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Abstract The Modified Chebyshev Picard Iteration (MCPI) method has recently
proven to be highly efficient for a given accuracy compared to several com-
monly adopted numerical integration methods, as a means to solve for perturbed
orbital motion. This method utilizes Picard iteration, which generates a sequence
of path approximations, and Chebyshev Polynomials, which are orthogonal and
also enable both efficient and accurate function approximation. The nodes consis-
tent with discrete Chebyshev orthogonality are generated using cosine sampling;
this strategy also reduces the Runge effect and as a consequence of orthogonal-
ity, there is no matrix inversion required to find the basis function coefficients. The
MCPI algorithms considered herein are parallel-structured so that they are imme-
diately well-suited for massively parallel implementation with additional speedup.
MCPI has a wide range of applications beyond ephemeris propagation, includ-
ing the propagation of the State Transition Matrix (STM) for perturbed two-body
motion. A solution is achieved for a spherical harmonic series representation of
earth gravity (EGM2008), although the methodology is suitable for application to
any gravity model. Included in this representation the normalized, Associated Leg-
endre Functions are given and verified numerically. Modifications of the classical
algorithm techniques, such as rewriting the STM equations in a second-order cas-
cade formulation, gives rise to additional speedup. Timing results for the baseline
formulation and this second-order formulation are given.
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Introduction

The Modified Chebyshev-Picard Iteration (MCPI) method is used to solve both lin-
ear and nonlinear, high precision, long-term orbit propagation problems through
iteratively finding an orthogonal function approximation for the entire state trajec-
tory. At each iteration, MCPI finds an entire path integral solution (over a large
finite interval, converges over intervals up to three orbits), as opposed to the con-
ventional, incremental step-by-step solution strategy of more familiar numerical
integration strategies, i.e., those based on explicit numerical methods. While very
long path segments are convergent, computationally optimal path segments are typ-
ically a large fraction of an orbit. A major advantage of the MCPI approach is
that the use of cosine sampling reduces the well-known Runge Effect, whereby the
largest errors are encountered near the boundary of piecewise approximation seg-
ments [1]. This algorithm has recently proven to be a powerful tool for solving
nonlinear differential equations for both initial value problems (IVP) and boundary
value problems (BVP) [1–5]. Comparisons with traditional step-by-step methods [6,
7] have shown that MCPI is more efficient for a prescribed solution accuracy. Sig-
nificantly, however, unlike conventional integration approaches, it is ideally suited
for massive parallel implementations that provide further boosts in the computa-
tional performance. Algorithm tests are currently under development for massive
parallel implementations, where the performance results will be presented in future
papers.

Here we consider the MCPI method to compute the State Transition Matrix (STM)
for the case of perturbed motion, which has applications in many areas including
celestial mechanics and control systems. Propagation of the STM is useful in deter-
mining the sensitivity of the IVP solution to the initial conditions; for instance, the
STM predicts how deviations from the desired initial conditions will cause the tra-
jectory of a spacecraft to stray from a nominal path. The STM may be used to
approximate the time evolution of a state vector even for highly nonlinear systems,
such as the two-body problem perturbed by an arbitrary degree spherical harmonic
gravity. In cases where the initial deviation is small at time t0, a linear approxima-
tion may be used to determine the locally linear state deviation at time t . This linear
approximation is generated using the STM, a matrix of partial derivatives for the
instantaneous position and velocity with respect to the initial position and veloc-
ity; this means that the STM is initially equal to the identity matrix [8, 9]. These
deviations can be approximated, to a problem-dependent accuracy, by using the
unperturbed Keplerian STM; however, it is desirable to be able to include a prescribed
number of the high order harmonics, and in general, other perturbations. The present
paper provides an efficient algorithm to include these higher order gravitational
perturbations, as desired/required in the STM.
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The present computation of the STM for the spherical harmonic gravity model
requires second partials of the gravity potential with respect to spherical geocentric
coordinates: radius, latitude, and longitude. These required partial derivatives include
second partials of the normalized, Associated Legendre Functions (ALFs), and
these functions (used often in science and engineering applications) are related
to the Legendre polynomials. A full description and derivation are given in
Appendix B, and the equations that require the ALfs are given in the section
“State Transition Matrix Using Spherical Harmonic Gravity.” The normalized ver-
sion of the ALFs is the preferred formulation for the associated recursion used to
compute these functions. Without the normalization, the ALFs tend toward weak
numerical instability as a higher degree and order gravity model is used. Once
the normalized ALFs are computed, the gravity and associated derivatives are
computed in part by introducing the appropriate scale factor to generate the un-
normalized version of the ALFs. Since a spherical harmonic model is used and
this gravity potential is a rigorous solution of the Laplace equation, the ALFs’
second partial expression for an arbitrary order spherical harmonic series is veri-
fied using the Laplace equation. Both the trajectory and the STM are computed in
a rotating, Earth-centered, Earth-fixed frame, which is transformed into an Earth-
centered inertial frame (for subsequent integration) at each iteration. The rotating
ECEF frame is used to avoid the explicit time dependence of the potential and
the associated Jacobi integral (which is also a constant Hamiltonian for the per-
turbed motion). Though enforcement of the differential equation is inherent in the
present study, we also check to confirm that the STM accurately satisfies (with max-
imum relative errors of < 10−14 in a Matlab implementation and up to one orbit,
for the most precise tuning) the theoretical STM group properties as well as the
STM symplectic property associated with natural conservative dynamical systems
[8]. The present development of the STM is also verified using finite difference
methods.

Modified Chebyshev Picard Iteration

MCPI is a fusion of Picard iteration with approximation via orthogonal Chebyshev
polynomials. A few papers were published on the topic prior to the development
of parallel computing capabilities [10–12], but it was not until recent years that
this literature was significantly expanded by the research group (Junkins, et al.) at
Texas A&M University. MCPI is an iterative, path approximation method for solv-
ing smoothly nonlinear systems of ordinary differential equations. The entire state
trajectory over a long time arc is approximated at every iteration until a specified tol-
erance is met [2]. Emile Picard stated that, given an initial condition x (t0) = x0, any
first order differential equation [1]

dx(t)

dt
= f (t, x(t)), tε[a, b] (1)
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with an integrable right hand side may be rearranged without approximation into an
integral:

x(t) = x(t0) +
t∫

t0

f (τ, x(τ ))dτ (2)

Then, given a suitable starting approximation x0(t), a unique solution to the ini-
tial value problem may be found using an iterative sequence of path approximations
through Picard iteration as

xi (t) = x(t0) +
t∫

t0

f
(
τ, xi−1(τ )

)
dτ, i = 1, 2, . . . (3)

where the integrand of the Picard iteration sequence is approximated using Cheby-
shev polynomials. For further details on the basics of this novel integration technique
and its convergence properties, refer to References [1] and [2]. Since the Cheby-
shev polynomials are orthogonal, a matrix inverse is avoided when finding basis
function coefficients. Because cosine sampling is employed for MCPI, the Runge
Effect seen at trajectory boundaries is significantly reduced. Also, initial efforts
to implement MCPI using parallel computation have shown additional speedup
[13, 14].

The present study considers the gravity-perturbed acceleration r̈ = g(t, r), which
may be represented in state space notation for the MCPI algorithm as

x =
(

r

ṙ

)
,

(
ẋ1
ẋ2

)
= f (t, x) =

(
x2

g(t, x1)

)
(4)

Basic Equations for State Transition Matrix

The differential equation we wish to integrate for the STM is [8]

�̇ (t, t0) = A�(t, t0) (5)

A (t) =
[
0n×n In×n

Gn×n 0n×n

]
�

[
∂f

∂x

]
=

[
∂x2
∂x1

∂x2
∂x2

∂g
∂x1

∂g
∂x2

]
(6)

where

Gn×n =
[
∂g(t, r)

∂r

]
(7)

The STM is computed as partials of the linear approximation of the instantaneous
departure X(t) from the state vector x(t). For the present work, the state consists of
position and velocity for an Earth-orbiting satellite:

�(t, t0) = ∂X(t)

∂X(t0)
(8)

Then we can write the G matrix in terms of the partials of the generally per-
turbed gravitational acceleration case; for example the partial of the first component
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of acceleration with respect to the first component in a body-fixed frame is written
with respect to geocentric radius, latitude, and longitude:

∂ax

∂x
= ∂ax

∂r

∂r

∂x
+ ∂ax

∂φ

∂φ

∂x
+ ∂ax

∂λ

∂λ

∂x
(9)

Many of the intermediate partials are computed once and re-used as they appear
elsewhere. The individual components of the matrix G are written explicitly as
follows in the next section.

State Transition Matrix Using Spherical Harmonic Gravity

A spherical harmonic gravity model is used for this development. The Jacobian of
the acceleration, needed for Eq. 6, is computed in the body frame but transformed
into the inertial frame prior to each integration step; this method is presented in the
following section. The full gravitational potential function is defined as [15]

U(r, φ, λ) = μ

r

[
1 +

∑∞
n=2

∑n

m=0

(
Re

r

)n

Pnm (sinφ) [Cnm cos (mλ)

× +Snm sin (mλ)]] (10)

where r is the radial distance to the object, φ is the geocentric latitude of the object,
λ is the longitude of the object, Re is the magnitude of Earth’s equatorial radius, and
Pnm are the Associated Legendre Functions. The spherical harmonic acceleration due
to gravity in a body-fixed reference frame may then be represented as

ag = ∂U

∂r

(
∂r

∂r

)T

+ ∂U

∂φ

(
∂φ

∂r

)T

+ ∂U

∂λ

(
∂λ

∂r

)T

(11)

The expressions comprising the acceleration function are written explicitly as

∂U
∂r

= Ur

= − μ

r2

{
1 + ∑∞

n=2
∑n

m=0 (n + 1)
(

Re
r

)2
Pnm (sinφ) [Cnm cos (mλ)

+Snm sin (mλ)]
} (12)

∂U

∂φ
= Uφ = μ

r

∑∞
n=2

∑n

m=0

(
Re

r

)n
∂Pnm (sinφ)

∂φ
[Cnm cos (mλ)+Snm sin (mλ)]

(13)

∂U

∂λ
= Uλ = μ

r

∑∞
n=2

∑n

m=0

(
Re

r

)n

Pnm (sinφ) m [Snm cos (mλ)−Cnm sin (mλ)]

(14)
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Next we find expressions needed to compute the Jacobian of the acceleration in
Eq. 7. The individual components of the gravity perturbed acceleration in the Earth-
centered inertial frame are

aX = ∂U

∂r

(
∂r

∂x

)
+ ∂U

∂φ

(
∂φ

∂x

)
+ ∂U

∂λ

(
∂λ

∂x

)
(15)

aY = ∂U

∂r

(
∂r

∂y

)
+ ∂U

∂φ

(
∂φ

∂y

)
+ ∂U

∂λ

(
∂λ

∂y

)
(16)

aZ = ∂U

∂r

(
∂r

∂z

)
+ ∂U

∂φ

(
∂φ

∂z

)
+ ∂U

∂λ

(
∂λ

∂z

)
(17)

For the partial fraction expansions of the components of G, we use the general
formula:

∂

∂β
(·) = ∂

∂r
(·)

(
∂r

∂β

)
+ ∂

∂φ
(·)

(
∂φ

∂β

)
+ ∂

∂λ
(·)

(
∂λ

∂β

)
; β → x, y, z (18)

The individual components of G then follow a pattern. The first few expressions
are given here, where Ur = ∂U

∂r
, Uφ = ∂U

∂φ
, and Uλ = ∂U

∂λ
as given in Eqs. 12 – 14,

and all G components are given in Appendix A.

G11 = ∂
∂x

(aX) = (
∂r
∂x

)2 (
∂Ur

∂r

)
+

(
∂φ
∂x

)2 (
∂Uφ

∂φ

)
+ (

∂λ
∂x

)2 (
∂Uλ

∂λ

)

+2
(

∂r
∂x

) (
∂φ
∂x

) (
∂Ur

∂φ

)
+ 2

(
∂r
∂x

) (
∂λ
∂x

) (
∂Ur

∂λ

)
+ 2

(
∂φ
∂x

) (
∂λ
∂x

) (
∂Uφ

∂λ

)

+ (
∂U
∂r

) (
∂2r

∂x2

)
+

(
∂U
∂φ

) (
∂2φ

∂x2

)
+ (

∂U
∂λ

) (
∂2λ

∂x2

) (19)

G12 = ∂
∂y

(aX) =
(

∂r
∂y

) (
∂r
∂x

) (
∂Ur

∂r

)
+

(
∂r
∂y

) (
∂φ
∂x

) (
∂Ur

∂φ

)
+

(
∂r
∂y

) (
∂λ
∂x

) (
∂Ur

∂λ

)

+
(

∂φ
∂y

) (
∂r
∂x

) (
∂Uφ

∂r

)
+

(
∂φ
∂y

) (
∂φ
∂x

) (
∂Uφ

∂φ

)
+

(
∂φ
∂y

) (
∂λ
∂x

) (
∂Uφ

∂λ

)

+
(

∂λ
∂y

) (
∂r
∂x

) (
∂Uλ

∂r

)
+

(
∂λ
∂y

) (
∂φ
∂x

) (
∂Uλ

∂φ

)
+

(
∂λ
∂y

) (
∂λ
∂x

) (
∂Uλ

∂λ

)

+ (
∂U
∂r

) (
∂2r

∂x∂y

)
+

(
∂U
∂φ

) (
∂2φ
∂x∂y

)
+ (

∂U
∂λ

) (
∂2λ
∂x∂y

)
(20)

G13 = ∂
∂z

(aX) = (
∂r
∂z

) (
∂r
∂x

) (
∂Ur

∂r

)
+ (

∂r
∂z

) (
∂φ
∂x

) (
∂Ur

∂φ

)
+ (

∂r
∂z

) (
∂λ
∂x

) (
∂Ur

∂λ

)

+
(

∂φ
∂z

) (
∂r
∂x

) (
∂Uφ

∂r

)
+

(
∂φ
∂z

) (
∂φ
∂x

) (
∂Uφ

∂φ

)
+

(
∂φ
∂z

) (
∂λ
∂x

) (
∂Uφ

∂λ

)

+ (
∂λ
∂z

) (
∂r
∂x

) (
∂Uλ

∂r

)
+ (

∂λ
∂z

) (
∂φ
∂x

) (
∂Uλ

∂φ

)
+ (

∂λ
∂z

) (
∂λ
∂x

) (
∂Uλ

∂λ

)

+ (
∂U
∂r

) (
∂2r
∂x∂z

)
+

(
∂U
∂φ

) (
∂2φ
∂x∂z

)
+ (

∂U
∂λ

) (
∂2λ
∂x∂z

)
(21)

The spherical coordinate partials with respect to Cartesian coordinates are given
by

∂r
∂α

= α
r
; α → x, y, z

∂φ
∂x

= −xz

r2
√

x2+y2

∂φ
∂y

= −yz

r2
√

x2+y2

∂φ
∂z

=
(
1− z2

r2

)
√

x2+y2

∂λ
∂x

= −y

x2+y2
∂λ
∂y

= x

x2+y2
∂λ
∂z

= 0
(22)



154 J of Astronaut Sci (2015) 62:148–167

Then, the second partials of the gravity potential are found, where the partials of
the ALFs are described in the following section. The matrix of second partials is
symmetric, and the six expressions for the distinct elements are as follows:

∂2U

∂r2
= μ

r3

{
2 +

∑∞
n=2

∑n

m=0
(n + 1) (n + 2)

×
(

Re

r

)n

Pnm (sinφ) [Cnm cos (mλ) + Snm sin (mλ)]

}
(23)

∂2U

∂r∂φ
= − μ

r2

∑∞
n=2

∑n

m=0
(n + 1)

(
Re

r

)n
∂Pnm (sinφ)

∂φ

× [Cnm cos (mλ) + Snm sin (mλ)] (24)

∂2U

∂r∂λ
= − μ

r2

∑∞
n=2

∑n

m=0
(n + 1)

(
Re

r

)n

Pnm (sinφ)

× [Snm cos (mλ) − Cnm sin (mλ)] (25)

∂2U

∂φ2
= μ

r

∑∞
n=2

∑n

m=0

(
Re

r

)n
∂2Pnm (sinφ)

∂φ2

× [Cnm cos (mλ) + Snm sin (mλ)] (26)

∂2U

∂φ∂λ
= μ

r

∑∞
n=2

∑n

m=0

(
Re

r

)n
∂Pnm (sinφ)

∂φ

×m [Snm cos (mλ) − Cnm sin (mλ)] (27)

∂2U

∂λ2
= −μ

r

∑∞
n=2

∑n

m=0

(
Re

r

)n

Pnm (sinφ)

×m2 [
Snm sin (mλ) + Cnm cos (mλ)

]
(28)

Computation of Associated Legendre Functions

A key component of the spherical harmonic gravity calculations is the set of
Associated Legendre Functions, Pnm. These functions are related to the Legendre
polynomials, Pn (u) [16].

Pn0 (u) = Pn (u) = 1

2nn!
dn

dun

(
u2 − 1

)n

(29)

Pnm (u) = (
1 − u2

)m
2 dm

dum Pn (u)

= (
1 − u2

)m
2 1

2nn!
dm+n

dum+n

(
u2 − 1

)n (30)

The equation for the gravity potential only contains a singularity at r = 0, but
the gravity force in spherical coordinates, given below, contains a singularity at the
poles φ = +π

2 , −π
2 . This special case at the poles is addressed by setting the gx and

gy components of acceleration to zero and computing gz as a function of ∂U
∂r

only
(zeroing out the ∂U

∂φ
term).

f = ∇U = ∂U

∂r
ur + 1

r

∂U

∂φ
uφ + 1

r cosφ

∂U

∂λ
uλ (31)
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In many applications the potential function is represented using the so-called
derived Associated Legendre Functions. The derived ALFs are defined as follows
[17, 18]:

Anm (u) = 1

2nn!
dm+n

dum+n

(
u2 − 1

)n = dm

dum
Pn(u) (32)

Following the usual patterns, we can avoid weak numerical instability of the typi-
cal recursions used to compute the Anm (see Table 1 of Reference [16]). To overcome
this problem, the derived Associated Legendre Functions and spherical harmonic
coefficients are normalized to improve accuracy for high degree and order gravity
models. First, define Anm as an un-normalized, derived Associated Legendre Func-
tion and Ānm as a normalized, derived Associated Legendre Function as given in
Reference [17]. Similarly, Pnm is an un-normalized, Associated Legendre Function,
while P̄nm is a normalized, Associated Legendre Function. Since the spherical har-
monics correspond to a linear subspace of 2-D Fourier Series, a typical normalization
factor is found; from Ch. 3, formula (7) of Reference [18], the derived ALF may be
expanded, giving rise to a coefficient that generates numerically stable recursive cal-
culations. This coefficient is often used in geodesy applications [16, 19–23]. Then,
the normalized and un-normalized, derived ALFs are related by this normalization,
written generally for n �= m �= 0 as [16]

Ānm =
[
(n − m)! (2n + 1) (2 − δ0m)

(n + m)!
]1/2

Anm = NnmAnm (33)

where Nnm is a scaling factor and the Kronecker delta function is defined to be

δ0m =
{
1 m = 0
0 m �= 0

(34)

The recursion formula chosen for the current work is the normalized, derived
Associated Legendre Functions from Table 2, option I of Reference [16] for u =
sinφ:

Ānm = u

[
(2n + 1) (2n − 1)

(n − m) (n + m)

] 1
2

Ān−1,m

−
[
(2n + 1) (n − m − 1) (n + m − 1)

(2n − 3) (n + m) (n − m)

] 1
2

Ān−2,m (35)

Note that the specific cases of n = m and m = 0 may each use a more specific
formula for efficiency.

Since a normalized version of the ALFs is used, the final un-normalized result
may be obtained by applying the appropriate scale factor. For efficiency, the scale
factor Snm for three cases are computed separately:

m = 0 : Snm =
√

n (n + 1)

2
(36)

m = n : Snm = 0 (37)

m �= n �= 0 : Snm = √
(n − m) (m + n + 1) (38)
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Computation of the STM for the spherical harmonic gravity case requires the par-
tial derivative of Pnm with respect to φ, whereCnm and Snm are the normalized Stokes
coefficients determined from satellite motion observations, and Nnm is the scale fac-
tor given in Eq. 33. In Appendix B, the equations for the first and second partials of
Pnm with respect to φ are derived in detail. For more information, these partials are
also given in Reference [24].

The first and second partials of the ALFs are incorporated in the calculations for
the partials of the gravity potential, U , through the computation of the corresponding
ALFs and the appropriate scale factors. In the code, the term Pn,m+1 (sinφ) is mul-
tiplied by the scale factor Snm, and the term Pn,m+2 (sinφ) is multiplied by the scale
factor Sn,m+1 to compensate for the original normalization of the ALFs.

Verification for Second Partials of the Associated Legendre Functions
with Respect to Latitude

The second partial of the gravity potential with respect to geocentric latitude is
checked since it is a rigorous solution of Laplace’s equation [23]:

r2∇2U = ∂

∂r

(
r2

∂U

∂r

)
+ 1

cosφ

∂

∂φ

(
cosφ

∂U

∂φ

)
+ 1

cos2 φ

∂2U

∂λ2
= 0 (39)

which is simplified as

∂2U

∂φ2
= −

[
r2

∂2U

∂r2
+ 2r

∂U

∂r
− tanφ

∂U

∂φ
+ 1

cos2 φ

∂2U

∂λ2

]
(40)

This equation is also compared numerically with Eq. 26 to further confirm that the
expression for the second partial of the ALF with respect to latitude is correct [25].
See the next section for resulting plots.

Baseline Model Simulation Results

All simulation results presented here are computed on a Windows 8 machine using
Matlab R2013a. First, to show that the second partial of the normalized ALFs is com-
puted correctly in MCPI, a finite difference approximation method is incorporated
into the simulation. Since the present STM study gives efficient and accurate results
for all elliptical orbits, the user may specify initial conditions and also the desired tol-
erance. MCPI may also be tuned based on the number of segments per orbit, relative
segment length, and order of approximation [26, 27]. Here, we focus on a Low-Earth
Orbit (LEO) example for the following results with one segment per orbit. The user
may specify initial conditions and also the desired tolerance. The chosen initial condi-
tions for this orbit are given to be r0 = [2.865408457 5.191131097 2.848416876]×
106 m, v0 = [−5.386247766 −0.3867151905 6.123151881] × 103 m/s, with a
period of 6.218728118 ×103 s. All solutions are obtained for one orbit period using
a 10th degree and order gravity, Earth rotation of ω = 7.2921e−5 rad/s, and 100
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sample points (using a cosine sampling scheme). The RMS error between the initial
and final position is found to be [1.225 2.054 4.925] × 10−3 m, and the RMS error
between the initial and final velocity is [3.515 2.690 3.267] × 10−6 m/s.

As can be seen in Fig. 1, the first and second partials of the Legendre Functions
match closely with the finite difference check approximations (the partials use a nor-
malization scheme as described in the present paper). The ALFs and the first and
second partials of the ALFs are computed as lower triangular matrices that depend
on n and m, which are the upper summation limits of Eq. 10. Therefore, the size of
these matrices are defined by user inputs.

Similarly, to verify that the formulation developed here for the STM is correct
using MCPI, a finite difference check of both the second partials of the gravity poten-
tial and the STM matrix are completed and give results comparable in accuracy to
the figure above.

An additional verification of the second partial with respect to latitude, φ, uses

the Laplace Equation as described in the previous section. The second partial ∂2U
∂φ2

obtained using this method is compared with the second partial computed using the
expression derived in Eq. 26, which is directly a function of the ALFs. The result of
this comparison is shown in Figs. 2 and 3. The relative error plot shows spikes that

are due to the second partial ∂2U
∂φ2 approaching zero as a result of the normalization

factor in the denominator.
The symplectic check [9] reveals an accuracy of at least 10−10 for all error com-

ponents, as is seen in Fig. 4. Note that each component of the 6×6 matrix of error
components is plotted here. A final finite difference check for the STM shows that
it is very accurate. Each column of φ is checked using a two-sided finite difference
check. The difference between the first column of the STM and the corresponding
finite difference check is shown in Fig. 5, though all 6 columns show compara-
ble accuracy for this check. The top half of Fig. 5 gives the finite difference check

Fig. 1 Finite difference check for first and second partial derivatives of ALFs
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Fig. 2 Absolute error check for second partial of gravity potential with respect to latitude

components on the STM’s top half of the first column, while the bottom half of the
figure gives the components on the STM’s bottom half of the first column.

To verify that the STM differential equation holds for arbitrary perturbations, the
group properties of the STM are rigorously verified. A representative set of inter-
mediate points are checked using the chain rule and are satisfied with an accuracy
of at least 10−9 tolerance. The inverse property of the STM is also verified to high

Fig. 3 Relative error check for second partial of gravity potential with respect to latitude
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Fig. 4 Symplectic check for final STM over one orbit

precision. The max error over 1000 tests for the residual error
∥∥φ̇ − Aφ

∥∥ is 1×10−15,
while the other group properties are spot checked for accuracy:

φ
(
ti , tj

) = φ
(
tj , ti

)−1 (41)

φ
(
ti , tj

) = φ (ti, tk) φ
(
tk, tj

)
(42)

Fig. 5 Finite difference check for first column of STM over one orbit
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It should not be surprising that MCPI can capture the solution accurately over a
larger time interval than, for example, the Gauss Jackson 8th order method, since the
typical order of the MCPI approximation is 40 instead of 8.

Optimization of State Transition Matrix Calculations

The baseline STM algorithm, given in detail in the present work, may be further
optimized and enhanced. Because the STM requires only as input the position vector
at every sample node, the trajectory may first be integrated. Next, the STM may be
propagated using the converged trajectory solution. This method is more efficient, as
is shown by the comparison in Fig. 6.

This approach to have the trajectory converge a priori does not require that the
same nodal pattern or time segment length be used for the STM.

Cascade Method

The MCPI method may solve either first- or second-order differential equations.
However, some numerical integrators, such as RKN12(10), require a second-order
formulation. To increase efficiency of STM calculations, a second-order differential
equation may be used in place of Eq. 1; this method is called the MCPI Cascade
Method [2]. The STM differential equation for the conservative case is rearranged to
solve a pair of second-order equations as follows. Since φ̇ = Aφ, or[

φ̇11 φ̇12

φ̇21 φ̇22

]
=

[
03×3 I3×3
G3×3 03×3

] ⌊
φ11 φ12
φ21 φ22

⌋
(43)

Fig. 6 Timing comparison of trajectory and state transition matrix: propagated both simultaneously and
separately over one orbit
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we write the individual components using the G matrix from Eq. 7 as

φ̇11 = φ21 (44)

φ̇12 = φ22 (45)

φ̇21 = Gφ11 (46)

φ̇22 = Gφ12 (47)

Taking the time derivative of Eqs. 44 and 45 gives

φ̈11 = φ̇21 (48)

φ̈12 = φ̇22 (49)

Substituting Eq. 46 into Eq. 48 and Eq. 47 into Eq. 49 gives the only two second-
order differential equations required for integration:

φ̈11 = Gφ11 (50)

φ̈12 = Gφ12 (51)

The other two sub-matrices of the STM, φ21 and φ22, are obtained by taking the
time derivative of the two sub-matrices that are obtained from the converged solution,
φ̈21 and φ̈22:

φ21 = φ̇11 (52)

φ22 = φ̇12 (53)

The initial condition for the STM is known to be[
φ11 φ12
φ21 φ22

]
=

[
I3×3 03×3
03×3 I3×3

]
(54)

so for the second-order formulation, the initial conditions are[
φ̇11 φ̇12

] = [
φ21 φ22

] = [
03×3 I3×3

]
(55)

[
φ11 φ12

] = [
I3×3 03×3

]
(56)

The initial conditions automatically satisfied are φ21 = 03×3 and φ22 = I3×3.
We mention that the above results for the cascade method can be readily generalized
to accommodate velocity dependence in the force model (e.g., drag). In this case of
velocity dependence, Eq. 5 generalizes as[

φ̇11 φ̇12

φ̇21 φ̇22

]
=

[
03×3 I3×3
G3×3 D3×3

] ⌊
φ11 φ12
φ21 φ22

⌋
(57)

D3×3 =
[
∂g(t, r)

∂ ṙ

]
(58)

And the resulting formulation is the same except for two additional terms of the
form

φ̈11 = Gφ11 + D
φ̇11

dt
(59)

φ̈12 = Gφ12 + D
φ̇12

dt
(60)
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Fig. 7 Timing comparison of baseline vs. cascade method for computing trajectory and subsequently
STM from converged position

Cascade Method Simulation Results

As shown in Figs. 7 and 8, using the Cascade Method to compute the STM gives
additional speedup when compared with the baseline method. Figure 7 compares
the standard, baseline MCPI model with the MCPI cascade method for computing
the trajectory and STM. The results of the cascade method are verified using the
RKN12(10) propagator [28], and the resulting timing comparison is given in Fig. 8.

Fig. 8 Timing comparison for computing trajectory and STM of RKN12(10) with MCPI cascade method
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Both MCPI and RKN12(10) are tuned such that best performance is achieved for an
energy check that gives machine precision.

Conclusion

This paper describes how to compute the gravitational potential and associated
derivatives necessary for propagation of the State Transition Matrix using the Mod-
ified Picard Chebyshev Iteration method. Though the present work focuses on the
spherical harmonic gravity model to address gravity perturbations, the STM compu-
tation using MCPI may be generally implemented using any other gravity model, and
extensions to include other perturbations such as drag are straightforward. Results
verifying the accuracy of the baseline solution are presented.

Optimizations, including a second-order formulation for the STM, are presented.
This formulation is readily solved using the cascade form of the MCPI formulation,
and this is the method adopted for the present study. Matlab timing comparisons
of this so-called cascade method are shown to be more efficient than the baseline
algorithm for computing the STM. Because a different nodal pattern and preci-
sion requirement may be used for the a priori converged trajectory than the STM,
extensive computational tests indicate that tuning for the optimal state computation
invariably gives conservative STM computation.

C code for the method presented here is currently being developed, which will give
additional insight into the runtimes. More importantly, techniques for further acceler-
ating the computations, such as using parallel processing, are expected to exploit the
inherent parallel structure of the MCPI method if many simultaneous orbits and their
associated STM are required. This class of problems will likely be encountered when
these methods are used to propagate space objects and use the STM to approximate
the associated covariance matrix evolution [29].

Acknowledgments The sponsors for the present work are AFOSR (Julie Moses) and AFRL (Alok Das).
Thanks to members of the Texas A&M MCPI research team: Donghoon Kim, Robyn Woollands,

Austin Probe, and Abhay Masher.
Thanks to Dr. Bob Gottlieb (Odyssey Space Research) and Dr. Terry Feagin (UHCL) for their

discussions of numerical propagators, normalized gravity, and STM calculations.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix A: Components of Jacobian Matrix G

G11 = ∂
∂x

(aX) = (
∂r
∂x

)2 (
∂Ur

∂r

)
+

(
∂φ
∂x

)2 (
∂Uφ

∂φ

)
+ (

∂λ
∂x

)2 (
∂Uλ

∂λ

)

+2
(

∂r
∂x

) (
∂φ
∂x

) (
∂Ur

∂φ

)
+ 2

(
∂r
∂x

) (
∂λ
∂x

) (
∂Ur

∂λ

)
+ 2

(
∂φ
∂x

) (
∂λ
∂x

) (
∂Uφ

∂λ

)

+ (
∂U
∂r

) (
∂2r

∂x2

)
+

(
∂U
∂φ

) (
∂2φ

∂x2

)
+ (

∂U
∂λ

) (
∂2λ

∂x2

) (61)
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G12 = ∂
∂y

(aX) =
(

∂r
∂y

) (
∂r
∂x

) (
∂Ur

∂r

)
+

(
∂r
∂y

) (
∂φ
∂x

) (
∂Ur

∂φ

)
+

(
∂r
∂y

) (
∂λ
∂x

) (
∂Ur

∂λ

)

+
(

∂φ
∂y

) (
∂r
∂x

) (
∂Uφ

∂r

)
+

(
∂φ
∂y

) (
∂φ
∂x

) (
∂Uφ

∂φ

)
+

(
∂φ
∂y

) (
∂λ
∂x

) (
∂Uφ

∂λ

)

+
(

∂λ
∂y

) (
∂r
∂x

) (
∂Uλ

∂r

)
+

(
∂λ
∂y

) (
∂φ
∂x

) (
∂Uλ

∂φ

)
+

(
∂λ
∂y

) (
∂λ
∂x

) (
∂Uλ

∂λ

)

+ (
∂U
∂r

) (
∂2r

∂x∂y

)
+

(
∂U
∂φ

) (
∂2φ
∂x∂y

)
+ (

∂U
∂λ

) (
∂2λ
∂x∂y

)
(62)

G13 = ∂
∂z

(aX) = (
∂r
∂z

) (
∂r
∂x

) (
∂Ur

∂r

)
+ (

∂r
∂z

) (
∂φ
∂x

) (
∂Ur

∂φ

)
+ (

∂r
∂z

) (
∂λ
∂x

) (
∂Ur

∂λ

)

+
(

∂φ
∂z

) (
∂r
∂x

) (
∂Uφ

∂r

)
+

(
∂φ
∂z

) (
∂φ
∂x

) (
∂Uφ

∂φ

)
+

(
∂φ
∂z

) (
∂λ
∂x

) (
∂Uφ

∂λ

)

+ (
∂λ
∂z

) (
∂r
∂x

) (
∂Uλ

∂r

)
+ (

∂λ
∂z

) (
∂φ
∂x

) (
∂Uλ

∂φ

)
+ (

∂λ
∂z

) (
∂λ
∂x

) (
∂Uλ

∂λ

)

+ (
∂U
∂r

) (
∂2r
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+
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∂φ

) (
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)
(63)

G21 = ∂
∂x

(aY ) = (
∂r
∂x

) (
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∂Ur
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G22 = ∂
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G31 = ∂
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G33 = ∂
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Appendix B: Partials of Associated Legendre Functions

Computation of the STM for the spherical harmonic gravity case requires the partial
derivative of Pnm with respect to φ, where Cnm and Snm are the normalized Stokes
coefficients determined from satellite motion observations, and Nnm is a scale factor.
The first and second partials of the ALFs are incorporated in the calculations for the
partials of the gravity potential, U , through the computation of the corresponding
ALFs and the appropriate scale factors. The following known relationships are used
for these derivations [16].

∂

∂u
Anm (u) = An,m+1(u) (70)

∂2

∂u2
Anm (u) = An,m+2(u) (71)

∂

∂φ
Anm (sinφ) = ∂Anm (sinφ)

∂ sinφ

∂ sinφ

∂φ
= ∂Anm (sinφ)

∂ sinφ
cosφ (72)

It is known that the derived ALFs are related to the conventional Legendre
functions in terms of latitude φ through [16]

Pnm (sinφ) = cosm φAnm(sinφ) (73)

Starting with the above equation and using the product rule,

∂Pnm (sinφ)

∂φ
= cosm φ

∂Anm (sinφ)

∂φ
− m sinφ cosm−1 φAnm (sinφ) (74)

This equation is rewritten using Eq. 73 as

∂Pnm(sinφ)
∂φ

= cosm φ
∂Anm(sinφ)

∂φ
− m tanφ cosm φAnm (sinφ)

= cosm φ
∂Anm(sinφ)

∂φ
− m tanφPnm (sinφ)

(75)

Using Eqs. 70 and 73, the final equation becomes

∂Pnm (sinφ)

∂φ
= Pn,m+1 (sinφ) − m tanφPnm (sinφ) (76)

Similarly, an expression for ∂2Pnm

∂φ2 is derived.

∂2Pnm (sinφ)

∂φ2
= ∂Pn,m+1 (sinφ)

∂φ
− m sec2 φPnm (sinφ) − m tanφ

∂Pnm (sinφ)

∂φ
(77)
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Substituting Eq. 76 into this expression gives

∂2Pnm(sinφ)

∂φ2 = ∂Pn,m+1(sinφ)

∂φ
− m sec2 φPnm (sinφ)

−m tanφ
[
Pn,m+1 (sinφ) − m tanφPnm (sinφ)

] (78)

Equation 76 is used to write

∂Pn,m+1 (sinφ)

∂φ
= Pn,m+2 (sinφ) − (m + 1) tanφPn,m+1 (sinφ) (79)

Therefore, the final expression for the second partial is

∂2Pnm(sinφ)

∂φ2 = Pn,m+2 (sinφ) − (2m + 1) tanφPn,m+1 (sinφ)

+m
(
m tan2 φ − sec2 φ

)
Pnm(sinφ)

(80)

In the code, the term Pn,m+1 (sinφ) is multiplied by the scale factor Snm, and the
term Pn,m+2 (sinφ) is multiplied by the scale factor Sn,m+1 to compensate for the
original normalization of the ALFs. The final, normalized equations are then

∂Pnm (sinφ)

∂φ
= Pn,m+1 (sinφ) Snm − m tanφPnm (sinφ) (81)

∂2Pnm(sinφ)

∂φ2 = Pn,m+2 (sinφ) Sn,m+1 − (2m + 1) tanφPn,m+1 (sinφ) Snm

+m
(
m tan2 φ − sec2 φ

)
Pnm (sinφ)

(82)
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