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Abstract

Rare diseases pose a global challenge, in that their collective impact on health systems is considerable, whereas their individu-
ally rare occurrence impedes research and development of efficient therapies. In consequence, patients and their families are
often unable to find an expert for their affliction, let alone a cure. The tide is turning as pharmaceutical companies embrace
gene therapy development and as serviceable tools for the repair of primary mutations separate the ability to create cures from
underlying disease expertise. Whereas gene therapy by gene addition took decades to reach the clinic by incremental disease-
specific refinements of vectors and methods, gene therapy by genome editing in its basic form merely requires certainty about the
causative mutation. Suddenly we move from concept to trial in 3 years instead of 30: therapy development in the fast lane, with
all the positive and negative implications of the phrase. Since their first application to eukaryotic cells in 2013, the proliferation
and refinement in particular of tools based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-
associated protein (Cas) prokaryotic RNA-guided nucleases has prompted a landslide of therapy-development studies for rare
diseases. An estimated thousands of orphan diseases are up for adoption, and legislative, entrepreneurial, and research initia-
tives may finally conspire to find many of them a good home. Here we summarize the most significant recent achievements and
remaining hurdles in the application of CRISPR/Cas technology to rare diseases and take a glimpse at the exciting road ahead.

1 Rare Diseases: Towards Curative

Key Points Treatments

Accelerated molecular characterization of rare disease
cases and the advent of clustered regularly interspaced
short palindromic repeats (CRISPR)/CRISPR-associated

1.1 Rare Diseases and Rarer Disease Expertise

Rare diseases are common and ubiquitous, and for dec-

protein (Cas) technology promise to enable rapid therapy
development for many rare genetic diseases.

The adoption of editing technology reduces the time
from conception to evaluation of advanced therapy
approaches compared to gene addition, encouraging an
unprecedented number of research groups and studies to
focus on rare diseases.

As CRISPR/Cas-based tools are customized to tackle rare
diseases in clever ways, the results reveal and help address
remaining unknowns and obstacles in the clinical transla-
tion of the new technology, including those concerning
efficiency, specificity, delivery, immunity, preservation of
stemness, and avoiding malignant transformation.
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this review.
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ades rare therapies were anything but well done. As this
introductory sentence employs puns commonly used in the
rare disease literature, its two parts summarize the double
challenge faced by society and patients, respectively. First, it
is a widely accepted estimate that globally between 6000 and
8000 individually rare diseases across all therapeutic areas
affect between 8 and 10% of the population and therefore
taken together pose a widespread and pervasive challenge [1,
2]. Second, rare disease patients are frequently treated sub-
optimally, if they receive treatment at all, because few clini-
cians have the opportunity to build up disease expertise for
rare diseases. Consequently, many a rare disease patient does
not receive a definite diagnosis or is initially misdiagnosed
due to often missing molecular (causative) information for
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the disease in question, clinical features that overlap with
other, more common afflictions, and limited global access
by the treating physicians to relevant data [2-4]. Many rare
diseases have early or prenatal onset, making prompt and
appropriate treatment all the more important. However,
where even diagnosis is difficult, disease management often
relies on ad hoc symptomatic treatments or repurposed
medicines developed for other diseases, so that an estimated
94% of rare diseases are without an approved treatment [5,
6]. This problem is exemplified by the ongoing search for
effective treatments for two relatively prominent rare dis-
eases, Shwachman—Diamond syndrome and cystic fibrosis,
as reviewed by Bezzerri and Cipolli [7] and by Cabrini [8],
respectively, in this issue of Molecular Diagnosis and Ther-
apy. Moreover, a cure is only available where stem cell or
organ transplantation is feasible for the tissues affected and
where a compatible donor can be identified [9-12]. Accord-
ingly, the average standard of care for rare disease patients is
suboptimal, at high long-term cost to national health budg-
ets and individual health. In response, governments try to
incentivize investment in rare disease drug development
by introducing orphan drug legislation that lowers regula-
tory thresholds for clinical translation [13] and invest in the
collaboration of international rare disease experts, such as
through the International Rare Diseases Research Consor-
tium (IRDiRC) [14]. Specialty international networks of rare
disease expertise, including the nascent European Reference
Networks (ERNs) or other international networks comple-
ment this effort [2, 15]. Likewise, rare disease expertise is
pooled by establishing government-funded or co-funded
information portals, such as the Genetic and Rare Dis-
eases Information Center (GARD) run by the US National
Center for Advancing Translational Sciences [16, 17] and
the European Orphanet [18], complemented by academic
disease-specific databases [19, 20] and patient portals such
as the National Organization for Rare Disorders (NORD)
and EURORDIS (Rare Diseases Europe) [21, 22]. Most rare
diseases are not and cannot be in the standard medical cur-
riculum, but at ever increasing speed the knowledge base
increases and becomes available to anyone willing to look.
This is particularly true for the assumed vast majority of
classifiable rare diseases that have a genetic cause, with key
developments the rapid discovery of novel causative muta-
tions for rare diseases by massively parallel sequencing [23]
and adoption of global variant database and nomenclature
standards to make the information universally accessible and
interpretable [14, 19]. While one of the major contributions
of rapid variant discovery to reducing the global burden of
disease is seen in rare disease prevention [24], it likewise
provides the foundation for stratified if not personalized rare
disease treatments by gene therapy.
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1.2 Teething Troubles of Gene Therapies for Rare
Diseases

As reviewed by us and others in this issue of Molecular
Diagnosis and Therapy [25, 26], gene therapy for rare dis-
eases has achieved remarkable successes for several rare
diseases, including curative treatments. As a prerequisite
for success, robust and clearly defined clinical trial design
is imperative in order to deal with the unique challenges
inherent to rare diseases. These challenges include small
and highly fragmented study populations and the difficulty
of setting clear clinical endpoints, often in the absence of
control groups, without in-depth understanding of the dis-
ease state, and in the face of high heterogeneity of the dis-
ease phenotype and further complications unique to rare
diseases [27]. Despite these difficulties, several successful
trials have already resulted in orphan drug designations for
rare diseases as an important milestone on the road to mar-
ket approval. For instance, market approval was achieved
for Glybera to treat lipoprotein lipase deficiency (EMEA/
H/C/002145) in 2012, for Strimvelis® to treat adenosine-
deaminase-linked severe combined immunodeficiency
(ADA-SCID) (EMEA/H/C/003854) in 2016 [2], and for
Luxturna™ to treat mutation-associated retinal dystrophy
in the USA in late 2017 and in the European Union (EU)
in late 2018 (EMEA/H/C/004451) [29]. Glybera has since
been withdrawn from the market for lack of profitability,
indicating a persistent and worrisome problem in the provi-
sion of ultra-rare disease drugs despite high development
cost and uncertain reimbursement models, in the case of
Glybera exacerbated by limited safety and efficacy data
that prevented full market penetration [30, 31]. By contrast,
Strimvelis® and Luxturna™ have both provided substantial
benefits to patient cohorts in the absence of adverse events
after years of follow-up, but their continued provision will
once more depend on their profitability. In view of the eco-
nomic lessons learnt [30], gene therapy companies will thus
preferentially seek market approval of drugs for more promi-
nent rare diseases. In consequence, and unless other funding
mechanisms are developed, the current trend holds the dan-
ger that a wealth of competing treatments will become avail-
able for more prominent rare diseases, whereas a multitude
of ultra-rare diseases will be left out. Unless development
costs are vastly reduced, gene therapy for those diseases
would then merely and sadly remain an academic exercise.
One factor that will make translation more affordable is the
maturation of the corresponding regulatory framework at
national and international level [32], which already provides
a level of certainty about the ground rules for translation and
facilitates compliance across jurisdictions and harmoniza-
tion of the development and approval process. Moreover,
curative treatments, such as Strimvelis® and Luxturna™,
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are usually based on permanent gene addition, which pro-
vides trans-acting components or a functional copy of the
defective gene, either as an integrating transgene or, for non-
dividing cells, as a stable episome [25]. Despite the appar-
ent simplicity of the concept, years if not decades of study
of disease and regulatory mechanisms are usually required
in order to achieve both efficient delivery and stable physi-
ological expression of the therapeutic transgene. For many
rare diseases, required insights into the underlying disease
mechanism are insufficient to allow such development, even
if funding were available.

1.3 Gene Therapy Version 2.0

As more rare disease therapies based on gene addition
advance from clinical trials toward market approval, a new
wave of treatments based on gene editing technology are
being developed, moving from preclinical studies to their
first clinical trials. A slow development at first, based on zinc
finger nucleases and other hard-to-design tools, the advent
of transcription activator-like effector nucleases (TALENSs)
and clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein (Cas) RNA-guided
nucleases (RGNs) has led to recently accelerated develop-
ment and a veritable explosion of tools and rare disease tar-
gets [25]. However, as permanent gene addition by genome
integration has inherent risks, such as those of insertional
mutagenesis, so does gene editing. First, target recognition
is error-prone to some degree, so that any editing applica-
tion may introduce changes at hard-to-predict off-target
sites, dependent on similarities to the on-target recognition
sequence. For each editing tool, the risk of off-target modi-
fications therefore needs to be assessed comprehensively
early on and potentially eliminated by changing the tool or
recognition site. Second, the pre-existing humoral and cell-
mediated adaptive immunity to Cas9, as a common envi-
ronmental antigen, poses the risk of triggering widespread
immune responses in patients receiving CRISPR/Cas9-based
gene therapy, at least in in vivo applications of these tools
[33-35]. The third and fourth risks relate to gene editing by
designer nucleases being universally based on the introduc-
tion of double-strand breaks (DSBs) in the genome as trig-
gers of repair by the efficient but imprecise non-homologous
end-joining (NHEJ) mechanism or the inefficient but precise
homology-directed repair (HDR) mechanism [25]. Specifi-
cally, efficient induction of DSBs may cause P53-mediated
apoptosis for cycling cells [36-38], leading to a principally
but not widely proven enrichment for P53-deficient, and thus
more cancer-prone, cells by DSB-mediated editing. Addi-
tionally, and of still more acute concern, even single DSBs
may lead to wide-ranging deletions or chance recombina-
tion events involving the on-target site [39], and as long as
the frequency and pattern of such events is not clarified,

application of gene editing to rare diseases that are also
manageable with palliative treatments may be premature.
While the risk of off-target activity cannot be eliminated at
the design stage but rather only assessed later on, at least
any problems relating to DSBs may be avoided by a new
class of editing tools: base editors. Based on the CRISPR/
Cas platform and allowing certain targeted base substitutions
by chemical base editing, base editors act independent from
DSBs and thus without elevating the risk of chromosomal
rearrangements or cancer-prone cells [40, 41].

Importantly, and although gene editing tools may be
employed in a variety of other strategies, the option of
targeting and correcting the causative mutation is a con-
ceptual landmark shift compared to gene addition. Faith-
fully correcting causative mutations, though inefficient
at present, is in principle the most universally applicable
gene editing strategy, which moreover does not presuppose
any prior knowledge of molecular disease mechanisms
for therapy development. However, it is also the approach
that will have the greatest problems creating revenue, as
mutation-specific therapies have the same overheads as
more universal approach but will have more limited patient
numbers. CRISPR/Cas technology will at least help mini-
mize development cost, as this new type of editing tools
can be designed—and in many cases applied—with great
ease. Conceptually, therefore, the possibilities for rare dis-
ease therapy development with these new tools and methods
are near limitless and, assuming that safety concerns can be
addressed, they may have tremendous impact on treatment
prospects for all genetically defined rare diseases. In the fol-
lowing sections we summarize to what extent CRISPR/Cas-
based therapeutic approaches have already been applied to
rare diseases and which key improvements are required for
clinical translation.

2 Rare Repair: Employing the Molecular
Toolkit

2.1 Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR) Gene Therapy
Studies in Numbers

Presently only 25 registered clinical trials concern
CRISPR/Cas technology, 19 of them targeting malignan-
cies, two targeting infectious diseases, and four targeting
rare diseases. The latter all concern -hemoglobinopathies,
with three aiming to treat patients (ClinicalTrials.gov
identifier NCT03655678 [141] and NCT03745287 [142]
by CRISPR Therapeutics Ltd. for f-thalassemia and sickle
cell disease [SCD], respectively, and NCT03728322 [143]
by Allife Medical Science and Technology Co. Ltd. for
B-thalassemia) and one aiming to use SCD focus groups
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to gauge knowledge, attitudes, and beliefs about clinical
application of CRISPR/Cas technology (NCT03167450
[144]). The focus group study and its testing the waters
for CRISPR/Cas application in a patient population with
exemplary palliative care amongst rare diseases indicate
that numbers and representation of rare diseases in clini-
cal trials may be about to change. To date, the number of
research papers citing CRISPR in connection with ‘gene
therapy’ has passed the 16,000 mark and in connection
with ‘rare disease’ has passed the 1000 mark (Google
Scholar), which even at this relatively early stage pre-
cludes truly comprehensive coverage of the field. This sec-
tion therefore focuses on key studies that serve to illustrate
current progress, be it in vitro in primary patient-derived
cells and cellular disease models (Table 1), animal rare
disease models (Table 2), or chimeric models with in vitro
and in vivo data (Tables 1, 2 with correspondingly colored
entries for data in both systems).

2.2 Mutation-Specific Precision Repair

Correction of the causative mutation would restore the
genotype of normal or at least carrier individuals (Fig. 1a).
Whereas the approach may be substituted for suitable point
mutations by the nascent base editing technology over time,
at present it usually relies on DSB-activated HDR and is thus
limited by the correspondingly low efficiency in primary
cells. Notwithstanding this difficulty, the approach has been
adopted for countless rare diseases for proof of principle and
in exceptional studies has reached or approached clinically
relevant levels of efficiency. Of the numerous studies target-
ing specific HBB mutations in SCD and p-thalassemia [42],
a recent publication by Dever et al. [43] stands out (Tables 1,
2, turquoise). In the study, CD34+ cells from SCD patients
were electroporated with ribonucleoprotein particles (RNPs)
and provided with an adeno-associated virus (AAV) donor
template in order to correct the causative sickling mutation.
At already high 19% HDR efficiency in bulk culture, the
study employed selectable markers for fluorescence-acti-
vated cell sorting to reach 92% HDR efficiency in sorted
cells. Using truncated nerve growth factor receptor (tNGFR)
as the selectable marker for sorting, subsequent analyses
in NSG mice allowed a long-term chimerism of 7.5% cor-
rected cells from an initial 12%, indicating that a substantial
percentage of corrected and engrafted cells were long-term
repopulating cells. Moreover, the study noted a bias against
long-term repopulating cells in HDR-positive cells, in line
with results for zinc-finger nuclease (ZFN)-mediated HDR
elsewhere [44]. By contrast, an independent study recently
published as preprint demonstrated over 20% correction
of the HBBE®Y (sickle cell disease) mutation in patient-
derived HSCs engrafted in the bone marrow of NBSGW
mice after CRISPR/Cas9-mediated HDR-based editing.
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It further demonstrated substantial percentages of HDR-
corrected cells in the erythroid compartment of the bone
marrow, in part through in vivo selection of corrected cells
[45]. Similarly encouraging results were also achieved by De
Ravin et al. [46] for X-linked chronic granulomatous disease
(Tables 1 and 2, yellow), who employed electroporation of
RNP and a single-stranded oligodeoxynucleotide (ssODN)
donor to achieve up to 21% HDR in all alleles. Functional
analyses in vitro after myeloid differentiation revealed sig-
nificant correction of CYBB-derived gp91P"* expression by
repair of the CYBB premature stop codon, from background
levels in negative controls up to a quarter of the percentage
of gp91P1°*_positive cells seen in normal controls. These
results were mirrored in vivo in NSG mice, where 15.6%
of human myeloid cells were gp91P"*-positive; once more,
a quarter of the percentage seen for normal cells (65.5%).
Myeloid-lineage differentiation led to an enrichment of
gp91P*_positive cells compared with other lineages, indi-
cating the therapeutic benefit for cell survival and a possible
reduction of requirements for therapeutic bone marrow chi-
merism upon clinical application. Of note for many diseases
with a high level of allelic heterogeneity, different mutations
in compound heterozygote patients of recessive diseases may
be corrected with the same RGN and donor template, as
demonstrated by Xie et al. [47] for two p-thalassemia muta-
tions in the HBB gene: one in its promoter, and one in exon
2. Using a donor template spanning both mutations and a
single RGN to target intron 1 of HBB, the authors corrected
both mutations in induced pluripotent stem cells (iPSCs)
and established functional correction after erythroid differ-
entiation. f-Thalassemia has also served as a model disease
to pioneer repair by base editing [48], which gave 23% base
editing efficiency for the HBB~"%*>%) mutation, and repair
in human tripronuclear zygotes based on HDR [49]. The
latter study indicated a high error rate and highlighted the
risk of off-targeting highly sequence-similar paralogs, which
in this case led to off-targeting of the HBD gene. For many
target sites such difficulties can be addressed by alternative
guide RNAs and, increasingly, by alternative Cas molecules
with differing protospacer adjacent motif (PAM) require-
ments that would help exploit minor sequence differences
between paralogs. Overall, mutation-specific precision repair
has seen vast improvements in efficiency and precision in
long-term repopulating cells recently, to a point where its
application corrects potentially therapeutic percentages of
cells, in particular where therapeutic correction confers a
selective advantage in chimeric or animal disease models.

2.3 Therapy by Disruption or Genome
Rearrangement

Generally lower efficiency and the apparent bias against
long-term repopulating cells by HDR-based repair [43, 44]
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favor NHEJ-based approaches for suitable targets. Random
frameshifts, disruption of toxic sequences, and genome
rearrangements for deletion or inversion can be achieved
by NHEJ-mediated repair and applied for therapeutic effect
(Fig. 1b).

Many rare disease cases are caused by frameshift or pre-
mature stop mutations, and where the frequency of random
indels leading to open reading frame (ORF) repair is suf-
ficient, both types of mutations can be bridged by random
NHEJ-based disruption. Initial proof of principle for this
approach was established in Duchenne muscular dystrophy
(DMD) [50] based on TALEN technology, where approxi-
mately one-third of disruption events led to in-frame correc-
tion of the dystrophin gene, an outcome that at sufficiently
high efficiency of delivery to target cells would be fully or
partially therapeutic in DMD patients. Recent progress made
in the field of gene editing in DMD is reflected in a study
where AAV vectors were used to deliver CRISPR/Cas9
components intramuscularly and systemically in a canine
large-animal model of DMD [51]. The study demonstrated
high efficacy of single-cut genome editing for restoration of
dystrophin expression, reaching up to =~ 80% of normal levels
in some muscles after 8 weeks. Interestingly, in cardiac mus-
cle, dystrophin levels in the dog receiving the highest dose
reached 92% of normal. The same approach, based again
on RGN technology, also succeeded in correcting mutation
and phenotype in cell lines holding a naturally occurring
(XCGD) frameshift mutation in the CYBB transgene, with
similar potentially therapeutic targeting rates also for CYBB
in its normal genomic DNA (gDNA) context [52]. With 24%
frequency of frameshift mutations for CYBB XCGD and
similar contribution of frameshift mutations to epidemiology
for X-linked severe combined immunodeficiency (X-SCID,
IL2Ry gene), Wiskott-Aldrich Syndrome (WAS, WASP gene),
ADA-SCID (ADA gene), and p-thalassemia (HBB gene), this
led the authors to argue that a quarter of patients with these
disorders may be treatable with the same approach [52].

Although knockout of gene function or regulatory
sequences by a single RGN is mainly used for functional
studies, the approach has also been applied towards thera-
peutic use. The possibly most significant application to
date is once again in the context of f-hemoglobinopathies,
where Canver et al. [53] achieved high-level induction of
the endogenous HBB paralogs HBG1 and HBG2. The study
employed a total of over 700 RGNss to pinpoint the erythroid
enhancer of the y-globin repressor BCL11A, and identified
a highly y-globin-inducing RGN target in one of three can-
didate regions. The resulting y-globin expression potentially
compensates for absence of HBB in f-thalassemia and has an
additional anti-sickling effect in SCD, so that the approach
may be widely applicable across B-hemoglobinopathies. The
study went on to demonstrate action in SCD, using integrat-
ing lentiviral vectors (LVs) for proof of concept, in primary

CD34+ cells of SCD patients and tripled the number of
y-globin-positive cells in the process. Approaches such as
the one described require fundamental insights into molecu-
lar mechanisms of disease and relevant disease modifiers,
but potentially cover a range of diseases or at least of differ-
ent primary mutations in the case of allelic heterogeneity.
They are thus more widely applicable than mutation-specific
approaches and therefore more likely to be chosen for clini-
cal translation.

Other studies have used pairs of nucleases instead of
single RGNs in order to achieve potentially therapeutic
outcomes. This was applied by two studies for Huntington
disease [54, 55], possibly representative also of other domi-
nant trinucleotide repeat disorders. Both studies employed
patient-derived fibroblasts and haplotype-specific RGNs in
order to disable selectively the mutant H7T allele. In the
first case the entire mutant H7T gene was excised with two
haplotype-selective RGNs, whereas in the second study,
promoter-proximal allele-specific RGNs and a universal
RGN in intron 1 of HTT were used to inactivate the mutant
allele. In a further study, two CRISPR/Cas9 nickases either
side of the HTT trinucleotide repeat expansion were used for
its excision, although frameshift creation and employment
of an allele-independent targeting approach would inacti-
vate both HTT alleles in case of bi-allelic events [56]. In
another study for SCD therapy development, different-sized
deletions/inversions in the HBB locus were introduced in
erythroid cells in order to gauge their potential to induce
y-globin by changing the expression dynamics of the locus.
The most effective RGN combination, giving a 13.6 kb
inversion/deletion, was then tried in primary CD34+ cells
of two SCD patients, which combined with green fluorescent
protein (GFP)-based selection resulted in 32.8% and 62.2%
inversion/deletion allele frequency, respectively, and a 50%
reduction of sickling under low oxygen pressure as a mark of
phenotypic correction [57]. In another study with a focus on
cystic fibrosis, three different deep intronic mutations with
impact on CFTR splicing were excised by pairs of RGNs, an
approach that resulted in restoration of correct splicing in a
minigene functional assay [58]. While these studies did not
use technology suitable for clinical application, they served
to provide solid proof of concept for paired RGN applica-
tion and NHEJ-based therapy for rare diseases. Importantly,
Park et al. [59] (Tables 1, 2, purple) applied pairs of RGNs
designed to revert disease-causing inversion events in the
F8 gene from two different hemophilia A patients. Apply-
ing electroporation of RGNs as RNPs into urine-derived
iPSC cells, the study achieved inversion efficiencies in bulk
populations of 6.7% for a 1 kb inversion and of 3.7% for a
22 kb inversion. Transplantation of these cells into an F8
hemophilia A mouse model resulted in improvement of sur-
vival time and in three of nine mice even achieving overall
survival upon bleeding injury.
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To conclude, NHEJ-mediated repair, although more effi-
cient than HDR, has more limited applications, as disrup-
tion, excision, or rearrangement may not be suitable thera-
peutic approaches for many mutations and rare diseases.
However, where the causative mutation is suitable for repair
by disruption or excision, or where insights into molecular
mechanisms allow the deactivation of negative disease mod-
ifiers for therapy of multiple causative mutations, efficient
strategies based on NHEJ might be preferable to those based
on HDR for clinical translation.

2.4 Targeted Integration

There are many cases where precise repair and disruption
may both be unsuitable therapeutic approaches. First, many
rare diseases with a high level of allogeneic heterogene-
ity cannot be addressed by modulating disease modifiers,
unlike f-hemoglobinopathies. In those cases, therapy needs
to cover a range of the correspondingly rare individual muta-
tions in order to become applicable to a larger number of
patients and make therapy development practicable as a
commercial undertaking. Second, and a more fundamental
consideration, molecular therapies for diseases caused by
large deletions usually require the reintroduction of the lost
genetic material. In both instances, targeted integration (TT)
of expression cassettes or gene fragments would be thera-
peutic, given sufficiently high transfer and integration rates,
and would minimize the risk of insertional mutagenesis.

A major application for TI is based on so-called safe
harbor loci as integration sites that allow stable expres-
sion of the integrated transgene while not being of essence
in the affected cell lineages. Moreover, this strategy can
reuse effective and safe RGN for the addition of different
transgenes to the same site, which lowers the development
effort for individual therapies. Besides the AAV integration
site 1 (AAVST) locus in human hematopoietic stem and pro-
genitor cells (HSPCs) [60], the HPRT gene locus has also
been employed as a safe harbor locus for TT in human cells
[61], as has the chemokine (CC motif) receptor 5 (CCRS)
[62], and the popular murine ROSA26 locus has also found
its ortholog in the human genome [63]. TI strategies that
disrupt HPRT function can additionally enrich modified
cells by selection against non-integrants with 6-thioguanine
in vitro [64] and, with mixed results, in vivo [64, 65]. In
a deviation from the safe harbor principle, co-targeting of
the HPRT locus can also be used for chemical selection in
order to enrich for editing events at independent loci, which
have a high level of co-occurrence [61]. Whereas AAVS]
and HPRT are used for insertion of autonomous expression
cassettes, ROSA26 and CCR5 can be employed to achieve
expression of transgenes from the endogenous control ele-
ments of the locus [63, 66, 67]. Regarding the AAVS] site,
in a seminal study employing ZFNs for gene therapy of

X-SCID, fine-tuning of conditions allowed between 3 and
6% efficiency of HDR-based integration in primitive to
early HSPCs [44]. TI at the AAVS] site was also exploited
in a study for hemophilia B therapy development, which
employed urine-derived hemophilia B iPSCs for in vitro
and in vivo evaluation [68] (Tables 1, 2, green). In short-
term follow-up in immunodeficient mice, iPCS-derived cells
with AAVS] integration of a human elongation factor la
(EF1a)-promoter-driven F9 complementary DNA (cDNA)
achieved eight-fold induction of serum F9 levels compared
to integration-free control cells. Recently, conditions were
refined for RGN-mediated AAVS/-TI, and it was found
that excluding Cas9 expression from G1 phase of the cell
cycle significantly enhanced HDR-mediated integration at
the locus [69]. The HPRT locus served as safe harbor for
therapy in iPSCs of a patient with ARG I-linked urea cycle
disorder [70]. The strategy targeted exon 1 of HPRT for inte-
gration of a construct holding both a puromycin resistance
expression cassette and an ARG/ cDNA driven by the EFla
promoter. This allowed selection of HPRT disruption and of
puromycin resistance to give between 46 and 92% of normal
arginase messenger RNA (mRNA) levels in undifferentiated
iPSCs; this was decreased, however, to between 27 and 39%
upon hepatic differentiation. Finally, the murine ROSA26
locus was recently used for TI after adenoviral delivery of
RGNs and a human «-1-antitrypsin HDR donor into the
liver of wild-type mice [71], which achieved overall allele
frequencies in the liver of between 5 and 26% as a tentative
basis for therapy of human a-1-antitrypsin deficiency. Of
note, AAVSI encodes the phosphatase 1 regulatory subunit
12C (PPPIRI12C), also known as the myosin binding subu-
nit 85 (MBS85), and, as for CCRS, the exact importance of
the gene encoded at this locus is not yet known [62]. Many
transgenes can interfere with splicing of PPPIRI2C tran-
scripts [67], and a study investigating TT at the AAVS1 locus
detected a change in cellular contractile force, implying that
at least for the treatment of myopathies, AAVSI may not be
an inert safe harbor locus after all [72]. Therefore, studies to
date on what might be more generally called ‘standard loci
for TT’ indicate the scope for reapplying the corresponding
tools in a modular fashion for safe integration, selection, or
ubiquitous expression in therapy development for rare dis-
eases, while also highlighting that suitability of each locus
needs to be examined on a case-by-case basis.

A further application for TI is integration in the mutant
locus itself, in order to exploit endogenous transcriptional
control elements and, for gain-of-function mutations, to
inactivate a potentially toxic mutant while adding a func-
tional copy. The former strategy was pursued in the origi-
nal ZFN-based study for X-SCID in parallel to using the
AAVS]I safe harbor locus and in a follow-up study was also
extended to RGN-mediated integration into the IL2RG*?*6H
mutant gene [73]. Using RNP electroporation and AAV
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«Fig. 1 Therapeutic strategies based on CRISPR/Cas-based tools.
The therapeutic use of CRISPR/Cas ribonucleoprotein complexes
is wide-ranging and in its present application falls into four main
categories. a Mutation-specific precision editing of any suitable
nucleotide can be performed either by the original DNA endonu-
clease (double nickase) Cas9 molecule and HDR-mediated repair or
by DNA base editors. This can be used to correct disease-causing
mutations (green tick) or introduce disabling sequence changes (red
cross). The figure illustrates as exemplary positions (from left to
right) changes in the promoter region, the coding sequence, the splice
donor site, deep intronic regulatory sequences, and the splice accep-
tor site. b Sequence disruption and rearrangement can be achieved
by double nickases and NHEJ-based mechanisms. Top: sequences
can be disrupted by a single DSB in the promoter region, the coding
sequence, the splice donor site, deep intronic regulatory sequences,
and the splice acceptor site. For some applications the statistical one-
third of in-frame insertion and/or deletion (indel) events for changes
in the open reading frame may be corrective and exploited for ther-
apy. Middle: pathogenic inversions in the genome can be reversed by
two flanking DSBs and NHEJ-mediated re-ligation (shown). Alter-
natively, inversion or excision can disable pathogenic or unwanted
regulatory regions (not shown). Bottom: deletions for the removal of
pathogenic or unwanted regulatory regions can likewise be achieved
by two flanking DSBs and NHEJ-mediated re-ligation (shown), but
has also been demonstrated by an appropriately spaced pair of sin-
gle nickases (not shown). ¢ Targeted integration in the genome can be
achieved by a single DSB and, depending on the precision required
at the junctions, can employ HDR-mediated repair or NHEJ-mediated
HITI. Top: insertion of a cDNA under control of an endogenous pro-
moter is one application of targeted integration; integration in intronic
sequences of the mutated gene will allow repair of mutations down-
stream from the DSB. Bottom: insertion of expression cassettes into
safe harbor loci, such as an intergenic region (shown) or the intron of
an endogene (not shown) that will allow stable transgene expression,
can be used for safe gene addition. d Modulation of gene expression
can be performed at multiple levels and may employ, from top to
bottom, deactivated Cas9 fused to transcriptional regulators (e.g., in
order to dynamically repress expression of pathogenic genes), deac-
tivated Cas9 fused to epigenome modifiers (e.g., in order to perma-
nently repress expression of pathogenic genes by DNA methylation),
Cas13-like RNA-guided RNA nucleases (e.g., in order to dynamically
knock down mRNA of pathogenic genes), and nuclease-deficient
Cas13-like fusions to chemical RNA-base modifiers (e.g., in order to
repair nonsense mutations by A>G conversion). For clarity, epige-
netic modifiers for DNA demethylation, histone acetylation, histone
deacetylation, and others are not shown. Likewise, RNA base conver-
sion for disease-causing missense mutations (such as demonstrated
Ala>Trp conversion) is not shown. Throughout, the skull indicates
a pathogenic gene or molecule and the STOP sign indicates a trans-
lation termination (nonsense) codon. ADAR2 adenosine deaminase
acting on RNA 2 [82], cDNA complementary DNA, CRISPR/Cas
clustered regularly interspaced short palindromic repeats (CRISPR)/
CRISPR-associated protein (Cas), CyD cytidine deaminase domain
for C>U conversion in the single-stranded DNA loopout, currently
with precision of <2 base pairs, dCas9 deactivated Cas9 without
endonuclease activity, DNMT3a catalytic domain of DNA methyl-
transferase 3 alpha for DNA methylation and potentially persistent
repression of gene expression for affected promoters [78], DSB dou-
ble-strand break, gRNA guide RNA, HDR homology-directed repair,
HITI homology-independent targeted integration, indel insertion and/
or deletion, KRAB catalytic domain of Kriippel-associated box epige-
netic repressor [80], mRNA messenger RNA, NHEJ non-homologous
end-joining, UGI uracil DNA glycosylase inhibitor domain to prevent
base excision repair and removal of base edit

delivery of the donor template, the latter study achieved
50% reporter-positive committed hematopoietic progeni-
tors (CD344+CD133-) and 25% reporter-positive primitive
hematopoietic stem cells (CD34+CD133+CD90+). Both
studies used the endogenous locus and promoter to drive
cDNA expression of a partial /L2RG cDNA, but in one of
many improvements to the previous study [44], the more
recent work employs a cDNA and integration site down-
stream of exon 1 (instead of exon 4), suitable for repair of
any causative /L2RG mutation from exon 2 onwards [73].
A similar approach was also employed in a study for hae-
mophilia B, where CRISPR/Cas9 and an HDR donor DNA
were used to knock a full-length human F9 cDNA into
exon 1 of the F9 endogene in iPSCs from two hemophilia
B patients. These corrected iPSCs were differentiated into
hepatocyte-like cells (HLCs) and transplanted into hemo-
philic mice, where they achieved engraftment, expansion,
and production of F9 at therapeutic levels 69 months after
transplantation [74].

Studies on TI based on RGNs are still infrequent, but
bound to proliferate with the continuously improving effi-
ciency of the approach. The original concept of efficient TI
is dependent on RGN application with high general HDR
efficiency, which amongst other improvement strategies
may be increased five-fold by silencing of NHEJ compo-
nents [75]. However, the more recent approach of homol-
ogy-independent TT (HITI) [76] relies on NHEJ and may
increase TI efficiencies considerably for many applications.
With ongoing development and wide scope for therapeutic
application [77], HITI as an approach for higher-efficiency
TI may therefore turn out to be an important addition to the
rare disease therapy toolkit.

2.5 Modulation of Gene Expression

A plethora of tools based on CRISPR/Cas technology have
already been developed that allow control of gene expres-
sion, and transcriptional regulators as well as RNA editors
have already been used towards rare disease therapy. Both
technologies have the clear disadvantage that for curative
therapy development permanent integration or lifelong
repeat application would be required, even though AAV-
based approaches can show persistence of expression over
several months. The recent development of epigenome edit-
ing tools to our knowledge still awaits its application to rare
diseases, but results in modifications that appear permanent
and therefore potentially suitable for curative therapy. This is
the case at least for DNA modification, with as yet conflict-
ing results for the persistence of histone modifications and
their causative effect on gene repression [78].

Potential disease-specific application of transcriptional
modulation was demonstrated for PCSK9-linked familial
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hypercholesterolemia in a study that employed a nuclease-
deactivated Cas9 (dCas9) linked to the Kriippel-associated
box epigenetic repressor (KRAB) motif and achieved sig-
nificant knockdown of Pcsk9 mRNA in mouse liver [79].
The study further showed maintenance of significant knock-
down after double-hit delivery by AAV vectors for at least
168 days, and also a transient peak of treatment-specific
liver damage, as measured by elevated alanine transaminase
(ALT) serum levels. Moreno et al. [80] employed a split
Cas9 system based on two AAV vectors in order to increase
targeting capacity for transcriptional regulation and demon-
strated its utility in a murine model of retinitis pigmentosa.
Using a KRAB fusion as a transcriptional repressor and a
VP64 +rTA fusion as transcriptional activator, the study
achieved effective reprogramming of photoreceptor types
in vivo first in normal mice and then in the rd10 murine
model of autosomal recessive retinitis pigmentosa. In the
latter, transcriptional repression of Nr/ effectively converted
rod- to cone-like receptors, prevented photoreceptor degen-
eration, and 6 weeks after injection gave significantly higher
visual acuity for all eyes injected.

Therapeutic relevance of RNA knockdown was demon-
strated for frontotemporal dementia with parkinsonism using
the compact Cas13d-derived CasRx system [81]. AAV deliv-
ery of CasRx to patient-derived iPSCs significantly reduced
the pathologically elevated ratio of the 4R and 3R isoforms
of tau (encoded by MAPT) to 50% of mock-treated control
value, while healthy controls showed 20-30% of control
value. The same study also demonstrated absence of double-
stranded DNA (dsDNA) and single-stranded DNA (ssDNA)
cleavage as a safety feature, and the ability of CasRx to pro-
cess an array of multiple guide RNAs for multiplexed target-
ing of endogenous RNA from the same construct.

A landmark study by Cox et al. [82] employed a deac-
tivated Cas13 (dCas13) fused to an adenosine deaminase
acting on RNA 2 (ADAR?2) catalytic domain in order to
repair pathogenic mutations at the RNA level. Effective
A>G base conversion and reversion of nonsense mutations
was demonstrated for pathogenic transcripts implicated in
X-linked nephrogenic diabetes insipidus (AVPR2 W?%** at
up to 35% efficiency) and Fanconi anemia (FANCC"%" at
up to 22% efficiency) as full-length transcripts in transiently
transfected HEK293T cells, and was also detected above
20% efficiency for an additional nine of 34 partial transcripts
tested, including nonsense mutations of MEPCP2 (Rett syn-
drome), ADGRV1 (Usher syndrome type 2C), AHII (Jou-
bert syndrome 3), PRKN (Parkinson disease 2), COL3A1
(Ehlers-Danlos syndrome type 4), BRCAI (breast—ovarian
cancer, familial 1), MYBPC3 (primary familial hypertrophic
cardiomyopathy), APC (familial adenomatous polyposis 1),
and BMPR?2 (primary pulmonary hypertension).
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Evidently, CRISPR/Cas technology has moved beyond
gene editing and allows flexible and precise modification
of the epigenome and the transcriptome. Its versatility and
developments such as the use of dCas9 or small Casl3
derivatives in combination with additional functional
domains will accelerate basic research into transcriptional,
epigenome, and RNA-level regulation of gene expression,
besides contributing tools for translational medicine. The
early findings discussed here showcasing such modular use
of CRISPR/Cas technology demonstrate that therapy of rare
diseases will have its fair share of benefit, but that certain
aspects such as efficiency and permanence of treatment still
need to be addressed.

2.6 Using the Right Tool for the Job

The versatility and ease of use of CRISPR/Cas technology
and its derivatives have speedily led to the development of
a still expanding battery of diverse tools and approaches
to tackle disease. In this currently fast-moving field, a key
dilemma for researchers working on therapy development
for rare diseases is their need to initiate their work in the
present with a definite choice of tools and approaches for
their disease of interest, despite the risk that their choice
might appear outdated in the near future.

The unique molecular, pathophysiological, and clinical
characteristics of the disease of interest will be a determin-
ing factor in the choice of therapeutic strategy, where such
knowledge exists. However, and towards eventual translation
to the clinic, consideration of the number of potentially treat-
able patients with a given approach also needs to be given
adequate weight in the choice of treatment strategy. Should
a mutation-specific approach be employed, should a targeted
insertional approach be employed instead, in order to cover
arange of disease-causing alleles, or might the latter also be
achieved by manipulation of mutation-independent disease
modifiers? Other than for large deletions or rearrangements
as causes of disease, mutation-specific precision repair will
be universally applicable as a treatment approach, wherever
patient numbers and efficiency of correction are suitable. For
loss-of-function mutations, knock-in of functional cDNA or
of gene fragments in the defective endogene or targeted gene
addition of expression cassettes in safe harbor loci might be
feasible approaches. For gain-of-function mutations, knock-
in into and deactivation of the defective endogene would
once again be suitable, as would disease-allele-specific dis-
ruption, transcriptional inactivation, or RNA knockdown.
Where the required nucleotide change is suitable, the quickly
evolving approach of DNA base editing might provide a
safer option than DSB-based precision repair, whereas RNA
base editing might provide transient and safer alternatives to
DNA precision repair or disruption instead.
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The molecular strategy, however, is only one of the
choices to be made. For delivery of CRISPR/Cas tools,
selecting in vivo or ex vivo application and the choice of
vector type and administration routes will depend on clini-
cal phenotypes and accessibility and type of affected tissues.
Choice of timing, too, is of great importance when treating
chronic and progressive diseases, so as to maximize thera-
peutic benefit while minimizing risks. The treatment deliv-
ery timepoint is crucial but often uncertain, as gene editing
applied too late may not be able to repair established dam-
age, whereas premature application, such as of gene silenc-
ing CRISPR/Cas treatments, may lead to unexpected and
deleterious gene dysfunctions [83, 84]. More importantly,
each study has to calculate the risks cautiously and inde-
pendently for each patient, in order to define the acceptable
level of risk in the pursuit of a cure. Finally, informative trial
design, suitable manufacturing of reagents, and the potential
for commercialization all need to be considered, before even
the most ingenious molecular strategy may translate into a
successful therapy for rare disease patients.

3 Rare Trends: Clinical Translation for Rare
Diseases is Taking Off

3.1 From Shakedown to Maiden Voyage

There are still many unknowns in the therapy development
for rare diseases based on CRISPR/Cas technology. With the
field developing at a staggering pace, it is unclear how well
current cutting-edge technology in terms of off-target effects,
efficiencies of delivery, and efficiencies of cell-autonomous
correction will stand up to comparison 10 or even 2 years
down the line. After all, safety standards and assumptions
from the early days of gene addition, made by professionals
no less diligent than those involved in gene editing today,
appear naive in retrospect. The correspondingly risky appli-
cation of the fledgling CRISPR/Cas technology has thus
been spearheaded by application to cancer, and the first-
in-man Chinese CRISPR/Cas application to a lung cancer
patient in 2016, only 3 years after the technology was first
used in eukaryotic cells, is already history [85]. Meanwhile,
researchers and clinicians dealing with less acute diseases
rightly chose to err on the side of caution. Whereas the cur-
rent generation of RGN therapeutics for ex vivo applica-
tion is fully characterized for off-target activity and can be
delivered efficiently in virus- and DNA-free fashion, new
studies continue to uncover potentially problematic aspects
of DSB-related technologies. Application in vivo faces addi-
tional challenges of delivery and safety, some of which will
be hard to address in murine or chimeric models. Differ-
ences in size, longevity, cytokine microenvironments, and
specific DNA and RNA sequences are only some parameters

that may interfere with meaningful analysis and interpreta-
tion of results and will necessitate research in larger models,
non-human primates or, for what remains unknown once all
preclinical tests are passed, clinical trials.

3.2 Flight Plan

With the advent of CRISPR/Cas and the ongoing pro-
gress of gene therapy clinical trials in general, compa-
nies involved in rare disease therapy development have
multiplied over the last years [86], and with the acces-
sibility of the technology, even crowdfunding for smaller
biotech companies is considered an option [87]. The
three leading companies in the field of CRISPR/Cas
pharmaceuticals, CRISPR Therapeutics, Intellia Thera-
peutics, and Editas Medicine, 4 years after their initial
funding and 2 years after going on the stock exchange,
are pushing forward ambitious programs for rare disease
therapy development in the USA and Europe. The prod-
uct pipelines for non-malignant, non-infectious disorders
read like a who-is-who of prominent rare diseases, with
ongoing addition and removal of candidate diseases for
early-stage development (Table 3). To date, and as a first
for CRISPR/Cas application to rare diseases, CRISPR
Therapeutics is recruiting for a clinical phase I/II trial for
B-hemoglobinopathies with its CTX001 product in Ger-
many and the UK (NCT03655678 [141]), with an initial
cohort of 12 patients, extendable up to 45. A suspension
put on the trial by the US Food and Drug Administration
(FDA) was lifted on 10 October 2018 [88], a development
that, while opening up parallel trial initiation in the USA,
indicates persistent uncertainties about the safety of the
technology and the dissemination of related information.

3.3 Ethical Turbulence

Although CRISPR/Cas-related research publications for rare
diseases are proliferating, commercial exploitation of prom-
ising approaches is making it increasingly difficult to survey
and critically assess cutting-edge translational progress. As
development switches from academic laboratories to biotech
and pharmaceutical companies, so does dissemination of
results from peer-reviewed articles to business statements
and announcements on websites. Therefore, the good news
for patients that investment in gene therapy is booming [89]
has the flipside that increasingly frequent conflicts of interest
in research interfere with unbiased dissemination of methods
and results, endangering current governance structures and
possibly long-term trust in the technology [90-92]. As a
prominent example, preprint publication in early 2018 of
the pre-existing population-wide immunity against Cas9
proteins [33-35] prompted market upheaval in CRISPR/
Cas-related stocks and the declaration that the problem had
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already been investigated and found to be no impediment
to therapeutic application [93, 94]. Be that as it may, early
dissemination of related findings would have been better for
overall trust in the technology and in the integrity of those
involved in their commercial development. Similarly, full
disclosure of methodology and results for analyses of off-
target and recombination events would help establish trust in
the technology and the safety of prospective trials, given that
it is unclear whether such analyses have taken into account
the latest developments in the field. For instance, off-target
assessment often relies on amplification of areas closely
flanking the sites of interest, and such assessment would
miss long-distance recombination events recently found to
be triggered even by single-DSB approaches [39]. The ongo-
ing withdrawal of frontline developments from peer review
and from independent experimental confirmation is therefore
a concrete problem ethically as well as—it turns out—com-
mercially. Whereas secrecy is therefore a major concern of
the field, another still more pressing concern is the erosion
of ethical boundaries in the clinical application of CRISPR/
Cas technology [95]. Recent reports of the birth of CRISPR/
Cas-edit twins, engineered to prevent infection by HIV from
their father [96], indicate an absence of checks and balances
in the application of CRISPR/Cas at one if not more institu-
tions equipped to apply the technology to human embryos,
and a possibly wider and worrying loss of perspective in the
assessment of risks and benefits for human life.

3.4 Budget Travel

Gene addition approaches by ex vivo therapy are costly to
implement, and drug companies struggle to switch busi-
ness models for inherited diseases from lifelong drug-
based management to one-off curative treatments. A con-
tributing factor to the recent sale of GlaxoSmithKline’s
gene therapy portfolio to start-up company Orchard
Therapeutics might therefore have been the significant
price tag of potential treatments. For the approved orphan
drug Strimvelis® for ADA-SCID, which is based on ret-
roviral gene addition, this is a significant €594,000 per
patient [97]. However, beyond the suffering prevented by
this curative treatment, the cumulative cost of palliative
treatment is several-fold this cost. What is more, non-viral
ex vivo delivery for RGNS, and in particular in vivo deliv-
ery, might make one-shot therapies easier and cheaper to
implement. A significant development here is the poten-
tial transformation of gene therapy centers from good
manufacturing practice (GMP) containment facilities to
closed-circuit GMP devices in a clean room, at least for
disorders treatable by HSPC transplantation. Addition of
an in-line lentiviral transduction module to the Miltenyi
CliniMACS Prodigy® device for isolation of HSPCs in a

recent Fanconi anemia trial more than halved the person-
nel and time requirements for treatment [98]. An alterna-
tive module for electroporation of RNPs and HDR donors
allows analogous simplification of infrastructure and pro-
cedures also for CRISPR/Cas delivery [98]. The machine
would make a clinical gene therapy program for suitable
disorders widely affordable and traditional GMP facili-
ties at times obsolete [99]. Another emerging technology,
in utero gene therapy, may change not only the cost and
accessibility of rare disease treatments, but would moreo-
ver increase efficiency of treatment and expand the range
of disorders to which gene therapy may be applicable
[100]. The risk of inadvertent germline transmission and
the inability to predict possible success in human applica-
tion from experimental models are concerns en route to
clinical translation, but the landmark drop in required vec-
tor amounts and treatment cost, and, more fundamentally,
the applicability to early-onset and prenatally lethal dis-
orders, would be another game changer for gene therapy.
Ongoing research into possible complications of treatment
[101], improvements to efficiency [102], and successful
tests in non-human primates, such as those for treatments
of hemophilia B [103] and Gaucher disease [104], may
help overcome bioethical and regulatory hurdles in imple-
menting the technique for rare diseases.

3.5 Not aTrip, But a Journey

It therefore seems that rare diseases and CRISPR/Cas tech-
nology are going places together, albeit with choices and
uncertainties ahead and with the constant need to maintain
an open scientific culture and safeguard ethical boundaries
for its clinical application. CRISPR/Cas-based technology,
newly derived tools, and ongoing auxiliary improvements
to delivery methods, including GMP-in-a-box and in utero
delivery, have great potential to transform and democra-
tize gene therapy for rare diseases. Mutation-specific cures
may thus become affordable, even for small patient cohorts,
and allow restoration of normal or carrier genotype as the
most immediate and effective therapy. Increasingly efficient
manipulation of adult stem cells has already made them the
safe substrate of choice for much of CRISPR/Cas-based
therapy development for rare diseases and sidelined the
approach of editing and clonally selecting iPSCs, which still
pose safety concerns for clinical application [105]. Ongo-
ing improvements to efficiencies of CRISPR/Cas-based tools
and approaches and refined use of inert human markers, such
as tNGFR [43], may further endorse the use of adult stem
cells and will encourage still wider adoption of CRISPR/
Cas editing technology. In parallel, increasing affordability
and application of massively parallel sequencing not only
accelerates the discovery of new therapy targets for rare
diseases, but applied to CRISPR/Cas also helps delineate
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off-target and recombination events associated with treat-
ment. It appears that the most comprehensive currently
available analysis methods allow us to fully characterize
existing CRISPR/Cas-based tools for DNA-level efficiency
and safety, while a switch to the most efficient of the high-
specificity RGN variants [106—108] will likely become rou-
tine for new commercial research and development. Gene
editing as version 2.0 of gene therapy has been accelerated
enormously by the young CRISPR/Cas technology. Preci-
sion editing, targeted disruption, rearrangement and inte-
gration, and modulation of gene expression based on the
CRISPR/Cas platform already offer staggering possibilities
for gene therapy development and, given the current impe-
tus, the repertoire of tools and approaches for rare disease
gene therapy will continue its rapid expansion. As further
CRISPR/Cas-based gene therapies enter clinical trials for
rare diseases, versions 2.1 and higher will always be just
around the corner.
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