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Abstract
Background and Objectives As drug development scientists strive to accelerate availability of therapies for patients, model-
informed drug development (MIDD) plays an important role in contextualizing existing information and facilitating deci-
sion making. This paper describes an example of MIDD, where modeling and simulation informed decision making in the 
circumstance of a combined phase 2b and single pivotal study for ritlecitinib (JAK3/TEC family kinases inhibitor).
Methods Longitudinal exposure–response (ER) modeling was conducted to describe ritlecitinib efficacy in alopecia areata 
patients. The Severity of Alopecia Tool (SALT) score (a continuous bounded outcome [CBO] score [0–100]) was used as 
the efficacy response. The average concentration during the time interval between two adjacent SALT scores was used as 
the exposure metric driving efficacy.
Results The developed model well described the longitudinal SALT profile of ritlecitinib as well as the frequency of boundary 
data. The CBO model indicated tested doses in the phase 2b/3 clinical trial are in the ascending region of ER and contextual-
ized a loading dose effect that impacted onset of efficacy without long-term benefit. It also identified disease severity as the 
only covariate impacting efficacy. The model-based simulation further informed impact of treatment interruption on the loss 
of efficacy in the absence of a dedicated treatment withdrawal study. Results indicated temporary treatment interruption ≤ 
6 weeks is not expected to result in significant loss of efficacy.
Conclusion The CBO modeling approach and simulation supported the single pivotal trial strategy and guided dose selec-
tion in the accelerated drug development program of ritlecitinib, which can be applied to many indications where efficacy 
is measured on a bounded scale.

1 Introduction

Model-informed drug development (MIDD) is a powerful 
approach that uses quantitative modeling and simulation 
tools to support drug development and decision making. 
Since the MIDD concept was introduced in the 2004 Critical 
Path Initiative by the Food and Drug Administration (FDA) 
[1], application of MIDD has been expanded to include 
various stages of drug development, and the role of MIDD 
approaches has been increasingly recognized to help reduce 
the time and cost of drug development [2]. Especially in 
drug development programs with compressed timelines, the 
role of MIDD becomes critical for contextualizing existing 

and accruing new information, filling in knowledge gaps, 
and facilitating decision making.

Ritlecitinib is an orally bioavailable, small molecule drug 
that irreversibly inhibits Janus kinase 3 (JAK3) and tyrosine 
kinase expressed in hepatocellular carcinoma (TEC) fam-
ily kinases [3]. Treatment with ritlecitinib is predicted to 
inhibit the inflammatory pathways mediated by interleukin 
(IL)-7, IL-15, and IL-21, which have been implicated in the 
pathogenic pathways of alopecia areata (AA) [4]. The proof 
of concept for ritlecitinib in the treatment of AA has been 
demonstrated in a phase 2a study (NCT02974868) [5]. With-
out a separate dose-ranging phase 2b study, the development 
program moved to a combined phase 2b/3 study that served 
both as a dose-ranging and single pivotal study. Therefore, 
understanding of dose/exposure–response (ER) relation-
ships, dose and regimen optimization, and demonstration 
of long-term treatment benefit were all evaluated within a 
single trial.
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Key Points 

To inform decision making in the ritlecitinib (an 
inhibitor of JAK3/TEC family kinases) program, where 
dose-ranging and confirmatory evidence of efficacy 
were generated in a single clinical trial, longitudinal 
exposure–response (ER) modeling was conducted to 
evaluate ritlecitinib efficacy in patients with alopecia 
areata, based on Severity of Alopecia Tool score data 
using a continuous bounded outcome (CBO) modeling 
approach.

The CBO modeling and simulation addressed 
contextualization of the ritlecitinib ER relationship 
and loading dose effect to guide dose selection, 
understanding of variability in efficacy due to covariates, 
and the impact of temporary treatment interruption on 
ritlecitinib efficacy.

This CBO modeling approach can be applied to many 
indications where efficacy is measured on a bounded 
scale to enable decision making in the accelerated drug 
development paradigm.

Here, an example of MIDD is provided, where modeling 
and simulation helped facilitate decision making in an 
accelerated drug development program. A longitudinal ER 
analysis was conducted to evaluate the efficacy of ritlecitinib 
in patients with AA, using the absolute Severity of Alopecia 
Tool (SALT) score data from all phase 2 and 3 studies 
(B7931005, B7981015, and B7981032). The SALT score is 
measured on a bounded scale (0–100) and therefore presents 
a technical challenge in model development due to the highly 
skewed distribution of the data, including a significant 
proportion of boundary data points [6]. This paper discusses 
an application of pharmacometric methodology to describe 
the continuous bounded outcome (CBO) data of SALT 
scores in the ritlecitinib program and utilization of CBO 
modeling and simulation for drug development decision 
making.

2  Methods

2.1  Study Design

This analysis was conducted on pooled data from three 
clinical studies (B7931005, B7981015, and B7981032). 
B7931005 was a phase 2a study to investigate ritlecitinib 
and brepocitinib in adults with AA with 50% or greater 
scalp hair loss (NCT02974868). The study consisted of three 
periods: a 24-week double-blind treatment period, an up to 
48-week single-blind extension (SBE) period, and a 24-week 

extension period. Only the initial 24-week period and SBE 
period of ritlecitinib and placebo data were included in the 
analysis. In the first period, ritlecitinib 200 mg once daily 
(QD) for 4 weeks followed by ritlecitinib 50 mg QD for 
20 weeks and matching placebo were administered. The 
SBE period started after a 4-week drug holiday. In the SBE 
period, responders with a ≥ 30% change from baseline 
(CFB) received placebo until they met the re-treatment 
criterion (% CFB at week 24 − % CFB post week 24 > 30%) 
and then were re-treated with ritlecitinib 200 mg QD for 4 
weeks, followed by 50 mg QD. Non-responders received 
another course of ritlecitinib 200 mg QD for 4 weeks, 
followed by 50 mg QD for 20 weeks.

B7981015 was a phase 2b/3 study to investigate the 
efficacy and safety of ritlecitinib in adults and adolescents 
with AA (≥ 12 years) with 50% or greater scalp hair loss 
(NCT03732807). The treatment period comprised a 
24-week placebo-controlled period followed by a 24-week 
extension phase. Eligible participants were randomized 
in a 2:2:2:2:1:1:1 manner to the following treatments: (1) 
ritlecitinib 200 mg QD for 4 weeks, followed by ritlecitinib 
50 mg QD for 44 weeks; (2) ritlecitinib 200 mg QD for 4 
weeks, followed by ritlecitinib 30 mg QD for 44 weeks; (3) 
ritlecitinib 50 mg QD for 48 weeks; (4) ritlecitinib 30 mg 
QD for 48 weeks; (5) ritlecitinib 10 mg QD for 48 weeks; 
(6) placebo for 24 weeks → ritlecitinib 200 mg QD for 4 
weeks, followed by ritlecitinib 50 mg QD for 20 weeks; 
and (7) placebo for 24 weeks → ritlecitinib 50 mg QD for 
24 weeks.

B7981032 was a phase 3 long-term study to evaluate the 
safety and efficacy of ritlecitinib in adults and adolescents 
with AA (≥ 12 years) with 25% or greater scalp hair loss 
(NCT04006457). All eligible participants enrolled in 
study B7981032 after participation in either B7931005 
or B7981015 received ritlecitinib 50 mg QD. All de novo 
participants received ritlecitinib 200 mg QD for 4 weeks, 
followed by ritlecitinib 50 mg QD. Since the B7981032 
study was not completed at the time of this analysis, the 
only available datacut at the time of modeling analysis was 
included in the analysis dataset.

All the studies were conducted in accordance with the 
Declaration of Helsinki and the principles of Good Clini-
cal Practice. The final protocols were approved by the 
institutional review boards.

2.2  Study Assessment

Sparse pharmacokinetics (PK) samples were collected 
in all studies. The exposure metric was derived from 
empirical Bayes estimates (EBEs) of the final population 
PK model [7]. Average drug concentration (Cavg) during 
the time interval between previous SALT record and the 
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current SALT record was calculated based on the patient’s 
dosing diary, to be used as the exposure metric for ER 
analysis.

SALT is a quantitative assessment of AA severity that 
captures percentage hair loss and was consistently collected 
as an efficacy endpoint in all studies [8]. The SALT score 
assessment schedule for each study is available in Supple-
mentary Table S1 (see the electronic supplementary mate-
rial). The score ranges from 0 to 100, where 100 represents 
complete hair loss and 0 represents no hair loss.

2.3  ER Analysis

The pharmacometric methodology of CBO analysis 
proposed by Hutmacher et al. was adapted and modified [9]. 
The non-boundary data were first scaled between 0 and 1, 
and a transformation family of Aranda-Ordaz functions was 
applied to help normalize the skewed distribution of CBO 
data as follows:

where y is the observation in the SALT scale and x is the 
observation in the transformed scale. The transformation 
factor α was estimated during model fitting.

A general nonlinear mixed-effects model was then 
constructed based on the transformed response:

where x|η represents x conditioning on a vector of subject-
specific random effects η, μ(η) is a conditional mean, σ is the 
residual error magnitude, and ε is the residual random error, 
which is assumed to be normally distributed with mean 0 
and variance 1. The conditional mean μ(η) was modeled as:

where fb is the baseline as a function of fixed effects (BASE) 
and random effects (η) [BASE + η], fplacebo(t) is the placebo 
effect function, and fdrug(t) is the drug effect function.

The placebo effect model was developed first, and then 
the drug effect model was added to the selected placebo 
effect model. For both placebo and drug effect functions, 
an indirect response model was considered using a latent 
variable approach to handle the delayed onset and offset of 
the response [10]:

(1)
z =

(100 − y) − 0

100 − 0
, z ∈ (0, 1)

x = h(y, �) = log

[
(1 − z)−� − 1

�

]
, � ≠ 0,

(2)x|� = h(y, �)|� = �(�) + � ⋅ �,

(3)�(�) = fb(�) − fplacebo(t) − fdrug(t),

where PBO(t) and E(t) are latent variables, IPBO is an 
indicator variable that equals 1 if treatment was given and 
equals 0 otherwise, Pmax is the maximum placebo effect, 
Emax is the maximum effect, kin and kout are rate constants 
determining a delay between placebo or drug treatment and 
response, and EC50 represents the Cavg yielding half of Emax . 
kin and kout were parameterized as ln2

t1∕2
 , such that the rate 

constant of kin and kout can be viewed in the unit of time ( t1∕2 
was estimated instead of kin or kout).

Data on the boundaries, 0 or 100, were treated as censored 
data when constructing the likelihood. The interpretation of 
censoring is similar to that in PK and pharmacodynamic 
(PD) assays in that if a more sensitive way of measurement 
were available, values of 0 or 100 would not have been 
observed. The likelihoods of 0 observations being less 
than the minimum observable non-zero value and 100 
observations being greater than the maximum observable 
non-hundred value were estimated, such that the likelihood 
for all the data is maximized in the model development.

Inter-individual variability (IIV) was incorporated in 
BASE, Emax , and kin2/kout2 using a multiplicative exponential 
error model ( Pi = Ppop ∙ exp(�i) for ith individual) and Pmax 
with an additive model ( Pi = Ppop + �i ) to allow both disease 
worsening and improving.

The covariates tested were effects of sex, weight, age, 
race, region, disease severity (alopecia totalis [AT]/alopecia 
universalis [AU] status), and prior treatment on BASE; sex, 
weight, age, race, region, disease severity, prior treatment, 
AA duration since first diagnosis (DURF), duration of 
current AA episode (DURC), and baseline SALT score 
on Emax ; and age, weight, region, disease severity, prior 
treatment, DURF, and DURC on kin2/kout2 . Stepwise 
covariate analysis was performed using both forward 
addition (p < 0.05) and backward elimination (p < 0.001).

Model adequacy was evaluated through changes in 
objective function value (OFV), visual inspection of 
diagnostic plots, precision of the parameter estimates, and 
decreases in IIV and residual variability. The final model 

(4)

fplacebo(t) = PBO(t) −
kin1

kout1
, fdrug(t) = E(t) −

kin2

kout2
dPBO(t)

dt
= kin1 ⋅

[
1 + IPBO ⋅ Pmax

]
− kout1 ⋅ PBO(t)

dE(t)

dt
= kin2 ⋅

[
1 +

Emax ⋅ Cavg(t)

EC50 + Cavg(t)

]
− kout2 ⋅ E(t)

PBO(t = 0) =
kin1

kout1
,E(t = 0) =

kin2

kout2
,
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was further evaluated for its predictive performance by 
visual predictive check (VPC).

ER analyses were performed using NONMEM version 
7.5.0. Exploratory analyses, diagnostic plots, post-processing 
of NONMEM output, and simulations were performed with 
R version 4.0.3. Perl-speaks-NONMEM (PsN) version 5.2.6 
was used for performing sampling importance resampling 
(SIR). The NONMEM analyses were conducted using the 
Laplace estimation method with interaction and ADVAN13 
with TOL = 6. The stochastic approximation expectation 
maximization (SAEM) method with importance sampling 
(IMP) was used for the estimation algorithm.

2.4  Clinical Trial Simulation to Understand Full 
Dose‑Response Based on Limited Dose Range 
Data

To better understand translation of the established ER 
relationship in the transformed scale into the original 
SALT scale, clinical trial simulation was performed for 
various QD doses. One thousand datasets of longitudinal 
SALT scores for 130 participants, an average sample of the 
single arms of the B7981015 study (n = 129–132), were 
simulated for placebo, 30-, 50-, 100-, 200-, 400-, and 600-
mg ritlecitinib QD dosage regimens. The demography 
of the 130 participants was assumed to be identical to 
that of the 50-mg arm of study B7981015. For each trial 
simulation, PK profiles were simulated first using EBEs 
for the 50-mg arm from the PK model, and SALT profiles 
were then simulated using a parameter set randomly drawn 
from a multivariate normal distribution using the population 
estimates and corresponding variance–covariance matrix of 
the estimates from the final CBO model. The SALT scores 
were simulated based on the transformed scale first and 
then back-transformed into the original SALT scale. Both 
PK concentrations and SALT scores including residual 
variability were simulated every week up to week 48, and 
placebo-adjusted responder rates for SALT ≤ 20 at week 24 
and week 48 were collected for each simulated trial. The 
median and 95% prediction interval (PI) of the placebo-
adjusted responder rates from 1000 simulated trials were 
summarized for each dosage regimen.

2.5  Clinical Trial Simulation to Understand Loading 
Dose Effect

The purpose of this simulation was to delineate the loading 
dose effect on clinical onset of response as well as overall 
outcome. The simulation scheme was identical to that of the 
previous simulation except the explored dosing regimens. 
One thousand datasets of longitudinal SALT scores for 130 
participants were simulated for placebo, 30 mg QD, 50 mg 

QD, and 200 mg QD for 4 weeks, followed by 30 mg QD 
and 200 mg QD for 4 weeks, followed by 50-mg QD dosage 
regimens. The SALT score was simulated for every week 
up to week 48 to correctly capture the onset of response. 
In study B7981015, the clinical onset was defined as the 
time when the responder rate for SALT ≤ 20 separated from 
placebo based on 95% confidence interval (CIs). Therefore, 
simulation results were summarized based on the placebo-
adjusted SALT ≤ 20 responder rate, to evaluate when the 
lower bound of the 95% CI for placebo-adjusted responder 
rate became > 0. Since clinical onset based on this definition 
would be influenced by sample size, clinical trial simulation 
was conducted using the same sample size for the single arm 
of B7981015 (n = 130).

2.6  Clinical Trial Simulation to Evaluate Treatment 
Interruption Effect

Simulation was conducted to assess the impact of treatment 
interruption on loss of efficacy, SALT ≤ 20, after patients 
achieve a stable response. The study participants for the 
simulation were assumed to be identical to participants in 
study B7981015 (n = 715), and longitudinal SALT scores 
for each individual were simulated based on EBEs of final 
model parameters. In this simulation, all the participants 
were treated with 50 mg QD until week 96 to ensure the 
SALT response had reached a plateau, and SALT scores 
were simulated for every week up to week 144 (48 weeks 
after treatment withdrawal) to capture any changes of SALT 
score after treatment interruption. For responders, defined as 
participants achieving SALT ≤ 20 at week 96, time to lose 
SALT ≤ 20 response was collected and the proportions of 
responders losing SALT ≤ 20 response at various treatment 
interruptions with durations of 4, 6, 8, 10, 12, 14, 16, 24, 36, 
and 48 weeks were summarized.

3  Results

3.1  Observed Data Summary

The final analysis dataset included 11,857 observations from 
1268 patients. The baseline characteristics are summarized 
in Table 1. Continuous covariates are further summarized by 
disease severity. The distribution of continuous covariates 
was relatively similar between patients with non-AT/AU (the 
“non-AT/AU group”) and patients with AT/AU (the “AT/AU 
group”) except the baseline SALT score and disease dura-
tion for the current episode. The AT/AU group had baseline 
SALT scores of 100 by definition of disease classification, 
whereas the non-AT/AU group had baseline scores < 100. 
The AT/AU group also had a relatively longer duration of 
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disease for the current episode compared with the non-AT/
AU group.

3.2  Final ER Model

The final placebo model included three transit compartments 
in addition to the initial indirect response model in Eq. 4 
to describe the delayed response. The entire model 
development history is available in Supplementary Table S2 
(see the electronic supplementary material). Separate kin1 and 
kout1 estimation was not supported; hence, kin1 was assumed 
to be the same as kout1 . Since baseline SALT scores were 
different between non-AT/AU and AT/AU, disease severity 
(non-AT/AU vs AT/AU) was incorporated as a structural 
covariate on BASE.

The final drug effect model was an Emax∕EC50 model with 
two transit compartments to describe the delayed response. 
Separate kin2 and kout2 estimation was not supported; hence, 
kin2 was assumed to be the same as kout2 . The model run 
separately estimating kin2 and kout2 was completed without 
producing a covariance step, indicating that the model may 
be overparameterized. Study B7981032 effect on BASE 
was incorporated to address differences in inclusion criteria 
between studies (baseline SALT ≥ 50 for B7931005 and 
B7981015 vs baseline SALT ≥ 25 for B7981032). AT/
AU effects on Pmax and kout2 were additionally included as 
structural covariates to better describe AT/AU response.

The selected base model with both placebo and drug 
effect includes IIV on BASE, Pmax , Emax , or kout2 param-
eters. After the base model selection, covariate effects on the 
base ER model parameters were graphically examined with 
inter-individual random effect on BASE, Emax , or kout2 vs 
covariate plots. There were no strong correlations observed 
on any of the plots (Figs. S1–S3, see the electronic sup-
plementary material). In line with this, the forward addi-
tion step of covariate analysis did not identify any important 
covariates. Therefore, the final base model was the selected 
final model. The schematic diagram of the final model is 
presented in Fig. 1.

Parameter estimates and SIR results of the final model 
are presented in Table 2. Asymptotic 95% CI and SIR 95% 
CI were very similar and demonstrated all the parameters 
were estimated with acceptable precision. Baseline values 
were different based on the disease severity and study, 
with a population mean of 1.92 (87.4% in original scale) 
for the non-AT/AU group in B7931005 and B7981015, 
0.68 (67.3% in original scale) for the non-AT/AU group 
in B7981032, and 11.6 (100%) for the AT/AU group. The 
Pmax parameter was not precisely estimated for the non-
AT/AU group and therefore was fixed to zero, whereas a 
small positive placebo effect was estimated for the AT/AU 
group. The Pmax estimate of 2.75 in the transformed scale 

Table 1  Summary of baseline characteristics in the analysis data

Covariate Summary

Protocol, n (%)
 B7931005 95 (7.5)
 B7981015 715 (56.4)
 B7981032 458 (36.1)

Sex, n (%)
 Female 805 (63.5)
 Male 463 (36.5)

Race, n (%)
 African American 46 (3.6)
 Asian 286 (22.6)
 Other 47 (3.7)
 White 889 (70.1)

Disease severity, n (%)
 Non-AT/AU 736 (58.0)
 AT/AU 532 (42.0)

Prior pharmacological treatment for AA, n (%)
 No 22 (1.7)
 Yes 499 (39.4)
 Unknown 747 (58.9)

Age group, n (%)
 Adolescent (12 to < 18 years) 170 (13.4)
 Adult (≥ 18 years) 1098 (86.6)

Age, years
 Mean (SD)
  Total 33.8 (14.2)
  Non-AT/AU 33.3 (14.3)
  AT/AU 34.3 (14.0)

 Median (Min, Max)
  Total 32 (12, 72)
  AA 31 (12, 72)
  AT/AU 33 (12, 72)

Weight, kg
 Mean (SD)
  Total 70.7 (17.6)
  Non-AT/AU 70.2 (18.2)
  AT/AU 71.4 (16.8)

 Median (Min, Max)
  Total 68.4 (29.6, 

200.0)
  Non-AT/AU 67.8 (29.6, 

200.0)
  AT/AU 69.3 (35.0, 

131.0)
Baseline SALT, %
 Mean (SD)
  Total 84.9 (21.4)
  Non-AT/AU 74.0 (22.5)
  AT/AU 100 (0)

 Median (Min, Max)
  Total 98.6 (25.2, 100)
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did not induce any changes in SALT score for the AT/AU 
group, due to their large baseline value.

The Emax parameter estimate was 15.8 in the trans-
formed scale for both non-AT/AU and AT/AU groups, 
which is translated into a complete recovery in SALT score 
(SALT score of 0 for non-AT/AU group and 0.33 for AT/
AU group). The kout2 estimate in half-life was smaller for 
the AT/AU group (3.11 weeks for AT/AU vs 7.80 weeks 

for non-AT/AU, which translates to mean transit time 
( #of transit+1

kout2
 ) of 13.5 weeks vs 33.8 weeks, respectively), but 

the quicker onset in the AT/AU group was offset by their 
higher baseline, which requires a large change in SALT 
score to reach meaningful clinical response. The EC50 esti-
mate was a Cavg of 53.6 ng/mL, similar to the Cavg of 50 
mg QD (52 ng/mL).

The model diagnostics are presented in Fig. 2. The 
transformation factor (α) was estimated to be 1.19 
(Table 2), which adjusted the skewed distribution of the 
data to be normally distributed (Fig. 2A). The percent-
ages of the boundary score were 5.39% for SALT = 0 
and 24.9% for SALT = 100 in observed data, and 5.74% 
(95% CI 4.84–6.67) for SALT = 0 and 24.6% (95% CI 
23.0–26.2) for SALT = 100 in the simulated data, indicat-
ing that the censored model was able to predict the per-
centage of boundary data adequately (Fig. 2B). Lastly, the 
model was developed for raw SALT score, but the VPC 
plot (Fig. 2C) showed generally good agreement between 
observed data and simulated data based on responder rate 
for SALT ≤ 20, which was the primary endpoint of the 
pivotal study.

3.3  Clinical Trial Simulation to Understand Full 
Dose‑Response Based on Limited Dose Range 
Data

The simulation results for the placebo-adjusted SALT ≤ 20 
responder rate at various QD doses are presented in Fig. 3. 
Simulation was conducted for a dosage range of 30–600 mg 
QD to illustrate where the tested dosages in B7981015 are 
located on the ER curve. Based on simulation results from 
the ER relationship established in the CBO model, higher 
efficacy is expected at doses greater than 50 mg, with dos-
ages of 400 mg QD approaching the maximum efficacy.

Table 1  (continued)

Covariate Summary

  Non-AT/AU 77.9 (25.2, 99.8)
  AT/AU 100 (100, 100)

AA duration since first diagnosis, years
 Mean (SD)
  Total 10.0 (10.5)
  Non-AT/AU 10.0 (10.3)
  AT/AU 10.0 (10.8)

 Median (Min, Max)
  Total 6.67 (0.04, 60.1)
  Non-AT/AU 6.84 (0.04, 58.2)
  AT/AU 6.43 (0.20, 60.1)

Duration of current AA episode, years
 Mean (SD)
  Total 3.22 (2.82)
  Non-AT/AU 2.79 (2.74)
  AT/AU 3.80 (2.82)

 Median (Min, Max)
  Total 2.25 (0.02, 29.5)
  Non-AT/AU 1.72 (0.02, 29.5)
  AT/AU 3.08 (0.04, 10.7)

AA alopecia areata, AT alopecia totalis, AU alopecia universalis, Max 
maximum, Min minimum, n number of patients, SALT Severity of 
Alopecia Tool, SD standard deviation

Fig. 1  Schematic diagram of longitudinal exposure–response model 
for SALT score. k

in
 and k

out
 are rate constants determining a delay 

between placebo or drug treatment and response, P
max

 is the maxi-
mum placebo effect, I

PBO
 is an indicator variable that = 1 if treatment 

was given and = 0 otherwise, E
max

 is the maximum drug effect, EC
50

 

represents the PK exposure (Cavg(t)) yielding half of E
max

 , and  SALT* 
represents SALT score in transformed scale. Cavg average drug con-
centration, PK pharmacokinetics, SALT Severity of Alopecia Tool
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3.4  Clinical Trial Simulation to Understand Loading 
Dose Effect

The simulation results are visually presented in Fig. 4 for load-
ing (200/30 mg or 200/50 mg QD) and non-loading (30 mg 
or 50 mg QD) dosage regimens. For the comparison, the PK 
profiles of those regimens are also presented in the top panel 
of Fig. 4. As expected from the small half-life of ritlecitinib 
(~2 h), PK exposures quickly reached the new steady state 
after the loading dose was switched to the maintenance dose 
at week 4. In contrast, the loading dose effect stayed longer in 
clinical efficacy, thereby resulting in greater efficacy for the 
loading dose regimen than the non-loading dose regimen at 
week 24, when the primary endpoint was measured in study 
B7981015. The simulation results indicated that the loading 
dose achieved the clinical onset of SALT ≤ 20 seven weeks 
faster for the 30-mg QD group (6 vs 13 weeks) and 3 weeks 
faster for the 50-mg QD group (6 vs 9 weeks). However, the 
initial quicker response was not sustained and did not translate 
into higher response rates long term, such that the 95% CIs of 
responder rates were largely overlapped between loading and 
non-loading dose regimens at week 48.

3.5  Clinical Trial Simulation to Evaluate Treatment 
Interruption Effect

The analysis data included limited information from the SBE 
period of study B7931005 that could demonstrate SALT 
score change after treatment withdrawal and re-treatment. 
Randomly selected individual model fits for the SBE period 
data of study B7931005 are presented in Fig. 5A, demon-
strating that the final model well described all the initial 
response to treatment, treatment withdrawal, and re-treat-
ment data.

Based on this finding, SALT score profiles after treat-
ment withdrawal were predicted using EBEs of the final 
model for all B7981015 study patients, as seen in the exam-
ple profiles of Fig. 5B. The proportion of responders los-
ing SALT ≤ 20 response after treatment withdrawal was 
further summarized according to the duration of treatment 
interruption (Table 3). Results indicated that the risk of 
losing SALT ≤ 20 response is very low (i.e., < 10%) with 
treatment interruption of ≤ 6 weeks, and 70% of patients 
are predicted to lose SALT ≤ 20 response with 48 weeks 
of treatment interruption.

Table 2  Parameter estimates and SIR results of the final model

AT alopecia totalis, AU alopecia universalis, BASE baseline as a function of fixed  effects, Cavg average drug concentration, CI confidence 
interval, EC50 represents the PK exposure (Cavg(t)) yielding half of Emax, Emax maximum drug effect, kout  represents determinants of loss, PK 
pharmacokinetics, Pmax maximum placebo effect, RSE relative standard error, SIR sampling importance resampling, ω2 represents the variance 
estimate, wk week
a Parameter estimates are on a transformed scale
b kout1 half-life was fixed from the final placebo model. Condition number was 72. Shrinkages for intersubject variability were 16% for BASE, 
33% for Pmax, 37% for Emax, and 37% for kout2. Epsilon shrinkage was 25%

Parameter Estimatea RSE (%) 95% CI SIR median SIR 95% CI

BASE for non-AT/AU 1.92 4.04 (1.77, 2.07) 1.92 (1.77, 2.07)
BASE for AT/AU 11.6 2.83 (10.9, 12.2) 11.6 (10.9, 12.1)
B7981032 effect on BASE for non-AT/AU − 0.645 5.76 (− 0.718, − 0.572) − 0.644 (− 0.717, − 0.574)
Pmax for non-AT/AU 0 fix - - - -
Pmax for AT/AU 2.75 8.52 (2.29, 3.21) 2.77 (2.28, 3.25)
kout1 half-life (wk)b 1.93 fix - - - -
Emax 15.8 6.23 (13.9, 17.8) 15.8 (13.8, 17.6)
kout2 half-life (wk) 7.80 7.61 (6.64, 8.96) 7.71 (6.51, 9.01)
AT/AU effect on kout2 half-life (wk) − 0.601 5.10 (− 0.661, − 0.541) − 0.598 (− 0.660, − 0.542)
EC50 (ng/mL) 53.6 9.83 (43.3, 64.0) 53.8 (43.6, 65.4)
Residual error 1.18 1.51 (1.14, 1.21) 1.18 (1.14, 1.21)
Transformation factor 1.19 2.73 (1.12, 1.25) 1.19 (1.13, 1.25)
ω2

BASE 0.225 6.54 (0.196, 0.254) 0.224 (0.196, 0.254)
ω2

Pmax 7.62 8.27 (6.39, 8.86) 7.61 (6.42, 8.94)
Covariance—Emax and Pmax − 0.442 19.5 (− 0.611, − 0.273) − 0.455 (− 0.618, − 0.299)
ω2

Emax 0.754 12.2 (0.573, 0.934) 0.769 (0.596, 0.955)
Covariance—Emax and kout2 0.549 12.2 (0.418, 0.681) 0.551 (0.426, 0.685)
ω2

Kout2 0.973 9.14 (0.799, 1.15) 0.963 (0.791, 1.14)
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4  Discussion

The analysis in this paper characterized the longitudinal ER 
relationship of ritlecitinib efficacy in patients with AA using 
CBO modeling analysis. The description of CBO modeling 
strategy and how the established model informed decision 
making in the accelerated drug development program are 
discussed below.

4.1  Application of Pharmacometrics Methodology 
to Describe CBO Data

Bounded scales are commonly used to assess disease status 
and in turn used as clinical efficacy endpoints in clinical 

trials. Examples of such scales are the Psoriasis Area and 
Severity Index (0–72) [11], Disability Assessment for 
Dementia (0–100) [12], and Functional Assessment Ques-
tionnaire (0–30) [13]. Several pharmacometric modeling 
methodologies have been proposed to handle CBO data 
[9, 14–16]. In the current analysis, a censoring approach 
with transformation of non-boundary data proposed by 
Hutmacher et al. [9] was utilized due to its flexibility in 
handling boundary values, which consist of almost 30% of 
the analysis data. The developed model adequately adjusted 
the skewed distribution of the data and well described the 
longitudinal SALT score profile of ritlecitinib as well as the 
frequency of the boundary data.

The developed CBO model also utilized a latent vari-
able indirect response modeling approach. The indirect 
response model is a widely used semi-mechanistic frame-
work to link PD responses to PK exposure when there is a 
delay between PK exposure and PD responses. However, if 
the PD endpoint is a categorical or bounded outcome vari-
able, the PD responses cannot be used as a raw scale for a 
dependent variable of PKPD modeling. To be applicable 
for such cases, the latent variable approach was developed, 
which links PD responses with drug exposure through an 
unobservable latent variable in the indirect response model 
framework [17]. In this modeling, the drug effect is assumed 
to be driven by a fluctuation of unobservable latent variable. 

Fig. 2  Diagnostic plots. A Distribution of observed data exclud-
ing boundary values in original vs transformed scale. B Percent-
age of bounded outcomes for observed vs simulated data. C Visual 
predictive check of the final model in terms of responder rate for 
SALT ≤ 20. The black line represents the observed placebo-adjusted 
responder rate up to week 24 and observed responder rate after week 
24, and the gray shaded region represents the 95% prediction interval 
from the final model for the corresponding endpoint. The dotted lines 
represent median prediction from the final model for the correspond-
ing endpoint. The dashed lines represent when the non-placebo-con-
trolled period (week 24) and B7981032 study (week 48) started. CI 
confidence interval, PBO placebo, SALT Severity of Alopecia Tool, 
wk week

◂

Fig. 3  Placebo-adjusted responder rate for SALT ≤ 20 at week 24 and week 48 for various QD doses. Error bars represent 95% prediction inter-
vals. QD once a day, SALT Severity of Alopecia Tool
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Ritlecitinib irreversibly inhibits JAK3/TEC family kinases 
[3], and the improvement in SALT score is the gradual out-
come of their modulation on the downstream signaling path-
ways. Therefore, the latent variable can be considered as a 
summation of all of ritlecitinib’s downstream effects, which 
eventually affect hair follicles to exhibit scalp hair growth.

The Cavg during the time interval between previous 
SALT score and the current SALT score was used as the 
PK exposure metric driving efficacy in the current analysis. 
The individual post-hoc concentration estimates could not be 
used due to the impractical long run time (> 150 h), and the 
summary measure of PK exposure was considered instead 
to complete the analysis in time. The Cavg has been widely 
used as a predictive PK exposure metric of PD response, 
unless the PD effect is acute (e.g., maximum concentration 
[Cmax] is the key driver for drug-induced QT prolongation) 
or sustained inhibition of the target determines the PD effect 
(minimum concentration is the key driver of efficacy for 
antibiotic drugs) [18]. Given that ritlecitinib irreversibly 
inhibits JAK3/TEC family kinases [3] and the improvement 
in SALT score is the gradual outcome of their modulation 
on the downstream signaling pathways, it is reasonable to 
assume that the efficacy is not sensitive to the short-term 
fluctuation in exposure such as Cmax and is rather influenced 
by average exposure over a period of time (i.e., Cavg) [19]. 
The selected PK exposure metric, Cavg during the time 
interval of the adjacent two SALT scores, has an advantage 
over steady-state Cavg calculated solely based on dose and 
clearance, which is often considered as the first choice of 
exposure metric in ER analyses. This metric can account for 
PK exposure fluctuation due to, e.g., treatment interruptions, 
and therefore can be considered as an acceptable surrogate 
for concentration when technical challenge is expected with 
using concentration for ER analyses.

4.2  Utilization of CBO Analysis for Drug 
Development Decision Making

Understanding of the ER relationship based on CBO analysis 
justified the single pivotal trial strategy. The CBO analysis 
results showed the  EC50 estimate was 53.6 ng/mL, similar 
to the Cavg of 50 mg QD, suggesting that the tested dose 
range is in the ascending part of the entire dose-response 
relationship. By establishing  EC50 estimates based on a 

totality of information from all the patient studies, the 
analysis demonstrated ritlecitinib exposure-dependent 
efficacy increase, which provides a causal confirmation 
of treatment effect of ritlecitinib in patients with AA. The 
causal evidence of effectiveness supports utilization of 
a single pivotal trial, in addition to empiric confirmation 
of treatment effect at a stringent α level of 0.00125 
in study B7981015 [20, 21].

The CBO analysis guided dose selection by 
contextualizing study findings. The loading dose of 200 mg 
was evaluated in study B7981015 based on the hypothesis 
that maximal inhibition of the immunomodulatory pathways 
at initiation of treatment can accelerate clinical response, 
which can be maintained by subsequent lower maintenance 
doses. The loading dose is usually considered when 
the PK half-life of a drug is long and there is a need to 
accelerate the time to reach the target drug concentration. 
In inflammatory diseases, a loading dose was considered to 
address high inflammatory load in the active initial phase 
even though translation of high exposure into better clinical 
outcome has not been clearly established [22]. The CBO 
model-based evaluation based on study data indicates that 
the loading dose effect was on accelerating the onset of 
efficacy, with no long-term benefit, due to a combination 
of long PD half-life and ascending region of dose-response 
for the tested dose range. Both loading and non-loading 
dose regimens eventually reached their maintenance 
dose–level efficacy, which is in line with pharmacological 
first principles of a concentration-driven pharmacological 
response. Given that AA is not a life-threatening disease 
and need for both loading and maintenance doses creates 
complexity in prescribing, dispensing, and administration, 
contextualization of a loading dose using a CBO model 
aided selection of a non-loading dose regimen, 50 mg QD, 
as the proposed registrational dose.

The disease severity was the only important covariate 
identified in the current analysis, with no other covari-
ates that could explain the variability in the efficacy. The 
DURC has been hypothesized to influence the treatment 
response, where patients whose current AA episode has 
lasted > 10 years are less likely to respond to treatment 
[23]. However, no obvious trend was observed in the 
DURC and the efficacy parameters. The study inclusion 
criteria for B7981015 and B7981032 restricted the dura-
tion for the current episode of hair loss to ≤ 10 years, 
which may have contributed to the above observation. 
Overall, ritlecitinib efficacy was lower in patients with 
AT/AU than in patients without AT/AU, consistent with 
what was reported in multiple other studies [24, 25]. The 
model explained this efficacy difference with large base-
line difference between the non-AT/AU and AT/AU groups 
(1.92 vs 11.6) in the transformed scale, which cannot be 
captured in the SALT scale (87.4% vs 100%). The drug 

Fig. 4  Evaluation of the loading dose effect on the clinical onset of 
efficacy when PD half-life is long. Top figures represent the PK pro-
file of loading vs non-loading dosing regimens as geometric mean 
Caverage, and middle figures represent the efficacy profile of loading 
vs non-loading regimens as median placebo-adjusted responder rate 
with 95% confidence intervals. Bottom figures represent the efficacy 
profile of loading vs non-loading regimens for the initial 24 weeks. 
Caverage average drug concentration, PD pharmacodynamic, PK phar-
macokinetics, POP population, wk week

◂
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effect is additive to the baseline based on the transformed 
scale in the model, and therefore, the same PK exposure 
is expected to result in different efficacy between the non-
AT/AU and AT/AU groups according to their baseline 
values. The maximum possible score on the SALT scale 
is limited to 100. However, there may be a pathophysi-
ological mechanism in patients with AT/AU that is not 
adequately reflected in the SALT scale, which could drive 
the lower efficacy in the AT/AU group.

The CBO model-based simulation further informed the 
impact of treatment interruption on the loss of efficacy in 
the absence of a dedicated treatment withdrawal study. The 
results indicated that temporary treatment interruption for 
≤ 6 weeks is not expected to result in a loss of SALT≤ 20 
response in the majority of patients. However, treatment 
interruptions of a longer period may lead to significant 
loss of regrown scalp hair, as represented by almost 70% of 
SALT ≤ 20 responders losing SALT ≤ 20 response by 48 
weeks after treatment withdrawal. Given challenges in a for-
mal randomized treatment withdrawal study due to patients’ 
psychological burden with new hair loss, the model-based 
simulation was considered as an alternative approach to pro-
vide a quantitative assessment of the impact of treatment 
interruption on treatment outcome.

5  Conclusion

The longitudinal ER relationship of ritlecitinib was 
successfully characterized using a CBO modeling approach. 
The developed CBO model was utilized to contextualize 
phase 3 study findings, support the single pivotal trial 
strategy, and guide dose selection in the ritlecitinib program. 
The concept of CBO modeling based on raw score and 
subsequent simulations can be applied to any indication 
where efficacy is measured on a bounded scale to facilitate 
decision making in the accelerated drug development 
paradigm.
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NCT03732807, and NCT04006457.
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Fig. 5  Randomly selected individual model fit to support treatment 
interruption simulation. A Individual model fit for study B7931005 
where both drug onset and offset information is available. B Example 
of predicted individual SALT score profiles after treatment interrup-
tion. The black circles are observations, and the green lines are model 
predictions. The red lines represent the week 96 time point when 
treatment interruption starts. QD once a day, SALT Severity of Alo-
pecia Tool, wk week

◂

Table 3  Predicted proportion of responders losing SALT ≤ 20 
response for various dose interruption durations

SALT Severity of Alopecia Tool

Treatment interruption duration  
(≤ weeks)

Proportion of responders 
losing SALT ≤ 20 response 
(%)

4 3.6
6 8.5
8 15
10 20
12 25
14 30
16 33
24 44
36 59
48 70
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