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Abstract Analysis of liver safety data has to be multi-

variate by nature and needs to take into account time

dependency of observations. Current standard tools for

liver safety assessment such as summary tables, individual

data listings, and narratives address these requirements to a

limited extent only. Using graphics in the context of a

systematic workflow including predefined graph templates

is a valuable addition to standard instruments, helping to

ensure completeness of evaluation, and supporting both

hypothesis generation and testing. Employing graphical

workflows interactively allows analysis in a team-based

setting and facilitates identificatio\n of the most suitable

graphics for publishing and regulatory reporting. Another

important tool is statistical outlier detection, accounting for

the fact that for assessment of Drug-Induced Liver Injury,

identification and thorough evaluation of extreme values

has much more relevance than measures of central ten-

dency in the data. Taken together, systematical graphical

data exploration and statistical outlier detection may have

the potential to significantly improve assessment and

interpretation of clinical liver safety data. A workshop was

convened to discuss best practices for the assessment of

drug-induced liver injury (DILI) in clinical trials.

Key Points

In addition to standard summary tables and

narratives, graphics can help significantly to improve

liver safety assessment

A systematic workflow helps to ensure completeness

of evaluations and supports hypothesis generation

and testing

To differentiate true outliers from random variation,

robust statistical methods are available that should be

considered for liver safety evaluation

1 Introduction

Timely detection and proper assessment of drug-induced

liver injury (DILI) in clinical trials has for decades been

one of the key safety challenges for both pharmaceutical

industry and regulatory authorities.

A workshop was sponsored and organized jointly by the

European Innovative Medicines Initiative (IMI) and the

M. Merz (&) � G. A. Kullak-Ublick

Discovery and Investigative Safety, Novartis Institutes for

BioMedical Research, Klybeckstrasse 141, WKL-135.1.78,

4057 Basel, Switzerland

e-mail: michael.merz@novartis.com

K. R. Lee

Medical Analytics, GlaxoSmithKline, Collegeville, PA, USA

G. A. Kullak-Ublick

Department of Clinical Pharmacology and Toxicology,

University Hospital Zurich, Zurich, Switzerland

A. Brueckner

Novartis Pharma AG, Basel, Switzerland

P. B. Watkins

The Hamner-University of North Carolina Institute for Drug

Safety Sciences, Research Triangle Park, NC, USA

P. B. Watkins

Schools of Medicine, Pharmacy and Public Health, University of

North Carolina, Chapel Hill, NC, USA

Drug Saf (2014) 37 (Suppl 1):S33–S45

DOI 10.1007/s40264-014-0184-5



Hamner Institute for Drug Safety Sciences (IDSS), with the

aim of addressing gaps in current guidance and initiating

alignment of liver safety assessment on a global scale.

On November 9, 2012, in Boston, regulatory experts

from the FDA, EMA, Health Canada, and the Japanese

National Institute of Health Sciences discussed with rep-

resentatives from industry and academia what could be

considered best practices in clinical liver safety assessment.

The best practices workshop focused on four key areas: 1)

data elements and data standards, 2) methodologies to

systematically analyze liver safety data, 3) tools and

methods for causality assessment, and 4) liver safety

assessment in special populations such as hepatitis and

oncology patients.

This section summarizes current methods for systematic

assessment of liver safety data, as discussed at the work-

shop, and provides respective recommendations for use in

clinical drug development.

Assessment of liver safety data needs to take into

account not only classic safety biomarkers such as standard

liver tests alanine aminotransferase (ALT), aspartate ami-

notransferase (AST), alkaline phosphatase (ALP), and total

bilirubin (TBIL), but also patient demographics, medical

history, adverse events and concomitant medication.

Moreover, time dependence of and covariation between

liver test results have to be factored in. Thus, proper

evaluation of liver safety profiles can be a highly complex

task, requiring comprehensive datasets and suitable ana-

lysis methods. Standard approaches such as use of tabular

summaries, narratives, and descriptive statistics may be

supplemented by graphical displays in a systematic work-

flow and outlier detection methods.

2 Tabular Summaries

2.1 Incidence Tables

Tabular summaries may be most useful to capture and

compare incidences of liver test elevations as well as

extent of changes from baseline across treatment groups

both at study and program level. In terms of incidences,

common thresholds to capture and assess liver test

related events are [3 9 ULN, [5 9 ULN, [10 9 ULN

for aminotransferase activities, and [2 9 ULN for bili-

rubin concentrations [1].

As for aminotransferase activities, both ALT and AST

are usually captured, although the added value of listing

AST in addition to ALT may be limited to helping with

differential diagnosis, i.e. differentiating muscle-related

from liver-related ALT elevations, as well as alcohol from

non-alcohol-associated etiology of liver test elevations [2,

3]. Addition of GGT, which seems to be more common in

Europe as compared to the US, may increase sensitivity for

cholestatic liver injury at the cost of decreasing specificity.

A general recommendation to either exclude or include

GGT measurements into the panel for liver safety assess-

ment cannot be given at this point in time [4].

2.2 Shift Tables

Shift tables listing number/percentage of patients shifting

e.g. from normal to above or below ULN while on treat-

ment as compared to baseline are widely used for safety

assessment in drug development. They provide a quick

overview on gross changes that might be treatment related.

However, a lot of valuable information may be lost by data

reduction using shift tables only. A more efficient approach

may be use of scatter plots displaying shifts from baseline

by study visit or maximum shifts from baseline during the

study, as outlined in Sect. 3.2.4.

2.3 Descriptive Statistics

Analyzing liver safety data often makes use of compar-

ing mean and/or median changes from baseline for liver

test results across treatments along with measures of

variability (standard deviation, standard error, and range).

Although this approach can add to understanding of drug

effects on the liver, it disregards the fact that predomi-

nant interest when assessing liver safety data will be on

outliers in the data. It is rather rare cases of idiosyncratic

DILI than more frequent dose-dependent intrinsic DILI

cases that give reason for concern and need thorough

data work-up, paying attention to all individual data as

well as trends in the overall dataset, association with

concomitant medication, medical history, and adverse

events.

Using graphics as an add-on to tabular summaries can

help to address these requirements and compensate for the

short-comings of the latter [5].

3 Graphical Workflows

Graphics, ideally in the setting of a defined, systematic

workflow using interactive graphics software, can take into

account the entirety of individual patient data as well as

trends across the population, and help paying attention to

the multivariate nature of safety signals and time depen-

dency of observations. A graphical workflow can help to

maximize knowledge gain from the data available, and at

the same time ensure completeness of safety evaluation. Of

great importance though is adhering to best practices for

graphical data exploration as outlined e.g. by Tukey and

Cleveland [6–8].
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3.1 Prerequisites

3.1.1 Normalization

Adequately assessing liver safety data needs comparison

between different continuous variables, across different

studies, different laboratories, etc. To facilitate that, nor-

malization is helpful. Simple normalization of dividing raw

liver test values by the Upper Limit of Normal (ULN)

values is used most often, although there are some limi-

tations associated with this approach. Even after normali-

zation, ULN corrected data may not be perfectly

comparable across different laboratories and the associated

variability might actually be misleading, possibly due to

the fact that the ‘‘standard’’ for calculating ULN is not

consistent. This has been illustrated using extensive Phase

II–IV clinical trial data from a generally healthy patient

population [9].

Normalization by individual baseline values may be a

better alternative when data have been generated across

different labs since it can reduce unnecessary variation

[10–12] and is more consistent across labs. However, given

that as yet there are only limited data available across

different populations on use of change from baseline as

compared to use of multiples of ULN, application of both

normalization approaches in parallel should be considered.

Graphs presented in this section are based on the as yet still

more common approach of multiples of ULN, but can

mostly be applied to baseline-corrected data as well. Using

multiples of baseline, scatter plots of shift from baseline as

presented in Sect. 3.2.4, however, could be replaced by

simple box plots across study visits and parameters.

In this context, attention needs to be given to definition

of baseline. As indicated in other sections of this paper,

taking just one measurement as an individual patient’s

baseline is not adequate, given within-subject variation of

liver tests [10, 12]. A more suitable determination of

baseline may consist of two measurements at least two

weeks but not more than two months apart. Data analysis

when at least two baseline measurements are available may

use minimum baseline to minimum post baseline and

maximum baseline to maximum post baseline changes to

account for within subject variation [13].

3.1.2 Data Types

Analyzing raw or normalized biomarker values only may

be insufficient to see the complete picture. Derived vari-

ables such as absolute and relative changes from baseline,

maximum values on treatment, flags for exceeding prede-

fined threshold values etc. may be required to adequately

interpret liver test results. Thus, before starting liver safety

data exploration, a set of derived variables should be

defined and calculated.

3.1.3 Data Structure

Typically, datasets for safety analysis include study iden-

tifier, subject identifier, visit numbers and visit names,

parameter names, parameter results, lower and upper limits

of normal ranges, units, and relevant covariates such as

age, gender, BMI, and ethnicity, displayed by column. For

most of the graphics used for liver safety exploration, this

structure is sufficient. However, in order to address specific

questions such as shape of bivariate distributions, shifts

from baseline by visit etc., transposing the dataset by

parameter names or by visits, i.e. having parameter names

or visit numbers as column headers may be necessary. In

order to support an efficient workflow, it is helpful to define

individual steps of the workflow and required data struc-

tures upfront and make sure analysis datasets are available

in all formats required.

3.1.4 Key Questions to be Addressed

Key questions to address when analyzing liver safety data

comprise:

• Are there any true Hy’s law cases in the dataset?

• How are changes across different liver tests correlated,

and how do those correlations differ between treatment

groups?

• What is the time dependent incidence of elevations of

liver tests in active treatment and comparator arms? Is

there a ‘‘window of susceptibility’’ in the active

treatment arm?

• Are shifts from baseline different between treatment

groups?

• Is there any evidence for a dose-response-relationship?

• What do time profiles of individual liver tests or liver

test panels look like?

• Are liver test changes observed during treatment

transient or progressing while a patient is on treatment?

• What do time profiles look like after treatment is

stopped?

• How does intake of certain concomitant medications or

occurrence and/or resolution of certain adverse events

relate to time profiles of liver tests?

• Are liver test elevations correlated with the desired

therapeutic effect of the drug?

• Are liver test elevations associated with non liver side

effects or laboratory abnormalities?

• Are liver test elevations associated with pharmacoki-

netic parameters of the drug (if available)?
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To systematically address these questions, a set of

standard graph templates can be used and customized as

required.

3.2 Graph Templates and Systematic Workflow

3.2.1 Correlations

Assessing correlations between liver tests, both absolute

values on treatment and changes from baseline, can provide

insight into underlying pathology of treatment associated

liver effects. Exploring relationships of liver test changes

with key covariates such as age, body mass index, gender,

ethnicity, may help to identify risk factors for DILI.

3.2.1.1 eDISH The key graphical representation to assess

a drug’s liver safety profile and to immediately identify

cases of special concern is the ‘‘eDISH’’ (evaluation of

Drug-Induced Serious Hepatotoxicity plot [14]), a log/log

display of correlation between peak TBIL vs. ALT, both in

multiples of ULN, with horizontal and vertical lines indi-

cating Hy’s law thresholds, i.e. ALT = 3 9 ULN and total

bilirubin = 2 9 ULN. The eDISH plot makes immediately

evident subjects potentially matching Hy’s law laboratory

criteria, all located in the upper right quadrant of the graph.

Data points in the lower right quadrant, i.e. exceeding 3 9

ULN for ALT, but being below 2 9 ULN for total biliru-

bin, suggest an increased risk for liver injury as well, if

incidence is differing between active treatment and control

groups, however, not to the same extent and with less

specificity as compared to Hy’s law.

Figure 1 shows an example of an eDISH plot, compar-

ing pooled study drug against control data. Horizontal and

vertical lines indicate Hy’s law thresholds.

Patients with active treatment show a higher incidence

of values in the lower right quadrant and twelve potential

Hy’s law cases in the upper right quadrant, thus suggesting

a potential risk for severe drug-induced liver injury asso-

ciated with this drug. As stated in the FDA’s guidance on

Drug-Induced Liver Injury, ‘‘…Finding one Hy’s Law case

in the clinical trial database is worrisome; finding two is

considered highly predictive that the drug has the potential

to cause severe DILI when given to a larger population.’’

[1].

A limitation with the standard eDISH plot is its lack of

displaying sequence of maximum observed values for ALT

and bilirubin, i.e. which of both was first, as well as length

of time intervals between maximum observed values.

However, from a clinical perspective, these data are highly

relevant, since only bilirubin elevations simultaneous with

or soon following peak ALT elevations may indicate loss

of hepatic function due to liver injury. Moreover, a long

time interval, exceeding four weeks, between both peaks

may also speak against a causal correlation.

Another limitation of the standard eDISH plot is its lack

of displaying levels of ALP at the time of peak ALT ele-

vation. Elevation of ALP[2 9 ULN or a ratio R ([ALT 9

ULN]/[ALP 9 ULN]) \5 preceding or simultaneous with

Fig. 1 eDISH plot, TBIL [9 ULN] vs. ALT [9 ULN] on a log/log scale, treatment by panel, pooled active versus control. ULN upper limit of

normal, ALT alanine aminotransferase, TBIL total bilirubin
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ALT elevations suggests cholestatic/mixed type liver dis-

ease, such that cases of combined bilirubin and ALT ele-

vations would not qualify as Hy’s law cases.

It is desirable to have all this information included in the

graphical display, as well. Figure 2 shows the same data as

above, using a proposed modification to the eDISH plot,

with color coding for sequences of ALT and bilirubin

peaks, and size coding for the time interval between both

peaks. In order to make the most relevant data points easily

visible, the more concerning sequence of bilirubin parallel

to or following ALT peak is coded in red, the time interval

is coded as 1/interval to make shorter time intervals being

displayed as larger markers. Filled circles refer to data

having R [5. Thus, the data points to watch out for,

qualifying as potential Hy’s law cases, primarily are large,

filled, red circles in the upper right quadrant.

In the above example, nine of the twelve data points in

the Hy’s law quadrant for patients in active treatment

groups show the sequence of interest, i.e. bilirubin fol-

lowing or simultaneously elevated with ALT peak, but only

one of those has a time interval of less than four weeks

between both peaks and R [5. Thus, using this modified

version of the eDISH plot, eleven out of twelve potential

Hy’s law cases can be immediately identified as being

likely less relevant.

However, given that the eDISH plot is using peak values

only, even for patients displaying a likely less relevant data

point in the modified eDISH plot there may be other

measurements during a trial not being peak values, but

meeting Hy’s law criteria, having the proper sequence of

events, i.e. TBIL following ALT within a short period of

time, plus an R[5. Those data could be ‘‘masked’’ by less

relevant peak values and hence not be displayed in the

eDISH plot. Thus, it needs to be underlined that, using a

modified eDISH plot as outlined above, with color, shape

and size coding to identify the likely more relevant cases,

can only aid prioritization of cases but not replace thor-

ough evaluation of all patients displayed in the Hy’s law

quadrant.

Another useful modification of eDISH takes into

account changes from baseline instead of absolute values

for TBIL and ALT, along with population specific thresh-

olds, as suggested by Lin et al. [15] which is described in

more detail in Sect. 4.1.1.

3.2.1.2 Other Correlations Other correlations of interest

when exploring liver safety profiles of new drugs are those

between different liver enzymes, i.e. ALT/AST, ALT/GGT,

and ALT/ALP. Whereas in the healthy liver, ALT and AST

are closely correlated, ALT and the two other enzymes

usually are not. However, in some cases of DILI, elevations

of ALP and/or GGT may correlate with increased ALT

activities, providing some hints about the underlying

pathology, i.e. cholestasis or mixed type cholestatic/hepa-

tocellular injury. Isolated elevations of GGT activities

without associated ALT or ALP changes may sometimes

indicate enzyme induction rather than cell injury, as

observed e.g. in cases of chronic alcohol abuse [16].

3.2.2 Time Profiles

Changes of liver tests over time can provide crucial

information on both underlying pathology and causal

relationship to drug treatment. Line plots of either

Fig. 2 Modified eDISH plot, color by sequence of peak values, size by 1/time interval between peaks, shape by R flag. ULN upper limit of

normal, ALT alanine aminotransferase, TBIL total bilirubin, BIL bilirubin
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individual markers or marker panels are most useful to

assess biomarker time profiles, particularly if combined

with elements indicating start and/or end of drug treatment,

dose levels etc. In the context of a systematic workflow

using interactive graphics software, evaluation of time

profiles ideally follows assessment of the eDISH plot via

drill-down from selected data points, e.g. points in the Hy’s

law quadrant.

Figure 3 provides an overview on liver test profiles over

time for 19 patients in a clinical study who showed ALT

elevations [3 9 ULN while on treatment, one panel per

patient. Treatment end is indicated by a vertical red line,

color coding is by liver test, horizontal lines represent ULN

(green line) and 3 9 ULN (red line), respectively.

As displayed in the plot, several patients showed short-

lived, transient peaks of ALT, with serum activities

decreasing despite continued treatment. Only few patients

had to be taken off treatment due to continuous or wors-

ening elevations of ALT.

Moreover, the plot allows assessing time-wise associa-

tion of different biomarker effects by patient. Only patient

0004_00016 shows discrete elevation of ALP in parallel

with peak ALT and AST, pointing towards a possible

cholestatic component of liver injury. There are no

apparent elevations of bilirubin parallel or subsequent to

ALT elevations in any of the patients, confirming the rather

benign nature of liver enzyme changes observed in the

study.

3.2.3 Association with Concomitant Medication

and Adverse Events

A particularly helpful graph to analyze association of liver

test changes with adverse events and concomitant medi-

cation is a patient profile, defined as synoptic presentation

of line plots for all three items along a shared time axis.

Figure 4 displays for an individual patient the ALT

profile over time on top of the plot, concomitant medica-

tion and adverse events beneath. The horizontal red line in

the top plot represents 3 9 ULN for ALT. In the two lower

plots, start and end times of concomitant medication intake

and adverse events are displayed as blue triangles, the

black line between associated triangles indicates ongoing

concomitant medication or adverse event, respectively.

As displayed in the plot, the patient had taken an acet-

aminophen-containing medication, NyquilTM, and an

Fig. 3 Time profiles of ALT, AST, ALP, and TBIL, panel by patients, treatment end indicated by vertical red line, ULN and 3 9 ULN indicated

by horizontal green and red line, respectively. Color coding by liver test. ALT alanine aminotransferase, AST aspartate aminotransferase, ALP

alkaline phosphatase, TBIL total bilirubin, ULN upper limit of normal
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ibuprofen-containing medication, AdvilTM, before the first

ALT peak, and again AdvilTM, around the time of the

second ALT peak. Both drugs might have been causally

related to the ALT elevation. Moreover, the patient

reported several adverse events of headache during the

trial, one particularly preceding the second ALT peak. It is

conceivable that the patient might have taken e.g. acet-

aminophen to treat his headache but forgotten to report this

as concomitant medication.

Observing this kind of temporal association of ALT

peaks with headache or other pain events in a graphical

display can trigger focused re-questioning the patient to

ensure no suspicious comedication has been used around

the time of liver enzyme elevation.

Thus, a synoptic display of ALT profiles, concomitant

medication and adverse events may sometimes help sub-

stantially to identify causes for clinically relevant changes

in liver safety biomarkers.

3.2.4 Shifts from Baseline

Liver test results always have to be viewed in the context of

their respective baselines to allow adequate assessment of

treatment or disease effects. This can be done either by

analyzing absolute and relative changes from baseline, or

by using scatter plots with baselines on the x-axis and e.g.

maximum post-baseline values on the y axis. When plot-

ting only maximum post-baseline values on the y-axis,

however, careful consideration needs to be given to the

number of post-baseline measurements per patient, partic-

ularly when no control groups are available for comparison

across treatments: the larger the number of post-baseline

observations per patient, the more biased the plot will be

towards values increasing from baseline. To avoid that, an

alternative is e.g. to plot all post-baseline values per

patient, instead of selecting the maximum values only, or

displaying shifts as scatter plots by visit.

Figure 5 shows a respective example with four post-

baseline observations per patient. This is a Trellis plot with

treatment groups across rows and biomarker names across

columns. Color coding is by gender. The blue diagonal line

in each panel represents the line of identity, i.e. each value

on the line corresponds to maximum post-baseline equaling

baseline, each point above the line is an increase, points

below the line are a decrease from baseline, respectively.

In addition, the plot allows to assess the number of

patients exceeding certain threshold values, represented by

the green (=ULN) and red (3 9 ULN) horizontal and

vertical broken lines in each panel.

In this example, there is a clear trend for higher shifts

from baseline, i.e. elevations, for ALT and AST in both

active treatment groups. However, even the placebo

group displays some elevations from baseline at least for

ALT. Although this is a phenomenon not uncommon in

clinical studies and may be explained by effects of diet,

physical exercise, concomitant disease or comedication,
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Fig. 5 Shifts from baseline, parameters by column, treatment groups by row, color coding by gender. ULN upper limit of normal, max

maximum, max post bsl maximum post baseline

Fig. 6 Shifts from baseline, visits by column, treatment by rows, color coding by parameter. ALT alanine aminotransferase, TBIL total bilirubin,

ULN upper limit of normal, post bsl post baseline
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the effect may at least partially also be due to a bias

introduced by the number of post-baseline measurements,

as outlined above.

Figure 6 shows an example displaying shifts by visit,

avoiding the bias by multiple measurements when plotting

only maximum post-baseline values.

3.2.5 Dose-Response-Relationship

In order to assess dose effects more quantitatively than feasible

via scatter plots, box plots may be used for absolute or relative

changes from baseline and compared across treatment groups.

Figure 7 shows maximum absolute changes from baseline per

Fig. 7 Maximum absolute changes from baseline across treatment groups, parameters by panel, treatment groups by column per panel

Fig. 8 Kaplan–Meier plot of incidence of ALT elevations over time across treatment groups. ALT alanine aminotransferase
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patient for liver enzymes across treatment groups. Plots per

treatment group are defined by median (white line), lower and

upper quartiles (box), lower and upper adjacent values (whis-

kers), and outliers (individual data points). Outliers are jittered

on the x-axis to improve visibility.

The plot suggests differences for maximum elevations

from baseline of ALT and AST as compared between both

active treatment groups and placebo treatment.

For ALP, only a potential trend towards higher elevations

with active treatment as compared to placebo can be observed.

3.2.6 Kaplan–Meier Plots

Capturing and comparing time to elevation of liver test

results across treatment groups is of key importance not only

for understanding and adequately interpreting a potential

liver safety signal but also for managing the risk associated

with any effects of the study drug on the liver, e.g. in terms of

defining adequate monitoring intervals. The graphical dis-

play most widely used to show and compare times to event is

the Kaplan–Meier plot, which, in the absence of truncation,

censoring, and competing risks corresponds to the empirical

cumulative distribution function of incidences to reach a

predefined threshold. Such plots can sometimes reveal clear

active treatment effects on serum ALT not evident from

aggregate data, especially if the active drug treated diseases

associated with ALT elevations (e.g. diabetes, congestive

heart failure and viral hepatitis).

Figure 8 shows an example of ALT elevations[3 9 ULN

for drug X (blue line) as compared to control (red line).

4 Other Methods

4.1 Outlier Detection

Particularly for idiosyncratic DILI, identification of

abnormal liver chemistry data may be considered as an

outlier detection problem. An outlier refers to an obser-

vation that deviates markedly from the pattern or dis-

tribution of the majority of the data. Graphical displays

such as the eDISH plot, shift plots, or box plots, as

outlined above, can help substantially to spot clinically

relevant outliers in clinical trial data, but sometimes have

limited value in terms of reliably differentiate true out-

liers from random variation. To facilitate that, various

robust statistical methods have been proposed, as

described in more detail for instance in [15, 17–20]. The

following section describes for consideration an approach

that has been applied to liver safety data and makes use

of both ULN- and baseline-normalized data.

4.1.1 Truncated Robust Multivariate Outlier Detection

(TRMOD)

Multivariate outlier detection based on a robust distance

measure has been studied extensively and applied to detect

outliers in multivariate laboratory data [21]. Mahalanobis

distance measures the distance of a subject from the center

of the multivariate normal distribution. Multivariate outli-

ers are usually detected based on robust distance which

uses the robust estimate of mean and covariance in the

calculation of Mahalanobis Distance [17]. The decision

boundary for multivariate outlier detection based on a

multivariate normal distribution has an ellipsoidal shape in

general [19] and is an ellipse for the bivariate (two mark-

ers) case (Fig. 9a). The ellipse is a good graphical indicator

of the correlation between two variables. The ellipse col-

lapses diagonally as the correlation between the two vari-

ables approaches either 1 or -1. The ellipsoid is more

circular (less diagonally oriented) if the two variables are

less correlated.

Multivariate outliers detected based on such decision

boundaries will include outliers in all directions. However,

only abnormally high elevations of liver chemistry mea-

surements ALT, AST, ALP, and TBIL indicate a potential

Fig. 9 a TRMOD boundary

for two correlated

measurements. b TRMOD

boundary for ALT and bilirubin

with four regions: (Region I)

severe toxicity or potential Hy’s

Law, (Region II) elevated

bilirubin, (Region III) elevated

ALT, and (Region IV)

potentially toxicity. ALT alanine

aminotransferase
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liver safety issue. Hence, outliers with abnormally small

values of these liver chemistries are not of interest in

identifying potential liver toxicity and would be considered

clinically irrelevant outliers. TRMOD [15] was proposed as

a robust statistical method for identification of clinically

relevant outliers in laboratory safety data while automati-

cally excluding clinically irrelevant outliers. The decision

boundary defined by the truncated robust distance is shown

in Fig. 9a as a solid line [15]. The TRMOD boundaries are

determined based on robust estimates of mean and

covariance from the data and can be adjusted based on a

specified false detection probability value. In applying

TRMOD to liver chemistry data, log transformation of

ALT and bilirubin is used so that the majority of the data

can be modeled approximately as a multivariate normal

distribution. The two liver chemistry measurements, ALT

and bilirubin, are not highly correlated, and the decision

boundary then appears rounded similar to Fig. 9b.

Truncation lines in TRMOD, i.e. x-limit and y-limit, are

determined by their intersection with the horizontal and

vertical axis. X-limit and y-limit can be used for compar-

ison with other thresholds based on methods such as

eDISH. By extending the truncation line as given in

Fig. 9b, using TRMOD it is possible to achieve decision

boundaries very similar to eDISH. For the two liver

chemistry measurements ALT-limit is interpreted as the

x-limit and bilirubin limit as the y-limit. ALT and bilirubin

data can be either ULN-corrected or baseline corrected.

ALT and bilirubin limits define regions similar to eDISH.

Together, they form regions identified as: (Region I) severe

toxicity or potential Hy’s Law, (Region II) elevated bili-

rubin, (Region III) elevated ALT, and (Region IV) poten-

tial toxicity. Outliers lying in region IV, based on the

multivariate analysis, may indicate some abnormality in

both ALT and bilirubin simultaneously, requiring further

attention. In fact, ignoring region IV, the shape of the

decision boundaries are exactly the same in both TRMOD

and eDISH. An important difference, however, is that the

TRMOD boundaries are estimated from data, in compari-

son to the eDISH boundaries which are fixed since they

were derived from Hy’s Law. Since TRMOD based deci-

sion boundaries are derived from data and are comparable

to eDISH limits for liver chemistry data, it has been sug-

gested to name the associated plot ‘‘modified eDISH’’,

‘‘mDISH’’.

4.1.1.1 Hy’s Law Examined by TRMOD In order to

compare TRMOD boundaries to empirically derived and

fixed thresholds of FDA’s Hy’s Law limits, data from 28

Phase II–IV clinical trials performed at GSK were aggre-

gated and analyzed by the TRMOD algorithm. ALT and

total bilirubin data were analyzed and assessed graphically

with the FDA’s evaluation of Drug Induced Serious Hep-

atotoxicity (eDISH) plot assessing fold-ULN, as well as

using a modified eDISH (mDISH) plot to assess fold-

baseline liver chemistries [22]. The data consisted of

18,672 predominantly female subjects with mean age of

44 years and without known liver disease.

Among generally healthy clinical trial subjects,

the empirically derived TRMOD boundaries were

Fig. 10 a Hy’s Law and eDISH Plot on ULN corrected data: ALT [3 9 ULN and total bilirubin [2 9 ULN; b TRMOD boundaries and

mDISH plot on ULN corrected data: ALT[3.4 9 ULN and bilirubin[2.1 9 ULN. ALT alanine aminotransferase, ULN upper limits of normal
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approximately equivalent to ‘Hy’s Law.’ In comparison to

FDA’s ‘Hy’s Law’ boundaries of 3 9 ULN and bilirubin 2

9 ULN (Fig. 10a), TRMOD identified outliers with ALT

limit of 3.4 9 ULN and bilirubin limit of 2.1 9 ULN

(Fig. 10b). In order to minimize confounding by inter-

laboratory variation across the 28 studies, baseline cor-

rected data were used in addition. By applying TRMOD to

baseline corrected data, boundaries were 3.8 9 baseline for

ALT and 4.8 9 baseline for bilirubin (Fig. 11).

Overall, TRMOD liver chemistry analyses of clinical

trial data in generally healthy subjects confirmed the

FDA’s Hy’s Law threshold as a robust means to detect

liver safety outliers. TRMOD evaluation of liver chemistry

data, by both fold-ULN and fold-baseline, provides a

complementary analysis method and can generate valuable

data to establish evidence-based decision boundaries across

patient populations. Use of baseline corrected data reduces

impact of inter-laboratory variation and may be more

sensitive to possible drug effects. However, more data is

needed to confirm its value. As long as that data is not

available, it is proposed to assess liver chemistries using

graphical depictions of both ULN corrected data (eDISH)

and modified eDISH (mDISH) for baseline corrected data,

as complementary methods.

TRMOD methodology has also been applied to liver

chemistry data from 31 aggregated GSK oncology clinical

trials to establish population-based thresholds for assess-

ment of liver injury [23]. TRMOD identified outliers with

an ALT limit 5.0 9 ULN and total bilirubin limit 2.7 9

ULN. Additionally, TRMOD was applied to the aggregated

oncology data to examine fold-baseline ALT and total

bilirubin, indicating outlier detection limits of ALT 6.9 9

baseline and bilirubin 6.5 9 baseline [23]. Thus, bound-

aries for outlier detection based on TRMOD methodology

were wider in the oncology population as compared to

healthy subjects. Similar ALT and bilirubin threshold

limits were observed for oncology patients both with and

without liver metastases.

4.1.2 Univariate and Multivariate Extreme Value

Modelling

A slightly different approach to outlier detection has been

suggested by Southworth and Heffernan [18, 20] based on

extreme value theory. The method estimates probabilities

of exceeding thresholds of concern, e.g. ALT [3 9 ULN

and TBIL [2 9 ULN, fitting a generalized Pareto distri-

bution (GPD) to marginal data values above an appropri-

ately chosen threshold, where the effect of baseline on

post-treatment values is eliminated by robust regression

modelling. Model based probabilities for liver tests

exceeding predefined thresholds can support identification

of potential liver safety signals even with rather small

sample sizes, e.g. predicting incidence and magnitude of

outliers in phase III studies or post marketing based on

phase II data.

5 Conclusions and Recommendations

Liver safety data from clinical trials usually is complex,

multivariate by nature, and typically includes multiple

measurements over time. Association of biomarker effects

with clinical adverse events, concomitant diseases, and

concomitant medication needs to be accounted for.

• In addition to standard summary tables and narratives,

graphics can help significantly to detect signals,

understand cause–effect relationships, assess mecha-

nisms of toxicity, and may support both risk evaluation

and management.

• To facilitate assessment and comparison of liver tests

across different parameters, labs, and studies, normal-

ization of data is required. The most common approach

of normalizing values by lab-specific upper limits of

normal may be supplemented by normalization using

the patient’s baseline values.

• Proper definition of baseline needs to take into account

more than one measurement prior to study treatment.

Two measurements at least two weeks apart may be

considered a suitable definition.

• A systematic workflow, including predefined graphical

templates, starting from the eDISH plot and including a

series of line plots, scatter plots, box-plots, and Kaplan–

Meier plots helps to ensure completeness of evalua-

tions, supports hypothesis generation and testing, and

facilitates identification of the most suitable graphics

for publishing and regulatory reporting.

Fig. 11 TRMOD boundaries and mDISH plot on baseline corrected

data: ALT [3.8 9 baseline and bilirubin [4.8 9 baseline. ALT

alanine aminotransferase
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• In particular for detection and assessment of idiosyn-

cratic DILI, attention needs to be given to outliers in a

dataset rather than just mean and median values of liver

tests. To differentiate true outliers from random vari-

ation, robust statistical methods are available that

should be considered for liver safety evaluation.
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