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Abstract Transdermal administration of analgesic medi-

cations offers several benefits over alternative routes of

administration, including a decreased systemic drug load

with fewer side effects, and avoidance of drug degradation

by the gastrointestinal tract. Transdermal administration

also offers a convenient mode of drug administration over

an extended period of time, particularly desirable in pain

medicine. A transdermal administration route may also

offer increased safety for drugs with a narrow therapeutic

window. The primary barrier to transdermal drug absorp-

tion is the skin itself. Transdermal nanotechnology offers a

novel method of achieving enhanced dermal penetration

with an extended delivery profile for analgesic drugs, due

to their small size and relatively large surface area. Several

materials have been used to enhance drug duration and

transdermal penetration. The application of nanotechnol-

ogy in transdermal delivery of analgesics has raised new

questions regarding safety and ethical issues. The small

molecular size of nanoparticles enables drug delivery to

previously inaccessible body sites. To ensure safety, the

interaction of nanoparticles with the human body requires

further investigation on an individual drug basis, since

different formulations have unique properties and side

effects.

Key Points

Nanoparticles enable targeted drug delivery to the

desired destination, reducing systemic toxicity and

side effects.

Nanoparticles allow drug delivery to previously

inaccessible body sites.

Nanostructures include nanosuspensions,

spontaneously emulsifying systems, solid lipid

nanoparticles and nanostructured lipid carriers,

polymeric nanocarriers (e.g. dendrimers), inorganic

nanoparticles, and hybrid carriers.

Our article discusses nanoparticles as enabling

delivery of anti-inflammatories, analgesics, and local

anesthetics.

1 Introduction

Transdermal analgesic medications delivery offers several

benefits over alternative routes of administration, including

the prevention of significant drug degradation by the gas-

trointestinal (GI) tract, resulting in a decreased required

systemic drug load with fewer side effects. The transdermal

route also offers a convenient mode of drug administration

over an extended period of time, particularly in pain

medicine, with an increased safety profile for drugs with a

narrow therapeutic window [1, 2]. The primary goal of
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transdermal drug administration is to overcome the skin

absorption barrier [3]. Nanotechnology offers a novel

method of enhanced dermal penetration for small-size

molecules conferring a large specific delivery profile [2].

The first nanoparticles were initially developed at the

end of the 20th century to serve as carriers for vaccines and

cancer chemotherapeutic agents [4–6]. Over the past dec-

ade, nanotechnology has impacted the way drug delivery

systems are developed, and nanoparticles are now

approved by the US FDA for several indications [7, 8]. The

National Nanotechnology Initiative defines nanoparticles

as stable, solid colloidal particles, chiefly composed of

biodegradable polymer or lipid materials, ranging in size

from 10 to 100 nm [9]; however, this definition remains

controversial considering size limits, with some scientists

proposing nanoparticles as large as 1000 nm [8, 9]. A drug

is absorbed into the nanoparticle by attachment to its sur-

face, entrapment within the polymer/lipid, or dissolution

into the particle matrix [10]. Drugs can be targeted to a

specific site of action by conjugation with a tissue- or cell-

specific ligand, or by coupling to macromolecules destined

for the target organ [11].

A number of FDA-approved nano-analgesics are cur-

rently available. Exparel� (Pacira Pharmaceuticals, Inc.,

San Diego, CA, USA) is a liposome-based (DepoFoam�)

bupivacaine topical formulation currently approved for use

in adults [12]. DepoDur� (Pacira Pharmaceuticals, Inc.),

approved by the FDA in 2004, offers an extended-release,

liposomal formulation of morphine sulfate for use in

postoperative pain management. The extended-release

injectable formulation is supposed to provide 48-h pain

relief after epidural administration; however, several

adverse events have been reported, such as decreased

oxygen saturation, vomiting, constipation, anemia, pyrexia,

and pruritus. The FDA approval and marketing process for

nanotechnology-based topical analgesic products is esti-

mated to be expensive ($1 billion per new drug) and takes

up to 15 years to be completed [13, 14].

Although nanomedicine addresses many of the chal-

lenges of drug delivery by improved drug stability,

increased bioavailability, and decreased toxicity and side

effects, the search for the perfect nanoparticle continues

[15].

2 Nanoparticle Use in Transdermal Drug Delivery

2.1 Pharmacokinetics and Dynamics

Pharmaceutical companies have recently focused on

improving the bioavailability of existing therapeutic agents

while exploiting more selective methods of delivery in an

effort to reduce systemic side effects [16].

At this time, biopharmaceutical and biotechnological

drugs must be differentiated. According to the FDA, the

former are derived from recombinant proteins, monoclonal

antibodies, and nucleic acid-based products. In contrast,

biotechnological drugs originate through processes such as

fermentation, enzymatic processes, hybridomas, tissue and

cell culture technology, and genetic engineering [17].

Factors that may affect the bioavailability of oral ther-

apeutic agents include digestive mechanisms, including pH

variability throughout the GI tract and permeability of cell

membranes [16, 18]. The amplified hepatic metabolism of

some drugs must also be considered [16, 18]. Chemical

features contribute to the determination of drug bioavail-

ability; therefore, drug delivery is dependent on

hydrophilicity, solubility and intrinsic dissolution rate,

described as the mass of drug dissolved per time unit and

area of absorption [19]. In contrast, transdermal drug

delivery faces relatively little degradation before reaching

the target since first-pass metabolism is avoided [19].

The components of the skin (stratum corneum, epider-

mis, and dermis) provide a natural barrier to infections and

unwanted chemicals, but also to beneficial therapeutic

agents. Nanoencapsulation can assist therapeutic drugs in

penetrating the skin, and the small size of nanoparticles

facilitates the diffusion of drugs across the skin. Variables

that may be improved by nanoencapsulation include drug

efficiency, specificity and tolerability. Biodegradable

nanoparticles are a focus of ongoing research [20].

2.2 Types of Nanostructures Used in Drug Delivery

Several materials have been used to enhance drug duration

and transdermal penetration [19]. These nanostructures

include nanosuspensions, spontaneously emulsifying sys-

tems (SESs), solid lipid nanoparticles (SLNs) and nanos-

tructured lipid carriers (NLCs), polymeric nanocarriers

(e.g. dendrimers), inorganic nanoparticles, and hybrid

carriers [17, 19].

2.2.1 Solid Lipid Nanoparticles and Nanostructured Lipid

Carriers

SLNs are composed of solid lipids, while NLCs are com-

posed of both liquid and sold lipids. SLNs are accepted as

one of the most suitable nanocarriers, presenting numerous

advantages (Table 1) [21].

zur Müehlen et al. assessed the possibly of prolonged

release of tetracaine, etomidate, and prednisolone incor-

porated in SLN carriers. The nanoencapsulation of the

anesthetic drugs tetracaine and etomidate resulted in a

rapid and high-yield burst of drug release, explained by a

large specific surface area and a drug-enriched outer layer.

The authors also demonstrated that prednisolone

1070 N. Stoicea et al.



incorporated in the lipid matrix of SLN carriers had a

greater stability compared with the free drug molecules due

to its interaction with the matrix. Ultimately, the prolonged

release of prednisolone SLNs demonstrated the suitability

of SLNs as prolonged-release drug carriers [22].

Akbari et al. studied the skin permeation of naproxen-

loaded SLNs, prepared by a probe ultrasonication method.

The study demonstrated high concentrations of naproxen

within the skin layers, and limited systemic absorption. The

results indicate that naproxen SLNs can accomplish the local

analgesic goals and avoid the possible systemic side effect

of non-steroidal anti-inflammatory drugs (NSAIDs) [23].

Wang et al. studied in vivo the analgesic effects of

lidocaine NLC gel versus standard lidocaine hydrochloride

(HCl) solution. The study concluded that lidocaine NLC

gel presented better penetrative qualities, enhancing drug

delivery through the skin and increasing the pain threshold

when compared with the lidocaine HCl solution

(38.55 ± 9.38% vs. 19.05 ± 5.23% permeation) [24].

Basha et al. concluded that benzocaine-loaded SLN

hydrogel was more effective than benzocaine hydrogel

when considering the intensity and duration of anesthetic

effect [25].

2.2.2 Polymeric Structures

Polymeric nanoparticles are solid colloidal particles with

diameters of up to 1000 nm, with spherical, branched, or

shell-shaped configurations [26]. These structures exhibit

several favorable properties, including biocompatibility,

biodegradability, and wide functional capabilities, which

make them desirable for drug delivery. Drugs are encap-

sulated within the polymers, allowing better pharmacoki-

netic control of the active drug molecule and a zero-order

kinetic profile, maintaining steady levels of the drug at the

delivery site compared with standard drug delivery routes

(first-order kinetics) [27, 28].

2.2.3 Dendrimers

Dendrimers are highly branched nanostructures produced

from large molecules, with an inner core and size range

between 1 and 100 nm [11, 27]. It is the number of bran-

ches, well-defined molecular weight, stability, and globular

structure that make these particles effective carriers for

drug delivery. Dendrimers are typically composed of one

or more of the following polymers: polyamidoamine

(PANAM), polypropylenimine, and polyaryl ether [29–32].

Drugs in dendrimers are either incorporated into or

attached to the surface of the nanostructure [33].

PAMAM dendrimers have been shown to successfully

deliver NSAIDs such as indomethacin, diflunisal, and

ketoprofen. Compared with pure drug suspension admin-

istration, transdermal PAMAM dendrimer use in rat mod-

els showed significantly greater bioavailability [34, 35].

Administration of PAMAM dendrimers with surface amino

groups loaded with indomethacin resulted in 1.6-fold

greater bioavailability than a free indomethacin suspension

[34]. Likewise, drug bioavailability was 2.73-fold greater

for a ketoprofen-loaded PAMAM dendrimer complex than

a free ketoprofen suspension, and 2.48-fold greater for a

diflunisal-loaded PAMAM dendrimer complex than a free

diflunisal suspension [35].

2.2.4 Liposomes

Liposomes were first described in 1961 by Alec D. Bang-

ham, and remain among the most widely used nano-sized

drug carrier aggregates [36, 37]. They are small, artificial

vesicles composed of natural or synthetic phospholipids

designed to be phagocytized to prevent drug degradation,

increase target specificity, and reduce side effects. On

average, liposomes have a diameter of approximately

75 nm in order to provide ideal encapsulation volumes

[37]. Applications of liposomes include transdermal drug

delivery, reduced-toxicity antibiotic delivery, ophthalmic

delivery, and treatment of parasitic infections [8, 11].

Liposomes are considered reliable drug carriers due to a

number of advantages (Table 2) [3].

The success of liposomes as agents for transdermal drug

delivery is owed to their interaction with the stratum cor-

neum skin layer. Liposomes establish a retention effect in

the stratum corneum and enhance their penetration at this

Table 1 Advantages of solid lipid nanoparticles

Possibility of controlled drug release and targeting

Increased molecular stability

High drug payload

Incorporation of lipophilic and hydrophilic drugs

Nontoxic carrier

No organic solvents used to produce them

Large-scale production and sterilization

Table 2 Advantages of liposomes

No biotoxicity reported

Biocompatibility and biodegradability

Easy to prepare

Minimal loss of encapsulated drug volume

Sensitivity to pH and temperature

Hydrophobic and hydrophilic elements that interact with lipophilic

and amphiphilic drugs
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skin layer by altering the structure of the intercellular lipid

lamellae [38, 39].

A major advantage of liposomal formulations of local

anesthetics is the slow release and subsequent prolonged

analgesic effect, while also keeping anesthetic serum levels

nontoxic [3, 40]. A number of clinical studies have been

conducted to compare free drug solutions with liposomal

formulations of local anesthetics. Liposomal formulations

of lidocaine or tetracaine were proved to exert a longer and

more powerful effect than nonvesicular eutectic mixtures

of local anesthetics (EMLAs) [41–44].

2.2.5 Carbon Nanomaterials

These are carbon-based, cage-like particles called nan-

otubes or fullerenes. Fullerenes are made up of 60 or more

carbon bases with a polygonal configuration [27]. These

particles have shown tissue-selective targeting and intra-

cellular targeting of the mitochondria [45, 46]. Nanotubes

and fullerenes exhibit properties that include low cytotox-

icity and high biocompatibility, making them an excellent

system for targeted drug delivery. Nevertheless carbon

nanotubes may cause inflammation and fibrosis [47–49].

2.2.6 Metallic Nanoparticles

Metallic nanoparticles are a biomolecular conjugation of

metals such as gold, silver, platinum, and palladium. This

conjugation can be achieved with bifunctional linkages,

lipophilic interaction, silanization (self-assembly with

organofunctional alkoxysilane molecules), electrostatic

attraction, and nanobead interactions [50]. They remain

active for a long period of time and are mechanically

durable [37]. Metallic particles are able to incorporate high

drug loads due to a wide surface area; however, the use of

those particles has been limited by their toxicity

[11, 37, 50, 51].

2.2.7 Nanofibers

These particles are manufactured in different shapes, but

are commonly assembled into membrane or tube shapes.

Biodegradable, transmucosal polycaprolactone nanofiber

patches delivering diclofenac sodium to treat tooth pain

were successfully developed in 2012 by Grewal et al.

These patches have demonstrated superiority in regard to

patient compliance, safety, and therapeutic efficacy [52].

Transdermal drug delivery systems have demonstrated the

ability to avoid hepatic first-pass metabolism, thus main-

taining constant serum drug levels for a longer duration of

time, with fewer side effects and increased compliance

[53]. Nevertheless, slow-onset kinetics, delayed absorption

after patch removal, lengthy half-life, and slow offset,

make such patches inappropriate for acute pain manage-

ment [54–56].

2.2.8 Polymers

The flexible hydrophobic surface of polymers allows them

to intercalate between the stratum corneum cells, causing a

disruption in lipids, and facilitating drug passage through

the skin [3]. Biodegradable polymers release drugs either

by erosion or diffusion. During the release process, nano-

fibers act as sponge-like membranes due to the high

osmotic pressure. The polymer matrix breaks down to form

‘pores’ for drug release. Polymer breakdown begins when

its molecular weight decreases sufficiently, releasing drug

as the matrix continues to dissolve [53].

Poly-lactic acid, poly-glycolic acid, and their poly-lac-

tic-co-glycolic copolymers are among the most studied

polymers for transdermal analgesic delivery. Nanospheres

and nanocapsules (160–300 nm) obtained from poly-lactic-

co-glycolic copolymers with and without oily cores were

successfully tested for ropivacaine, benzocaine, and bupi-

vacaine delivery [57–59]. The encapsulation efficiency was

very low for ropivacaine (3.8%), and significantly greater

for benzocaine (60%) and bupivacaine (75%), due to dif-

ferences in charge and water solubility characteristics of

this drug. However, the nanoencapsulation of ropivacaine

significantly decreased its systemic toxicity. The compo-

sition of the oily core is an important factor in boosting the

analgesia efficiency, per De Melo et al. [60].

In 2012, Karthikeyan et al. developed hybrid aceclofe-

nac-loaded zein nanofiber/pantoprazole-loaded nanofibers,

combining the advantages of protein materials and elec-

trospun structures for dual drug delivery applications [61].

2.3 Nanotechnology for Transdermal Analgesic

Drug Delivery

2.3.1 Nanotechnology for Wound and Burn Care

Wound healing is a process of tissue repair after injury and

involves various phases, including hemostasis, inflamma-

tion, proliferation, and maturation [62]. A wound dressing

ideally allows exudate absorption and maintains oxygen

permeability, providing an optimal healing environment

[29, 63]. Nanofibers exhibit properties including a wide

surface area and open porous structure. Extracellular

matrix structures also release components such as collagen

and cytokines necessary for the repair of damaged tissues.

These properties guide cellular drug uptake, promote

healing, and reduce pain. Multiple drugs, including

antibiotics, analgesics, and anti-inflammatory agents can be

incorporated within nanofibers. Chen et al. investigated the

in vitro release of vancomycin, gentamicin, and lidocaine
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from novel electrospun sandwich-structured polylactide–

polyglycolide (PLGA)/collagen nanofibrous membranes.

The in vitro concentrations of vancomycin, gentamicin,

and lidocaine released by these membranes was maintained

‘well above the minimum inhibition concentration’ for 4, 3

and 2 weeks, with bioactivity ranging from 30 to 100% for

vancomycin and gentamicin, and 37 to 100% for lidocaine

[64].

2.3.2 Tramadol Hydrochloride

Tramadol was first produced and marketed in the 1970s in

Germany, intended for oral, rectal, intramuscular, intra-

venous, and subcutaneous administration. Currently, no

transdermal via nanoparticles delivery has been reported.

The FDA approved tramadol hydrochloride (TrHC) in

1995 as a treatment option for patients with moderate to

severe pain. Tramadol is known to present a ‘complex

pharmacology’, and its effects are mainly exerted in the

central nervous system, demonstrating an agonist action in

l receptors, with a weaker effect in d and j receptors. In

addition, it also exerts some action on monoamine recep-

tors, affecting pain transmission through the spinal cord by

decreasing the reuptake of norepinephrine and serotonin

[65].

Advances in nanobiotechnology increased the efficacy

of tramadol due to the introduction of new drug delivery

systems. Less plasma variation and a long duration of

action offer therapeutic improvements and better outcomes.

Among the types of nanoparticles containing tramadol,

different combinations have been described, such as those

with chitosan-graft-poly (2-hydroxyethyl methacrylate-co-

itaconic acid), hydrogels, microsphere, and PLGA, most of

which have been used in vivo with promising results [66].

2.3.3 Nonsteroidal Anti-Inflammatory Drugs

NSAIDs are well-known for their association with GI

toxicity (e.g. gastric irritation, abdominal pain and ulcers)

and bleeding disorders [67]. Control of drug release and GI

mucosa bypass seem to play an important role in avoiding

NSAID-related GI toxicity [68]. Thus, transdermal NSAID

administration through nanobiotechnology may offer both

targeted therapy and a significantly improved drug safety

profile.

Dias et al. used nanoprecipitation and dialysis methods

to obtain acetylated cashew gum nanoparticles (CGN) of

varying size and combine them with diclofenac diethy-

lamine (DDA), an NSAID. The researchers concluded that

CGNs offer ‘successful’ transdermal penetration for

NSAIDs [69].

Similarly, Raj et al. studied the use of hydrogel-based

glyceryl monostearate SLNs in conjunction with

aceclofenac, an analog of diclofenac. The anti-inflamma-

tory action of SLN-loaded aceclofenac was increased when

compared with the control group, which received only

transdermal aceclofenac without nanoparticle loading [70].

The increased bioavailability and decreased toxicity of

NSAIDs have also been demonstrated by transdermal

administration with PAMAM dendrimers. Compared with

the administration via pure drug suspensions in rat models,

the bioavailability of indomethacin, diflunisal, and keto-

profen via transdermal PAMAM dendrimers was 1.6-,

2.73-, and 2.48-fold greater, respectively [34, 35]. These

studies demonstrate the transdermal capability of den-

drimers and spark further interest in the development of

new transdermal drug formulations with dendrimers as the

skin penetration mediators.

2.3.4 Other Therapeutic Agents

A 2014 publication by Zhang et al. studied the in vitro and

in vivo effects of transdermal aconitine delivery with an

SLN and a microemulsion (ME) delivery system. Aconi-

tine is a known highly toxic topical analgesic anti-inflam-

matory drug. The SLN and ME delivery systems reduced

aconitine toxicity, increased solubility and stability, and

improved drug duration of action. The high viscosity of

SLNs may also have limited permeability. However, SLNs

provided a ‘reservoir’ of the drug within the epidermis

which was more slowly released over a longer duration.

The authors concluded that SLN provided more effective

and reliable means for aconitine release [1].

Following these promising results, in 2015 Zhang et al.

published a new study, this time using SLN-delivered

aconitine versus aconitine tincture. They concluded that

SLN-delivered aconitine produced a superior analgesic and

anti-inflammatory effect [71].

A preclinical animal study published by Tronino et al. in

2016 utilized NLC instead of SLN carriers to enhance the

transdermal permeability of N-palmitoylethanolamine

(PEA), an agent with anti-inflammatory and analgesic

properties but poor percutaneous absorption. The study

compared the anti-inflammatory effects of intravenous

PEA versus transdermal NLC-loaded PEA, and noted a

delayed effect in the NLC transdermal group versus the

intravenous group. However, the NLC group experienced a

much longer therapeutic duration of the drug, up to 24 h

following administration, versus the intravenous group,

where the anti-inflammatory effects of PEA began to fail

after the 3-h mark. The NLCs’ prevention of hydrolytic

metabolism of PEA and its slow drug-releasing capability

through a rapid maintenance and constant absorption phase

demonstrate the usefulness of this transport system when

longer duration of analgesia or anti-inflammatory effects

are desired [72].
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Anirudhan et al. studied amine-functionalized hyaluronic

acid (HA) microparticles for transdermal lidocaine encap-

sulation. Interestingly, the study found that the transdermal

patch matrix pH significantly affected lidocaine release, with

almost no drug being released at pH 1.2 versus almost 80%

drug release at 24 h when the transdermal patch matrix pH

was 7.4. This pH-dependent effect was attributed to reduced

hydrogen bond dissociation energy between the matrix and

lidocaine molecules with increased pH. The authors con-

cluded that the pH of transdermal microparticles and

nanoparticles may also strongly affect other highly saturated

transdermal drugs [73].

3 Conclusions

The use of nanotechnology in transdermal delivery of

analgesics has raised new questions regarding safety and

ethical issues. The low molecular size of nanoparticles

enables drug delivery to previously inaccessible body sites.

Furthermore, nanoparticles allow targeted drug delivery to

the desired destination, with consequent minimal systemic

toxicity and side effects. Less than 8% of publications on

nanotechnologies report their toxicity. To ensure safety, the

interaction of nanoparticles with the human body requires

further investigation on an individual drug basis, since

different formulations have unique properties and side

effects.
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