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Background: Single-cell RNA sequencing (scRNA-seq) is an emerging technology that enables high resolution
detection of heterogeneities between cells. One important application of scRNA-seq data is to detect differential
expression (DE) of genes. Currently, some researchers still use DE analysis methods developed for bulk RNA-Seq
data on single-cell data, and some new methods for scRNA-seq data have also been developed. Bulk and single-cell
RNA-seq data have different characteristics. A systematic evaluation of the two types of methods on scRNA-seq data
is needed.
Results: In this study, we conducted a series of experiments on scRNA-seq data to quantitatively evaluate 14 popular
DE analysis methods, including both of traditional methods developed for bulk RNA-seq data and new methods
specifically designed for scRNA-seq data. We obtained observations and recommendations for the methods under
different situations.
Conclusions: DE analysis methods should be chosen for scRNA-seq data with great caution with regard to different
situations of data. Different strategies should be taken for data with different sample sizes and/or different strengths
of the expected signals. Several methods for scRNA-seq data show advantages in some aspects, and DEGSeq tends to
outperform other methods with respect to consistency, reproducibility and accuracy of predictions on scRNA-seq
data.
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INTRODUCTION

In recent years, RNA sequencing (RNA-Seq) technology
has been widely used for studying transcriptomes [1].
Standard RNA-Seq experiments need millions of cells for
sequencing [2,3], and therefore can only get averaged
measurements of gene expressions of the cells sequenced.
Many recent studies have shown that even phenotypically
identical cells can have very different transcriptomic
profiles [4,5]. Such heterogeneities between cells cannot
be studied with standard RNA-Seq experiments [6].
The rapid development of technologies such as cell

separation, selection and amplification of minimal
amounts of mRNA has enabled the sequencing of
RNAs from an individual cell [7]. This is called single-
cell RNA-Seq or scRNA-seq. In contrast, the standard

RNA-Seq technology that needs many cells is called bulk
RNA-Seq. A typical workflow for scRNA-seq experiment
is cell capture, cell lysis, reverse transcription, pre-
amplification, library preparation and sequencing [7].
With the development of new technologies, scRNA-seq
has become a more and more popular technology to study
many questions that cannot be addressed by bulk RNA-
Seq, such as investigating transcriptome heterogeneities
between individual cells, identifying novel cell types or
cellular states and studying the transcriptomes of rare cell
types [2,6–9]. An important task in the analyses of
scRNA-seq data is to detect genes which are differentially
expressed (DE) between individual cells or clusters of
cells, and defining marker genes from the most differen-
tially expressed genes [2].
The study of differentially expressed genes (DEG) has
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been a major theme in transcriptome studies. Many
methods have been developed for the detection of DEG
based on bulk RNA-Seq data, such as DESeq [10], edgeR
[11], DEGseq [12]. Recently there have been some DE
analysis methods specifically designed for scRNA-seq
data [13–17], but there are still many single-cell studies
using existing DE analysis methods developed for bulk
RNA-Seq on scRNA-seq data [18–23]. However,
scRNA-seq has many characteristics that are different
with bulk RNA-Seq data. For example, scRNA-seq data
tend to be more noisy than bulk RNA-Seq data, which is
caused by the tiny amount and low capture efficiency of
mRNA molecules in single cells [4]. In typical cases, the
tiny amount of starting mRNA in single cells will make it
more likely to randomly miss some transcripts during
reverse transcription. These missed transcripts will not be
detected in the following sequencing step. This phenom-
enon exists widely in scRNA-seq and causes the so-called
‘dropout’ phenomena: a slight difference in gene expres-
sion or in some random factor may cause a gene to be
undetected in one cell but have a moderate or high
expression in another cell [13]. ScRNA-seq data also
suffer more from problems in severe 3’ bias, partial
coverage and uneven depth than bulk data. It deserves
systematic investigations that how well existing methods
can be applied on scRNA-seq data.
Until now, there has been no published evaluation on

the applicability and performance of existing DE analysis
methods on scRNA-seq data. There are many existing
methods one may use, and the choices under different
scenario can be hard without a systematic comparison. In
this paper, we performed a computational analysis
systematically of 14 representative methods for detecting

DEG on several large scale scRNA-seq datasets to
quantitatively evaluate the characteristics and perfor-
mance of the methods under different scenario. We found
that results from different methods can be very different in
general. Some methods are more suitable than others for
certain situations with regard to sample sizes and degree
of difference between the compared groups, and the
reproducibility of each method on different subsamples of
the data also varies. These comparisons can be a basic
reference for choosing existing methods in a particular
study, and also suggest directions for the future develop-
ment of DE analysis methods that are more suitable for
scRNA-seq data.

RESULTS

The methods we evaluated include SCDE [13], monocle
[14], D3E [15], BPSC [16], DESeq [10], edgeR [11],
baySeq [24], NBPSeq [25], Cuffdiff [26], DEGseq [12],
TSPM [27], limma [28], ballgown [29] and SMAseq [30]
as shown in Table 1. The first 4 methods were designed
for scRNA-seq data specifically while the rest methods
were developed based on bulk RNA-seq data. DE
analysis methods can be divided into parametric methods
and non-parametric methods according to whether
assuming the data come from a parameterized probability
distribution. Most of the methods we chose are parametric
methods, while D3E and SAMseq are the two represen-
tative non-parametric methods we chose. The D3E
method is based on test of distribution and the SAMseq
method is based on resampling. According to the type of
models used, parametric methods can be mainly divided
into negative binomial model (SCDE, DESeq, edgeR,

Table 1. Information of gene differential expression analysis methods used.
Method Model Input Platform Threshold Run time Ref.

SCDE Poisson and negative binomial model Read counts matrix R(package) p-value Minutes [13]

monocle Generalized additive models Read counts matrix R(package) p-value Minutes [14]

D3E Non-parametric (test of distribution) Read counts matrix Python(package) p-value 1 hour [15]

BPSC Beta-Poisson model Read counts matrix R(package) p-value 1 hour [16]

DESeq Negative binomial model Read counts matrix R(package) p-value Minutes [10]

edgeR Negative binomial model Read counts matrix R(package) p-value Minutes [11]

baySeq Negative binomial model Read counts matrix R(package) Likelihood 12 hours [24]

NBPSeq Negative binomial model Read counts matrix R(package) p-value Minutes [25]

Cuffdiff Beta negative binomial model Sam file Linux p-value 13 hours [26]

DEGseq Poisson model Read counts matrix R(package) p-value Minutes [12]

TSPM Poisson model Read counts matrix R(script) p-value 1 hour [27]

limma Linear models Read counts matrix R(package) p-value Seconds [28]

ballgown Nested linear models Read counts matrix

/ctab file

R(package) p-value Seconds [29]

SAMseq Non-parametric (resampling) Read count matrix R(package) p-value Minutes [30]

Run time is measured by one experiment of 40 samples vs 40 samples, and the used parameters and settings are shown in the materials and methods

part.
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baySeq, NBPSeq, Cuffdiff), Poisson model (BPSC,
DEGseq, TSPM) and linear model (monocle, limma,
ballgown). Almost all the methods’ input is read counts
matrix stored in a txt file, except Cuffdiff’s input is sam
format file [31] and ballgown’s input could be either read
counts matrix or a ctab format file generated by Table-
maker [29], which is more flexible. Most of the methods’
thresholds for calling DEG are based on p-values,
except that baySeq uses threshold on the likelihood
but it also provides adjusted p-values for DE in result
table.
We first used dataset GSE48968 from Gene Expression

Omnibus (GEO) in our study. It contains scRNA-seq data
of more than 1,700 primary mouse bone-marrow-derived
dendritic cells, and has an average depth of 4.5�3.0
million read pairs per sample [32]. We used data of four
groups of cells from the dataset. Three of them were
stimulated with lipopolysaccharide (LPS, a component of
Gram-negative bacteria) for 4 hours. We call them the
group of stimulated cells with biological replicates (SBR),
stimulated cells with technical replicates group 1 (STR1)
and stimulated cells with technical replicates group 2
(STR2), respectively. And the fourth group was unstimu-
lated cells with biological replicates (UBR). We then used
another two scRNA-seq datasets for confirmation and
verification of our observations. They were measured
with different protocols and have different sequencing
depths [33,34]. The information of all data we used are
summarized in Table 2 and more details can be found in
Materials and Methods. In all the scRNA-seq data we
used, we observed that detected expression levels of
95%–99% genes are 0 in the data of one cell, and those of
75%–90% genes are 0 in all cells of the same group
(groups in Table 2). This shows that dropout events are
widespread in all scRNA-seq data. And we also observed
strong 3’ bias, partial coverage and uneven depth in all
three datasets.
The main idea of our experiments is to use each of the

14 methods to detect DEG under different experimental
settings with regard to the type of samples to be compared
and the number of samples to be compared. We applied

the 14 methods to detect DEG between groups and
between subgroups within each group to study their
performances when comparing samples between different
treatments, between biological replicates of the same
treatment, and between technical replicates. All the
comparisons were conducted using different sample
sizes of 1 sample vs 1 sample, 2 vs 2, 5 vs 5, 10 vs 10,
20 vs 20 and 40 vs 40, to see the impact of sample size on
the results. For experiments of sample sizes from 1 vs 1 to
20 vs 20, we repeated each experiment 20 times by
random sampling from the whole sample set to study the
influences of randomness in the samples. For the
experiment of 40 vs 40 samples, we only conducted the
experiment once for between group comparison with each
method due to the limitation of the total number of
samples in the dataset. In total, we designed 7 sets of main
experiments on dataset GSE48968 to analyze the
performance of the 14 methods on scRNA-seq data, and
designed another 9 sets of experiments on the other two
datasets for confirmation and verification. The 7 sets of
main experiments are summarized in Table 3 and the
information of the other 9 sets of experiments for
verification are summarized in Supplementary Table S1.
The first 6 sets of main experiments on dataset GSE48968
were direct comparison between or within groups. The
7th set of experiment was carried out using two fake
subgroups of samples with reads randomly extracted from
a same sample set, which was designed for assessing the
false discoveries of each method. To eliminate the
possible influence of overlapping samples between
replicate experiments in the evaluation of the reproduci-
bility of each method, we also designed extra experiments
with mutual exclusive samples. The detailed design of the
experiments are in Materials and Methods.

Numbers of differential expression genes detected

We first studied the number of DEG detected by different
methods in all the experiments. Table 4 summarizes the
average number of DEG of each experiment by each
method. The threshold used were adjusted p-value of false

Table 2. Information of samples for experiments.
Dataset Cell type Group Group description Sample

size

Ref.

GSE48968
Mouse bone-marrow-derived

dendritic cells

SBR LPS stimulation for 4 h, biological replicate 96

[32]
STR1 LPS stimulation for 4 h, technical replicate 1 81

STR2 LPS stimulation for 4 h, technical replicate 2 56

UBR Unstimulated, biological replicate 96

GSE59127 Mouse kidney cells E11.5 Embryonic day 11.5 total kidney 49

[33]GSE59129 Mouse kidney cells E12.5 Embryonic day 12.5 total kidney 86

GSE59130 Mouse kidney cells P4 Renal vesicle cells from post-natal day (P4) kidneys 57

GSE74923
Mouse CD8+ T-cells CD8 Activated murine CD8+ T-cells 106

[34]
Mouse lymphocytic leukemia cells L1210 Lymphocytic leukemia cell line lineages 88
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discovery rate (FDR)< 0.05. Because SCDE, D3E,
BPSC, edgeR, NBPSeq, limma, ballgown and SAMseq
could not do the analysis of one sample vs one sample
[11,13,15,16,25,28–30], we use NA in the table to
indicated that the method cannot work in that particular
experiment.
As we can see in Table 4, the average numbers of DEG

found by the 14 methods differ very much. Although the
FDR threshold was set at the same level, the numbers of
reported DEG can be at different magnitudes. Most
methods reported nothing to several hundred DEG in
most experiments, like SCDE, monocle, D3E, BPSC,
DESeq, edgeR, Cuffdiff, ballgown and SAMseq while
other methods such as baySeq, NBPSeq, DEGseq, TSPM
and limma could call up to thousands of DEG. According
to the numbers of DEG they found, we can divide the
methods into three categories. The first category includes
SCDE, monocle, D3E, BPSC, DESeq, edgeR, Cuffdiff,
ballgown and SAMseq which report relatively small
numbers of DEG (usually less than a few hundreds). The
second category includes NBPSeq, DEGseq and limma
which tend to report many DEG (from hundreds to
thousands). BaySeq and TSPM are of the third category,
which can report numbers of DEG from nothing to several
thousands.
The manners of the changes of each method’s DEG

when sample size increases also differ very much. SCDE,
monocle, BPSC, DESeq, edgeR and SAMseq report zero
or few DEG when sample size is very small and the
numbers of reported genes increase gradually when
sample size increases. The numbers of DEG found by
baySeq decrease first and then increase sharply. Similarly,
the numbers of DEG found by TSPM decrease rapidly
and sometimes increase again when sample size
increases. Because of the high variation of results when
sample size increases, baySeq and TSPM tend to have
low consistency with scRNA-seq data. The numbers of
DEG found by Cuffdiff decrease first and then increase;
the DEG NBPSeq and DEGseq detected increase
gradually when sample size increases, however the
numbers of DEG found by D3E, limma and ballgown
seems to not have a coherent pattern under such

condition. According to the manner that the numbers of
DEG change when sample size increases, we could
classify these methods into three categories: the increas-
ing category, decreasing-then-increasing category and
inconsistent category. The increasing category includes
SCDE, monocle, BPSC, DESeq, edgeR, NBPSeq,
DEGseq and SAMseq for the DEG they find will
gradually increase when sample size increases. The
decreasing-then-increasing category contains baySeq
and Cuffdiff. The inconsistent category includes D3E,
TSPM, limma and ballgown, for the DEG they find do not
have a coherent pattern across the experiments.
In the SBRsplit experiment which was designed for

studying false positive detections by every method, we
found that most of methods report zero DEG. It is as
expected because the compared samples in this experi-
ment were composed of reads randomly extracted from
the same sample and there should not be any DEG. All
DEG reported in this experiment are false positives. In our
results, most methods give almost no false discoveries in
this experiment when sample size is not too small, except
the NBPSeq method that give many false positive. When
sample size is small, monocle, ballgown and Cuffdiff also
report some false positives.
The DEG found by ballgown show an inconsistent

pattern between different experiments (Table 4), which
seems to be caused by the special pattern of ballgown’s p-
values. The histogram of p-values of all genes analyzed
by ballgown contains randomly distributed pulses and the
number of pulses is approximately less than or equal to
the number of samples compared (Supplementary Figure
S1). This phenomenon leads to the number of DEG found
by ballgown shows an unstable pattern. We speculate that
the special pattern of ballgown’s p-value is caused by its
nested linear models [29].
The number of DEG Cuffdiff detected in almost every

2 vs 2 experiments equals to zero (Table 4), which is very
strange and seems to be largely determined by the
distribution of its p-values near zero. The distribution of
Cuffdiff’s p-values of all genes near zero differs a lot
between different sample sizes. The p-values near zero of
2 vs 2 experiments are much lower than those of

Table 3. Information of experiments on dataset GSE48968.

Experiments Experiments type Abbreviation Group 1 Group 2

1

Between group comparison

SBR_v_UBR SBR UBR

2 STR1_v_UBR STR1 UBR

3 STR1_v_STR2 STR1 STR2

4

Within group comparison

SBR_v_SBR SBR SBR

5 UBR_v_UBR UBR UBR

6 STR1_v_STR1 STR1 STR1

7 Identical comparison SBRsplit SBR(split) SBR(split)
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experiments with other sample sizes (Supplementary
Figure S2 ), which determines that Cuffdiff finds the least
number of DEG when the comparison sample size is 2.
Cuffdiff uses the beta distribution to model the uncer-
tainty in the assignment of fragments to isoforms and uses
negative binomial distribution to model over-dispersion
of fragment counts, and then it combines them to a single
model of fragment count variability [26]. It is likely that
this special characteristic of Cuffdiff’s p-values’ distribu-
tion is caused by the mixture of beta distribution and
negative binomial distribution. Anyway, the strange
pattern of Cuffdiff results implies that it may not be
very reliable for comparison of two samples with two
samples on scRNA-seq data. The histograms of other
methods’ p-values are also shown in Supplementary
Figures S3–S12 , except for baySeq and SAMseq that do
not output original p-values.
In summary, the number of DEG detected by the 14

methods differs very much in their scales and the manners
they change when sample size varies. According to
experiments on the SBRsplit data, all methods except
NBPSeq can avoid false positive detections well on
completely non-separable data. The number of DEG
found by baySeq and TSPM varies at a very wide range
when sample size changes, and ballgown and Cuffdiff
show some unreasonable patterns in the change of DEG
numbers with regard to sample size. The other methods,
albeit the big difference between results of different
methods, perform in a predictable manner when sample
size changes. When we change the FDR cutoff from 0.05
to 0.04, 0.03, 0.02 and 0.01, we found that the numbers of
DEG detected decrease with the cutoff as expected, but
the scale and the changing manners of DEG with sample
sizes remain unchanged (Supplementary Tables S2–S5 ),
suggesting that our observations are not specific to a
particular cutoff. We got similar results on the other two
datasets (SupplementaryTables S6–S10 ).

Similarities between results of different methods

The p-values of different methods are not directly
comparable, so we used the number of genes in the
intersection of top 1,000 DEG (ranked by ascending p-
values) of two results as a measure of their similarity.
Figure 1 shows the similarity heatmaps illustrating the
intersection numbers between the compared methods in
the experiments with different sample sizes. The numbers
were averaged among the 20 replicated experiments with
the same settings except sample size 40.
When analyzing the similarity among results from

different methods, we should keep in mind that people
had observed even for data with a bulk of cells obtained
with RNA-Seq or microarrays, it is not unexpected that
two results on the same data only have about half overlap

in some scenarios [35–37]. Given this context, we can
understand that an intersection number of ~500 genes
among the top 1,000 genes can be seen as an indication of
reasonable similarity. We can see from Figure 1 that,
when sample size is small (1 vs 1), the methods that can
work for this scenario (monocle, DESeq, baySeq,
Cuffdiff, DEGseq and TSPM) give pretty similar results
except for Cuffdiff. When sample size increases to 2 vs 2
and 5 vs 5, the similarity among results of DESeq, edgeR,
NBPSeq, DEGseq, limma and SCDE are reasonably high
(around or above 50%). Considering the observation on
the dramatic difference in the number of reported DEG
between methods, we can see that a large part of the
difference can be caused by the different estimate of
p-values by different models and algorithms. When the
sample size further increases to 10 vs 10, 20 vs 20 and 40
vs 40, the results of DEGseq is becoming less similar with
those of edgeR and DESeq, which implies that the
difference between the simple Poisson model (used by
DEGseq) and the negative binomial model (used by
edgeR and DESeq) becomes more significant when
sample size is getting large. And when sample size get
larger, the results of methods specifically designed for
scRNA-seq (SCDE, monocle, D3E, BPSC), DESeq and
SAMseq become more similar to each other. DEGseq and
BPSC have quite high similarity all the way because both
of them use the Poisson model. The similarities between
limma and other methods are quite high when sample size
is 2 vs 2 but drop rapidly when sample size increases. This
implies what limma uses a very different model with other
methods and the difference between models and imple-
mentations becomes more obvious when sample sizes
increase. Similar results of similarities between different
methods are also seen in other experiments and the other
two datasets (Supplementary Figures S13–S26 ).
We also studied the situations that using the top 500

DEG and top 100 DEG separately. We found that the
similarity and the relative order of similarity of different
methods almost remain the same for top 500 genes as with
top 1,000 genes (Supplementary Figures S27–S56 ). For
the top 100 genes, the similarity between methods
decreased some in general, and some of the relative
orders of similarities also changed. This inconsistent
result is mainly because the used gene number is too small
and the influences of stochastic factor become larger.

Consistency of the same methods with different data
sizes

We define the consistency of a method as the overlap of
top 1,000 DEG (ranked by ascending p-value) it found
between results on experiments with different sample
sizes. This can be illustrated as consistency heatmaps in a
similar way as in Figure 1 for each method and for each
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set of experiments. Figure 2A shows only the example of
consistency heatmaps of edgeR, DESeq and DEGseq on
the experiment SBR_v_UBR. All the consistency heat-
maps of all experiments and methods are given in the
Supplementary Figure S57.
By eyeballing through all these consistency heatmaps in

Supplementary Figure S57, we can get the general feeling
that some methods have high consistency in most
experiments, and some only have high consistency in
certain datatypes. But it is not straightforward to make any
direct comparison between methods. To make the observa-
tions more comparable, we define a “mean consistency
measure” for each method in the following way: firstly, we
performed a union of the top 1,000 DEG found with sample
size 2, 5 and 10. Then, we found the intersection on this
union list with the top 1,000 DEG found with sample size
20, and counted the number of genes in the intersection and
divide it by 1,000 to get the percentage of intersection. We
did these steps on all the 20 replicated experiments in each
setting and define the average of the percentages of
intersection as the mean consistency measure of the method
on each type of data. The mean consistency measures of all
14 methods on the 6 informative experiments are shown in
Figure 2B. Figure 2C shows the mean consistencymeasures
of all methods that are further averaged over experiments on
different data types.
From heatmap in Figure 2B, we can have a few

interesting observations. We can see that the consistency
of most methods are good in general considering that a
~50% consistency between results two parallel datasets of
bulk expression data is already reasonable. Some methods
like DEGseq and D3E have higher consistency than
others. Because the comparison is based on the top 1,000
DEG regardless of whether they are called as significant
according to some cutoff, this consistency measure is not
affected by whether a method tends to call more or less
positives. It is interesting to note that the experiments on
the comparison of SBR vs UBR samples and STR1 vs
UBR samples show relatively higher consistency for all
methods, and the comparison of subgroups of SBR
samples (SBR vs SBR) has the lowest consistency for all
methods. For SBR_v_UBR and STR1_v_UBR experi-
ments, the dominating difference between the two groups
are whether the cells were stimulated or untreated. The
observation tells that this signal is strong so that the
consistency of discoveries from samples of difference size
is high. On the other hand, the samples in the two groups
of the SBR_v_SBR experiment are actually cells from the
same treatment. The reported DEG between the two
groups are mostly due to expression heterogeneity
between the cells. This explains why the consistency
between results on different sample sizes is low. Similar
observations on the other two datasets can be seen
in Supplementary Figure S58. In Supplementary Figure

S58B, the mean consistency measure of experiment
CD8_v_L1210 is significantly higher than other experi-
ments because the cell types for comparison are totally
different. This verifies that the consistency of these
methods will be higher when the difference between the
compared samples is stronger.
We also use the top 500 DEG and the top 100 DEG to

calculate the consistency measure. The consistency
becomes slightly lower than that with the top 1,000
DEG, but the observed patterns and relatively orders of
methods almost remain unchanged (see Supplementary
Figures S59–S62 ).

Reproducibility of the methods

We define the reproducibility of a method as the average
of the overlap of top 1,000 DEG (ranked ascending with
p-value) it found between all pairs of the 20 replicated
experiments with different random seeds for sampling
divided by 1,000. So the reproducibility of a method in a
specific experiment and specific sample size will be in the
range of [0, 1]. This can be illustrated as reproducibility
heatmaps in a similar way as in Figure 2B for each
method, each sample size and each set of experiments.
Figure 3A shows the reproducibility heatmaps of each
method in each set of experiments of different sample
sizes, and Figure 3B is an average over experiments of the
six heatmaps in Figure 3A. Figure 3C is an average over
sample sizes of the heatmap in Figure 3B.
From these heatmaps, we can have some interesting

findings. We can see that in most situation, the
reproducibility is in the range of [0.2, 0.4], which
means the overall reproducibility of each method on
scRNA-seq data tend to be in a low level. In general, the
reproducibility will increase as sample size increases.
Some methods like DEGseq and SCDE show higher
reproducibility than others. Similar to consistency in
Figure 2, because the comparison is based on the top
1,000 DEG regardless of whether they are called as
significant according to some cutoff, this reproducibility
measure is also not affected by whether a method tends to
call more or less positives. It is also worth noting that the
set of experiments SBR_v_UBR and the set of experi-
ments STR1_v_UBR show higher reproducibility than
other sets of experiments for all methods, similar with the
observation of consistency in Figure 2. This reflects that
the signal of differential expression of genes because of
treatment is stronger and more stable than that caused by
the heterogeneity between cells. We got consistent
observations of reproducibility on the other two datasets
(Supplementary Figure S63).
We also used the top 500 DEG and the top 100 DEG to

calculate the reproducibility of each method. The
reproducibility became smaller than that calculated with
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Figure 1. Mean intersection numbers of top 1,000 DEG between different methods of experiment SBR_v_UBR. Rows and

columns stand for methods, and each cell of each table is a mean intersection number of top 1,000 DEG (ranked ascending with
p-value) detected by the methods of row and column corresponding to respectively in 20 trials with random sampling. Sample
numbers are 1 vs 1, 2 vs 2, 5 vs 5, 10 vs 10, 20 vs 20 and 40 vs 40 respectively from A to F. When sample number equals to 1, the

table size is 6�6 because only monocle, DESeq, baySeq, Cuffdiff, DEGseq and TSPM could do the DE analysis of one sample
versus one sample. And when sample number equals to 2, 5, 10, 20 or 40, the table size is 14�14 of all the 14 methods.
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the top 1,000 DEG, but the observed patterns and
relatively orders between methods remained almost
unchanged (Supplementary Figures S64–S67).
To eliminate the possible influences of overlapping

samples between replicate experiments, we also designed
parallel exclusive experiments whose samples are mutual
exclusive to calculate the reproducibility (Supplementary
Figure S68). We found that the reproducibility of each

Figure 2. Consistency heatmaps. (A) Mean intersection numbers of top 1,000 DEG between different sample numbers. Rows
and columns stand for sample sizes, and each cell of every table is a mean intersection number of the top 1,000 DEG (ranked
ascending with p-value) detected by the specific method of the sample sizes row and column corresponding to respectively in 20

trials with random sampling. The method is edgeR, DESeq and DEGseq from left to right. For each method of each experiment, the
table size is 4�4 or 5�5, which depends on the method whether could do the DE analysis of one sample versus one sample.
(B) Mean consistency measure. The mean intersection percentage between the top 1,000 DEG of sample number 20 and the union
of the top 1,000 DEG of sample numbers 2, 5 and 10. Rows stand for different experiments and columns stand for different methods.

The number in each cell of the table is calculated by three steps: get the union of the top 1,000 DEG of sample number 2, 5 and 10 of
a specific method and specific experiment; get the intersection of the union last step get with the top 1,000 DEG of sample number
20, and counted the number of genes in the intersection and divide it by 1,000 to get the percentage of intersection; repeat these

steps on all the 20 replicated experiments in each setting and get the average. (C) Mean consistency measure averaged over
experiments. This table is a column average of the table in Figure 2B.
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Figure 3. Reproducibility heatmaps. (A) Reproducibility of each method in each set of experiments of different sample sizes.
Every table stands for a different set of experiments. In each table, rows stand for different sample sizes and columns stand for

different methods. NA means that the method could not conduct the analysis of one sample versus one sample. (B) Mean
reproducibility over experiments of each method. This table is an average of the six tables in Figure 3A. Rows stand for different
sample sizes and columns stand for different methods. NA means that the method could not conduct the analysis of one sample

versus one sample. (C) Mean reproducibility over experiments and sample numbers of each method. This table is a column average
of the last four rows of the table in Figure 3B.

252 © Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Zhun Miao and Xuegong Zhang



method still increases with sample size, which verifies our
conclusions about reproducibility.

Accuracy of predictions indicated by ROC-like
curves

A problem for studying DEG from single cell data is that
we do not have access to the ground truth. Considering
the heterogeneity in gene expression among single cells,
which is the key reason why people want to use single-
cell technology, it may even be difficult to validate results
obtained on one group of samples by doing biological
experiments on another group of samples before we have
a good understanding on the nature of heterogeneity
among the cells. Even the heterogeneity in technical
replicated samples cannot be guaranteed due to imperfect-
ness in the multiple steps of single cell experiments.
Reliable simulation models can also not be built. In this
study, we introduced the SBRsplit experiments on man-
made samples that were generated by randomly extracting
50% reads of one scRNA-seq sample two times to two
samples. We can be sure that any difference detected
between two groups of artificial samples generated in this
way must be false positive detections.
Using detections in the SBRsplit experiment as false

positive discoveries drawing as the x-axis, and using the
number of detected DEG in the SBR_v_UBR experiment
to draw the y-axis, we generated ROC-curve-like plots to
study the relative relations of false discoveries with
probable true discoveries when the p-value cutoffs change
from 0 to 1. The baySeq does not provide p-values and
SAMseq reported no DEG in SBRsplit experiment even
when threshold of FDR is set to 1, this curve cannot be
drawn for them. The ROC-like curves and their AUC of
the other 12 methods are given in Figure 4.
We can see from Figure 4 that most methods’ ROC-like

curves will become better when sample sizes increase and
the curves of BPSC, DESeq, edgeR, Cuffdiff, DEGseq
and limma are quite similar when sample size is 5 or
larger. Among these 6 methods, BPSC, edgeR and limma
cannot work on the 1 vs. 1 comparison; the area under the
curve is small for DESeq and Cuffdiff when sample size is
1 or 2, which reflects that the estimation of the over-
dispersion parameter is noisy when sample size is too
small. The areas under the curves of the other methods are
smaller than the above 6 methods, and there are some
abrupt changes at some points of those curves. The
reasons that cause those special curve shapes must be
rooted in the models and algorithms used in those
methods and deserve further investigations.

DEG found by DEGseq

As an example, we checked the DEG found by DEGseq

using MA-plot visualization to have a direct feeling on the
signals in the detected genes. Supplementary Figure S69
shows the example of 1 versus 1 results in the
SBR_v_UBR experiment and in the SBRsplit experiment.
The boundary for calling significant differential expres-
sion is defined by the p-value cutoff of FDR< 0.05. From
these plot, we can perceive that the number of DEG
between two samples is large.
We used heatmaps to visualize the expression of the

detected DEG in the experiments with multiple samples.
As there are too many detected DEG, we choose the top
50, middle 50 and bottom 50 among the detected DEG,
according to the rank of the p-values. Supplementary
Figure S70 shows the heatmaps in the SBR_v_UBR
experiments with sample size 2, and those with sample
sizes 5, 10 and 20 are given in Supplementary Figures
S71–S73. We can observe that the heterogeneity of gene
expression within each group is large, but a strong
difference between the two groups can be perceived from
the top 50 genes. For the middle 50 genes, the difference
between the two groups is still obvious, but it tend to be
due to one or two particular samples. And for the bottom
50 genes, the signals are weaker and often exist in only
few or even single sample, which exhibits severe
“dropout” phenomenon. Due to the large heterogeneity
of gene expression within each group, it is questionable
whether the bottom or even the middle genes in the list
should be really regarded as having systematic differential
expression although the p-values under the current model
is small. This suggests that, when using methods like
DEGseq that reports too many DEG based on signals in
very few samples, we should set a more stringent
threshold to only report the top genes for a more
conservative result. And to solve this problem fundamen-
tally, we should develop new methods based on novel
models to deal with the severe ‘dropout’ events and the
other particular properties for scRNA-seq data.

DISCUSSION AND CONCLUSIONS

In this study, after 16 sets of experiments on 3 scRNA-seq
datasets with the 14 methods designed based on bulk
RNA-seq data or scRNA-seq data, we observed that the
methods can behave differently in the number of DEG
each method tend to report, and also in the variation in
this number when the sample size of the compared groups
changes. Some methods tend to give very different reports
at different experiment settings and may thus be less
reliable. When comparing the similarities between results
of different methods, we found that some methods give
very similar results when sample size is small. The overall
similarity between results of different methods drops
when sample size increases, which implies that the
difference between models and implementations becomes
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more obvious. More work is needed to investigate what
model can fit the scRNA-seq data better.
We assessed the consistency of each method on data of

different sample sizes, and found that the consistency of

most methods are in general good, especially when the
difference between the compared samples is strong.
DEGseq and D3E showed higher consistency than others
in most experiments. We also checked the reproducibility
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Figure 4. ROC-like curves of every method. The methods are monocle, DESeq, Cuffdiff, DEGseq, TSPM, SCDE, D3E, BPSC, edgeR,

NBPSeq, limma and ballgown from A to H respectively. For every method, sample number is 1, 2, 5, 10, 20 from left to right. Some methods don’t
have the figure of one sample versus one sample because of nonsupport of 1 vs 1 comparison of the methods.
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of the same method on two random subsets of the data
with equal size. We found that random sampling of the
samples can affect the detection of DEG, which highlights
the high heterogeneity in gene expression among single
cells. DEGseq has the highest reproducibility among the
compared methods, and the reproducibility is higher for
most methods when the difference signal between the two
groups is stronger and when the sample size is larger. D3E
and SAMseq’s consistency and reproducibility are
especially good on data with strong between-group
differences and large sample sizes, but they perform just
at average level on data with other situations. Meanwhile,
we found that the methods developed for scRNA-seq data
showed above-average or close-to-the-best consistency
and reproducibility among all methods. This exhibits the
advantages of the specifically designed methods over
most of the traditional DE analysis methods.
We introduced an ROC-like curve and its AUC to

quantitatively study the potential accuracy of each
method at each sample size. We found that the
performances of most methods are severely affected by
the compared sample sizes and perform less satisfying
overall when sample sizes are small. We saw that BPSC,
DESeq, edgeR, Cuffdiff, DEGseq and limma perform
well on their curves when sample size is not very small,
and BPSC is the best among the 4 scRNA-seq specific
methods. When there are only two samples in each group,
edgeR, DEGseq and DESeq still perform well, and
DEGseq outperforms other methods when sample size is
one in each group. More detailed study on the DEG
detected by DEGseq showed that it tends to be over-
sensitive to genes that have expression in only few
samples. In practice, more stringent threshold should be
used to only report the top DEG when using DEGseq to
avoid false positives caused by the abnormal expression
in one or few samples, especially when the compared
sample size is not very small.
From these comparative experiments in different

experimental settings, we conclude that great caution
should be taken with regard to the situation of data when
choosing DE analysis methods for scRNA-seq data.
Different strategies should be used for different sample
sizes and different strengths of the expected signals.
When the compared sample size is small, say less than or
equal to 5, especially for the comparison of 1 vs 1, or
when the compared DE signal is very weak, we
recommend to use DEGseq, whose consistency and
reproducibility both are high on scRNA-seq data. Since
DEGseq tends to be a little oversensitive for some genes,
a more stringent threshold is also recommended. For data
with strong between-group differences and large sample
sizes(≥20), D3E and SAMseq will be good choices since
their consistency and reproducibility are especially good
for such scenario. For other situations, BPSC, DESeq and

edgeR will be excellent choices for DE analysis of
scRNA-seq data. But we also should keep in mind that,
none of these methods perform consistently good for
scRNA-seq data, these recommendations are only
expedient in the existing methods. The low overall
agreement between results with different methods and
under different situations highlights the urgent need for
models that can better capture the nature of single cell
gene expression data.
Bulk RNA-Seq data have in general much smaller

within-group variations than single-cell data due to the
average effects of millions of cells. Therefore, methods
for DEG detection on bulk data are all based on test of
means. Due to the high heterogeneity of single cells, gene
expression has higher variation among cells in the same
group for single-cell data. In many cases, what we need to
do for detecting differential gene expression between two
group of single cells is to compare two distributions rather
than only two means, like D3E does. Besides, the
widespread ‘dropout’ events and other characteristics
shown in scRNA-seq data should also be considered
cautiously when conduct DEG analysis. The latest
methods specifically designed for single-cell data showed
advantages over most existing methods in some aspects,
but there is no obvious winner that can perform the best in
all major aspects. New models and new methods that can
combine advantages of multiple methods need to be
developed.

MATERIALS AND METHODS

Dataset

The dataset we mainly used in this study is from GEO of
accession number GSE48968, which is from the paper
published on Nature 2014 [32]. The dataset contains more
than 1,700 primary mouse bone-marrow-derived dendri-
tic cells’ scRNA-seq data, and has an average depth of
4.5�3.0 million read pairs. We used four groups of data
from the dataset, they are LPS 4 h biological replicate,
LPS 4 h technical replicate 1, LPS 4 h technical replicate 2
and unstimulated biological replicate respectively. To
keep it simple, we rename them as SBR, STR1, STR2 and
UBR respectively in our study, as shown in Table 2. The
samples in group SBR, STR1 and STR2 are all stimulated
with lipopolysaccharide (LPS, a component of Gram-
negative bacteria) for 4 hours and the samples in group
UBR are unstimulated. The sample sizes of the four group
are 96, 81, 56, 96 respectively. And in order to control the
quality of the sequencing data, we only use the samples
whose coverages> 1 million read pairs for experiment 1
to experiment 6, and the used sample sizes of SBR, STR1,
STR2 and UBR become 80, 81, 55 and 57 respectively
after quality control. And in experiment 7 (Experiment
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SBRsplit), we only use the samples from group SBR
whose coverages> 2 million read pairs (77 samples)
because in this experiment, samples will be extracted 50%
reads two times for comparison.
The other two dataset we used in our study for

confirmation and verification are also from GEO, and
their accession numbers are GSE59127, GSE59129,
GSE59130 and GSE74923 [33,34]. The average sequen-
cing depth of GSE59127, GSE59129 and GSE59130 is
2.6 million read per cell, while the average depth of
GSE74923 is 1.2�0.06 million read pairs per cell. So we
used the samples whose coverages> 1 million read in
GSE59127, GSE59129 and GSE59130, and the samples
whose coverages> 0.1 million read pairs in GSE74923.
The other information of the two datasets is shown in
Table 2.

Design of experiments

The main idea of experimental design is to use the 14
methods separately to detect the DEG between two
groups of randomly selected samples with several sets of
sample numbers. In experiment 1 (experiment
SBR_v_UBR), we conduct the DE analysis between
group SBR and group UBR, with sample number of 1 vs
1, 2 vs 2, 5 vs 5, 10 vs 10, 20 vs 20 and 40 vs 40
respectively. And the samples selected will have a nested
relation when sample number increases, that is, when
sample number is 1 vs 1, we just randomly draw out one
sample from each group for comparison; when sample
number comes to 2 vs 2, we keep the samples 1 vs 1 used
and randomly draw one new sample from each group then
add them to the comparison; when sample number is 5 vs
5, we keep the samples 2 vs 2 used and randomly draw
three new samples from each group then add them to the
comparison; and so on. And every experiment is repeated
for 20 times except for 40 vs 40 because of the limitation
of sample number of each group in the datasets, using
different random number seeds for random sampling in R.
The design of nested relation between different sample
numbers is for studying the consistency of every
experiment when sample number increases. Similarly,
experiment 2 (experiment STR1_v_UBR) is group STR1
vs UBR. Experiment 3 (experiment STR1_v_STR2) is
group STR1 vs STR2. Experiment 4 (experiment
SBR_v_SBR) is group SBR vs SBR. Experiment 5
(experiment UBR_v_UBR) is group UBR vs UBR.
Experiment 6 (experiment STR1_v_STR1) is group
STR1 vs STR1. Experiment 7 (experiment SBRsplit) is
a little different from the others. The design of experiment
7 is as following. Firstly, we randomly draw specific
number of samples for comparison from group SBR,
which also have the nested relation between different
sample numbers. Secondly, we randomly extract 50%

reads two times from the samples chosen, so that we could
get two set of small samples, between which there would
not exist any DEG. Thirdly, we carry out the detection of
DEG between the two set of small samples and the result
of significant DEG could be used as false positives of the
method. The information of every experiment is listed in
Table 3.
The other 9 sets of experiments on the other two

datasets for confirmation and verification are summarized
in Table S1. Their experimental settings for sample size
and replicated times are same with the main experiments.
To eliminate the influences of overlap of samples

between replicate experiments when we evaluate the
reproducibility of each method, we also designed parallel
exclusive experiments whose samples are mutual exclu-
sive. And considering the impact of the needed sample
number, we designed the parallel exclusive experiments
only for the experiments of between group comparison,
i . e . , e xpe r imen t SBR_v_UBR, expe r imen t
STR1_v_UBR, experiment STR1_v_STR2, experiment
E11.5_v_E12.5, experiment E11.5_v_P4, experiment
E12.5_v_P4 and experiment CD8_v_L1210. Concretely
speaking, for these experiments, we conduct each trial
twice and guarantee the samples used in them are mutual
exclusive, and we call them a pair of exclusive trials. And
we get the intersection number between the top 1000
DEG of each trial in the pair of exclusive trials as its
reproducibility. Then we repeat each pair of exclusive trial
10 times, using different random seeds for randomly
sampling, to calculate their average reproducibility. Then
similarly we calculate the average reproducibility for
every sample size of every experiment.

Sequence alignment and gene read counts

All sequencing data is mapped to the mouse genome
(mm9, NCBI Build 37) using Tophat (v2.0.12) [38] with
default parameters except the parameter for number of
threads (‘-p 10’). Every alignment file of group SBR is
randomly extracted 50% aligned reads for two times to
two new alignment files using samtools [31] view with
parameters of ‘-h-s 1.50’ and ‘-h-s 2.50’. All alignment
files are sorted by read names using samtools sort with
parameter ‘-n’. Then the alignment files and a GTF file of
mm9 Ensembl Genes from UCSC are used to generate
read count matrix for every sample using HTSeq (version
0.6.0)[39] with the following parameters: ‘python-m
HTSeq.scripts.count-s no-f bam-r name’. All the align-
ment files in bam format are converted to sam format
using samtools view for the following use of Cuffdiff.

Analysis of differential expression

The read count matrixes got from HTSeq last step are
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used for analysis of DE except for Cuffdiff which use the
sam format files converted from the bam format files. All
the analyses are carried out with the standard procedures
and default parameters as the documentation of every
method suggest unless otherwise stated. Adjusted p-value
of FDR of differential expression for each gene are
calculated by each method. The information and details of
every method used in our study are listed as following.
SCDE (v.1.99.1): The parameters of function clean.

counts are ‘min.reads = 0’ and ‘min.detected = 0’. We set
paramrter ‘n.cores = 8’ for function scde.error.models and
function scde.expression.difference. Other parameters are
as suggested in SCDE’s tutorials.
monocle (v.1.99.0): The parameter expressionFamily

for function newCellDataSet is ‘expressionFamily =
negbinomial()’. The parameter cores for function differ-
entialGeneTest is ‘cores = 8’. Other parameters are as
vignette of monocle suggested.
D3E (Latest commit 6727adf on 21 Oct 2015): All the

parameters are as suggested in the example of D3E’s wiki
pages, except ‘-m 0’, because mode 1 runs too slow for
the large scale experiments.
BPSC(v.0.99.0): The analysis is conducted as the

examples shown in BPSC package introduction.
DESeq (v.1.18.0): The dispersion estimation procedure

call function of estimateDispersions with different para-
meters for different sample numbers. When there is no
replicate, the parameters are ‘method = “blind”, sharing-
Mode =“fit-only”, fitType =“local”’. when sample num-
ber of replicates is larger than 5, the parameters are
‘sharingMode =“gene-est-only”, fitType =“local”’ as
recommended by the documentation for large replicates.
For other conditions, the set parameter is ‘fitType =
“local”’.
edgeR (v.3.8.6): When there is no replicates, as

suggested by the documentation of edgeR, we did not
carry the significance analysis of DE.
baySeq (v.2.0.50): Prior parameters of negative bino-

mial are estimated using getPriors.NB with parameter of
‘estimation = “QL”’ which stands for quasi-likelihood
estimation. Note that baySeq will use posterior probabil-
ities as lower threshold instead of using adjusted p-values
as upper threshold so we use parameter ‘likelihood = 0’ in
topCounts to get a result table of all the genes. And in the
table there is also a column of ‘FDR.DE’ which contains
the FDR of differential expression so we could use FDR
as upper threshold again.
NBPSeq (v.0.3.0): The analysis is conducted as the

examples of exact.nb.test shown in documentation of
NBPSeq.
Cuffdiff (v2.2.1 (4237)) with the default parameters

and GTF file used in HTSeq before except the parameter
for number of threads (‘-p 8’).
DEGseq (v.1.20.0): The parameter used in DEGexp is

‘method =“MARS”’, and other parameters are as the
examples of DEGexp shown in documentation of
DEGseq.
TSPM (February 2011): The analysis is conducted as

the examples shown in the script of TSPM (http://www.
stat.purdue.edu/~doerge/software/TSPM.R).
Limma (v.3.22.7): The analysis is conducted as the

examples shown in ‘limma: Linear Models for Microarray
and RNA-Seq Data, User’s Guide’(Last revised 8
September 2015).
Ballgown (v.1.0.4): The command we used for DE

analysis is ‘stattest (gowntable = counts, feature =‘gene’,
pData = pData, covariate =‘group’, getFC = TRUE)’.
SMAseq (v.2.0): We exclude the genes whose read

count is 0 in all samples first. We set ‘resp.type = “Two
class unpaired”’ and specific random seed for every round
of analysis.
For each method and each experiment shown in Table 3

and Table S1, comparisons were conducted between
Group 1 and Group 2 with the sample sizes of 1, 2, 5, 10
and 20 respectively, and each sample size’s experiment
was repeated for 20 times with different random seeds for
random sampling.
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