucose uptake, which is necessary for cancer metabolism
and uncontrolled cell proliferation [22]. Akt activation
also promotes cell survival through coupling with other
pathways such as NFxB [23]. Even if the local
environment has very low glucose concentration, the
cell may still manage to survive. It also promotes
metastasis through decreasing transcription of the trans-
membrane protein E-cadherin that forms adhesions
between adjacent cells, thereby permitting their detach-
ment and migration to a new environment that is richer in
nutrients [24]. Therefore, the pink region in Figure 3
should be cancer-prone, because all the irreversible
switches locate in the region. It is possible that the entire
cancer-prone region is even larger, encroaching the green
region.

Diabetes. The monotone type shown in the light blue
region of Figure 3 may correspond to a stifled Akt
activation of myocytes in response to insulin stimulus.
That is, Akt activity is low under the stimulation of
normal postprandial insulin. Because Akt activation
drives the myocyte’s glucose uptake, the low Akt activity
impairs glucose disposal. To bring plasma glucose
concentration under control, the pancreas has to produce
much more insulin so that Akt can be fully activated. The
overproduction of insulin would gradually exhaust the
pancreas (e.g., the destruction of islet cells) and lead to its
failure. Finally, the pancreas can no longer secrete the
amount of insulin it did previously. The weakened insulin
secretion, together with the aberrant response curve, leads
to the full-blown diabetes: glucose cannot be utilized by
the majority of tissue cells and has to remain in the blood
(hyperglycemia). All in all, the deformation of bistability
into the monotone type increases the risk of type 2
diabetes. Therefore, the light blue region in Figure 3
should be diabetes-prone.

Normality. Because the upper and lower regions
manifest anormalities, the normal response should be
toggle switch, for the majority of cell types. Taking toggle
switch as a normal mode of response is quite reasonable.
It is well known that bistability has many fine properties
that are useful for cellular functioning [25]. For example,
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it produces a “memory” of a transient stimulus, which is
important for cell differentiation and cell cycle progres-
sion [26]; it helps to achieve biological rhythms with
widely tunable frequency and near-constant amplitude
[27]. Notably, I find that bistability emerges as an
indispensable control mechanism to achieve optimal
homeostasis, including glucose homeostasis mediated
by the PI3K/Akt/mTOR pathway [28]. Bistability appears
to be the only solution to a dilemma in glucose
homeostasis: high insulin efficiency is required to confer
rapidness in plasma glucose clearance, whereas an insulin
sparing state is required to guarantee the brain’s safety
during fasting. Therefore, normal cells, especially normal
myocytes, may use toggle switch to respond to insulin.
That is, points corresponding to the normal response
should locate within the middle green region, for example
the bright green region.

Bifurcation of the diseases

The obtained phase diagram reveals all the kinds of
responses constrained by the PI3K/Akt/mTOR pathway.
It also suggests the way anormalities could arise through
gradual departure from normality (Figure 1B). Dysregu-
lations of the PI3K/Akt/mTOR pathway can be caused by
many factors including genetic, molecular, and environ-
mental ones. The accumulation of these abberations
drives the deformation of the response curve and finally
leads to various diseases. The left trajectory in Figure 1B
may represent one typical scenario. A subject may have a
cell with ever increasing genomic instability, which
causes the /¢ value of the cell’s response curve reduces
gradually until finally turns into negative, forming an
irreversible switch. The cell consequentially becomes
transformed due to the constitutive activation of Akt.
Another scenario may be represented by the right
trajectory in Figure 1B. A subject’s myocytes and
adipocytes may become more and more insulin resistant,
caused by the flattening of their response curves. The
subject may finally develop diabetes as a consequence.
Importantly, we now have a biologically meaningful
disease evolution (Figure 1B) mapping to the sketch
evolution (Figure 1A).

Yin-Yang polarity

Figure 3 reveals an interesting polarity: cancer and
diabetes phenotypes are opposite to each other, flanking
the normality phenotype. The polarity arises from the
cell’s response to growth factors such as insulin. Diabetes
is characterized by insulin insensitivity, whereas cancers
are characterized by insulin hypersensitivity. Normality
corresponds to medium insulin response. Interestingly,
the medium response is not simply averaging maximal

and minimal Akt activation, but a controllable switching
between maximal and minimal. It is the concept of
ontological connection that leads to the global analysis of
the PI3K/Akt/mTOR pathway and thus Figure 3, which in
turn leads to intuitive insights into disease evolution
(Figure 1B).

Ontological connections between cancer and diabetes
emphasize the common grand of the two polar opposites,
which is reminiscent of the concept of Yin-Yang (literally
“shadow-light”) in traditional Chinese philosophy. This
concept also emphasizes the mutual whole, on the basis of
which polar opposites or seemingly contrary forces are
interconnected or even interconverted. This mutual
whole, as well as the principle governing its interconver-
sion, is known as Tao in Chinese philosophy: “everything
carries Yin yet embraces Yang, with a mellowing energy
for harmony” [29].

CONCLUSION

Quantitative design and analysis are playing ever-
increasing roles in biological researches [30-32]. With a
holistic perspective, quantitative biology can provide
hitherto unimagined insights into vital biological pro-
blems such as diseases, their simultaneous epidemics, and
their ontological connections. Because cancer and
diabetes correspond to opposite deformations to the
normal bistability, they are yet another manifestation of
Yin-Yang polarity, besides natural dualities such as hot
and cold, light and dark, etc. The conclusion is resonant
with the holistic theory characteristic of traditional
Chinese medicine, whose studies also require global
nonlinear analysis instead of traditional reductionist
approaches. Recently, a network targeted approach has
been introduced to illustrate the complex interactions
among the biological systems, drugs, and complex
diseases from a network perspective, which shed light
on approaches to exploit traditional Chinese medicine
[33,34].

Because cancer and diabetes are contrary to each other,
one may conclude that a cancer patient is difficult to
contract diabetes, and vice versa. This conclusion is of
cause wrong. A multicellular organism has many cells.
And it is quite natural that one cell adopts irreversible
switch as its response curve, another cell adopts
monotone type, and yet another cell adopts the normal
toggle switch. For example, a diabetes patient’s myocytes
may all become severely insulin resistant; and this does
not hinder a hepatocyte to become cancerous. In fact, this
may even be advantageous to the transformation of the
hepatocyte, because the diabetes patient often has high
glucose concentration in the blood (hyperglycemia).
Because a tumor utilizes far greater amounts of glucose
than normal tissues, muscles’ insulin resistance should be
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beneficial to the tumor growth. This possibility may
explain the simultaneous escalation of the epidemics of
cancer and diabetes. The two diseases are the two sides of
the same coin. This mutual reinforce between opposing
entities is also a character of Yin-Yang.

With the obtained insights, a natural step forward
would be performing experiments to map theoretical
response curves to actual cellular responses. One can
measure the level of Akt phosphorylation at different
concentrations of a growth factor. To measure the reverse
direction response, one can first prime the cells at a high
growth factor concentration and then repeat the same
procedure of the forward direction. To remove the effects
of heterogeneity, one can use single cell fluorescence
imaging. Fluorescent indicators have been developed for
key molecules in the PI3K/Akt/mTOR pathway, includ-
ing AKT, GLUT4, and PI3K [35,36]. It would be
important to examine cells as diverse as possible. For
example, one can examine different cells of the same
subject to determine heterogeneity across cell types and
heterogeneity within the same cell type. One can also
examine the same type of cells undergoing various
pathologic changes to determine the corresponding
deformations of the response curve. Another interesting
direction is to study stochastic fluctuations in molecular
concentrations in the PI3K/Akt/mTOR pathway. One
merit of bistability is to confer robust switching in the face
of fluctuations, which is important to the functional
outputs of the PI3K/Akt/mTOR pathway. To avoid
hyperglycemia, for example, a stable glucose disposal is
required.

Although we have used cancer and diabetes as an
example, the approach introduced in the present paper
may be used to uncover ontological connections of other
categories of diseases, for example the connection
between Parkinson’s disease and Alzheimer’s disease.
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