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Abstract
Several advanced alloy systems are susceptible to weld solidification cracking. One example is nickel-based superalloys,
which are commonly used in critical applications such as aerospace engines and nuclear power plants. Weld solidification
cracking is often expensive to repair, and if not repaired, can lead to catastrophic failure. This study, presented in three papers,
presents an approach for simulating weld solidification cracking applicable to large-scale components. The results from
finite element simulation of welding are post-processed and combined with models of metallurgy, as well as the behavior
of the liquid film between the grain boundaries, in order to estimate the risk of crack initiation. The first paper in this study
describes the crack criterion for crack initiation in a grain boundary liquid film. The second paper describes the model for
computing the pressure and the thickness of the grain boundary liquid film, which are required to evaluate the crack criterion
in paper 1. The third and final paper describes the application of the model to Varestraint tests of Alloy 718. The derived
model can fairly well predict crack locations, crack orientations, and crack widths for the Varestraint tests. The importance
of liquid permeability and strain localization for the predicted crack susceptibility in Varestraint tests is shown.

Keywords Solidification cracking · Hot cracking · Varestraint testing · Computational welding mechanics · Alloy 718

1 Introduction

In the first paper of this study, a weld solidification
crack (WSC) criterion was developed [1]. To evaluate the
criterion in a given grain boundary liquid film (GBLF),
the liquid pressure and thickness of the film must be
known. The current paper describes a model for estimating
these quantities, which is inspired by the RDG model
proposed by Rappaz et al. [2]. The RDG model estimates
the interdendritic liquid pressure drop to cavitation in
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a columnar dendritic microstructure. Suyitno et al. [3]
compared eight hot cracking criteria in the simulation of
DC casting of aluminum alloys. They found that the RDG
model best reproduced the experimental trends. However,
this model is limited by some shortcomings. One of
them is that localization of strains at grain boundaries
is not considered [4]. This shortcoming was addressed
by Coniglio et al. [5]. Instead of assuming that strain is
localized evenly between dendrites as in the RDG model,
they assumed it to be localized evenly between grains.

The GBLF pressure model presented in the current paper
is inspired by the RDG model and its improvements by
Coniglio. In the proposed model, the pressure of the liquid is
computed by a combination of Poiseuille parallel-plate flow
and Darcy porous flow. Poiseuille flow is used in regions
with less than 0.1 fractions of liquid, while Darcy flow
is used in regions with more than 0.1 fractions of liquid.
The permeability developed by Heinrich et al. [6] was used
for the Darcy flow computations. It is considered more
accurate than the Carman-Kozeny permeability [6], which
is commonly used in the RDG model.

In the proposed model, a temperature-dependent length
scale is used to account for strain localization in GBLFs.

http://crossmark.crossref.org/dialog/?doi=10.1007/s40194-019-00761-w&domain=pdf
https://doi.org/10.1007/s40194-019-00761-w
mailto: joar.draxler@ltu.se
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Instead of assuming that strain is always evenly partitioned
between grains, as suggested by Coniglio, the degree of
partitioning is assumed to vary during the solidification.

The model was evaluated on Varestraint tests of alloy
718, and the evolutions of GBLF permeability, pressure, and
thickness were studied.

2Model development

The development of the model used for computing the
pressure and thickness of a given GBLF is presented
below. First, the method for computing GBLF orientation is
presented, and then, the solidification model for the liquid in
the GBLF is introduced. After that, a model for computing
GBLF thickness from the macroscopic mechanical strain
field of an FE model is presented. Finally, it is shown how
a combination of Darcy’s law and Poiseuille parallel-plate
flow can be used to compute the pressure within a GBLF.

2.1 GBLF orientation

To compute the pressure in a given GBLF, the orientation
of the GBLF must be known. The GBLF orientation in the
fusion zone, FZ, of a weld depends on the solidification
process. Normally, when the base and weld metal have
the same crystal structure, the molten metal in the FZ
starts to solidify from the fusion boundary with a cellular
solidification mode [7]. At a short distance from the
fusion boundary, if the welding speed is not too high, the
solidification mode shifts to a columnar dendritic mode due
to the increase in constitutional supercooling, which results
in columnar grains. If the welding speed is high enough, the
constitutional supercooling can continue to increase and the
solidification mode can again change and go from columnar
dendritic to equiaxed dendritic. However, in this study, we
are interested in TIG welding at low welding speeds. The
degree of constitutional supercooling is therefore assumed
to never be large enough so that a transition from columnar
to equiaxed dendritic solidification can occur.

Alloys with fcc or bcc structure grow in the 〈100〉
directions during solidification. They strive to grow in the
orientation of the 〈100〉 direction that is closest aligned
with the temperature gradient of the liquidus isotherm [7].
Because the temperature gradient at the grain tip changes
direction when the grains grow, grains may shift their
growth orientation during the solidification in order to grow
in the most favorable 〈100〉 direction. Columnar grains
can adjust their growth orientation either by bowing or by
renucleation [7]. If we assume that the change in growth
direction only occurs by bowing, and that there is no
undercooling to solidification, the grain growth will always
be normal to the liquidus isotherm, which results in curved

columnar grains, extending all the way from the fusion
boundary to the weld centerline. The rate of growth is
then the same as the velocity of the liquidus isotherm
in the direction of the temperature gradient. The above
assumptions enable us to compute the grain axis solely from
the temperature field of the weld.

With this grain axis, we associate a corresponding GBLF
by assuming that the film extends along a curve that
coincides with the grain axis, offset by the radius of the
grain. We call this curve the GBLF axis. Furthermore,
we define the normal direction of a GBLF to be in
the same direction as the maximum macroscopic strain
rate perpendicular to the GBLF axis. The computation
of the normal direction from the macroscopic strain field
is discussed in Section 2.4. The GBLF axis of a given
GBLF is computed from the weld temperature field as
follows. Consider a tip of a grain whose growth direction
is normal to the liquidus isotherm with zero undercooling
to solidification. Let GL be the temperature gradient and
RL be the solidification velocity of the grain tip, with
magnitudes GL and RL, respectively. At the grain tip, the
material derivative of the temperature field, T , is zero

DT

Dt
= ∂T

∂t
+ GL·RL = 0 (1)

Given that RL is in the same direction as GL (because the
growth direction is normal to the liquidus isotherm), RL can
be solved for from Eq. 1, and RL can then be expressed as

RL = − 1

G2
L

∂T

∂t
GL (2)

Let r(t) be the location of the grain tip. The vector r will
then trace out the grain axis, it can be determined by

dr
dt

= RL (3)

where RL is given by Eq. 2. Now, consider a GBLF
associated with a grain axis r, which is obtained by
integrating (3). To integrate r in Eq. 3, we provide an initial
condition r(t0) = r0, where r0 is a given point on the GBLF
axis. t0 is the time when the liquidus isotherm passes the
point r0. Equation 3 is integrated from the temperature field
obtained from a computational welding mechanics model,
which is decribed in part III of this study [8]. This is done
using a fourth-order Runge-Kutta method. By integrating
forward in time from t0, the part of the GBLF axis that aligns
with the weld centerline can be obtained. The integration
continues until the weld heat input is terminated. Further,
by integrating backward in time from t0, the second part



Weld World (2019) 63:1503–1519 1505

Fig. 1 Schematic showing the
procedure of integrating the axis
of a GBLF that crosses the point
r0

of the GBLF axis that intersect with the fusion boundary
can be constructed. Here, the integration is stopped when
the calculated value of r(t) at a time increment is more than
5 ◦C below the liquidus temperature, which ensures that the
GBLF axis ends at the fusion boundary. Figure 1 illustrates
the integration process.

2.2 Undercooling

In the above growth model, the undercooling at the dendritic
tip was neglected. However, in rapid solidification processes
such as welding, the undercooling can be substantial. In
order to justify our assumption of neglected undercooling,
we have used a model by Foster et al. [9] to compute the
undercooling as a function of the solidification velocity for
alloy 718 as follows.

The total undercooling at a dendritic tip can be expressed
as the sum of four contributions [10]:

�T = �TC + �TR + �TT + �TK (4)

where �TC , �TR , �TT , and �TK are the constitutional,
curvature, thermal, and kinetic undercoolings, respectively.
In welding, �TC and �TR are normally the dominating
contributions to the total undercooling. Kurz et al. [11]
have developed the KGT model to compute �TC for binary
alloys at both low and high solidification velocities. Rappaz
et al. [12] extend the KGT model to multicomponent alloys
and used it to study the dendrite growth in electron beam
welding of a Fe-Ni-Cr alloy. Foster et al. [9] used the
extended KGT model to compute the undercooling in laser
welding of alloy 718. This model with data from Foster et
al. [9] was used to calculate the undercooling for alloy 718
for solidification velocities in the range 10−2 ≤ RL ≤ 103

mms−1. The model depends on the temperature gradient,
which was assumed to vary linearly between 8 × 104 and
108 ◦Cm−1, when RL goes from 1 to 1000 mms−1. When
RL < 1 mms−1, GL was assume to have the constant value
8×104 ◦Cm−1. The value 8×104 ◦Cm−1 was obtained from
a computational welding mechanics model of a Varestraint
test of alloy 718 with a welding speed of 1 mms−1, see

Fig. 2 Calculated undercooling
as a function of solidification
velocity for alloy 718
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part III of this work [8]. Figure 2 shows the calculated total
undercooling and its different contributions. As can be seen
from the Figure, the largest contributions come from �TC

and �TR , while the contributions from �TT and �TK are
negligible. More details on the models that were used to
construct this Figure can be found in the Appendix.

In this work, we are interested in TIG welding with a
welding speed of 1 mms−1 in alloy 718. At that low welding
speed, �T is equal to 12.5 ◦C, as can be seen from Fig. 2.
That is less than 1% of Tl for alloy 718, and it will only
shift the liquidus isotherm approximately 0.15 mm when
GL = 8 × 104 ◦Cm−1. We therefore neglect the effect of
the undercooling for this low welding speed.

2.3 GBLF solidificationmodel

The solidification of the GBLF is an important part
of computing the GBLF pressure. It determines the
solidification temperature interval, which in turn determines
the length of the GBLFs. It also determines the rate
of solidification, and therefore, the rate of solidification
shrinkage.

The solidification of multicomponent alloys is complex
to model. To simplify the solidification of the GBLF,
we assumed that it is governed by a multicomponent
Scheil-Gulliver model [13]. A significant advantage of
the Scheil-Gulliver model is its simplicity. The fraction
of solid vs. temperature curve can easily be determined
by a thermodynamic software such as Thermo-Calc [13].
However, the Scheil-Gulliver model has the following
limitations: back diffusion from the liquid phase to the solid
phase is neglected, diffusion in the liquid phase is assumed
to be infinity fast, and the solidification front is assumed to
be planar.

For the first limitation, the cooling rates in welding are
often very high, which gives less time for back diffusion to
occur. Thus, a considerable amount of back diffusion may
only occur for high-diffusion elements such as carbon. For
the second limitation, there are always convective currents
in the weld pool that result in low-concentration gradients.
Thus, at temperatures above the liquidus temperature, the
assumption of complete diffusion in the liquid phase is
valid. However, at lower temperatures, the permeability is
low, and therefore, the convective currents in the liquid
may be small. Thus, in this case, the assumption is

less valid. The third limitation of a planar solidification
front is not valid when we have a dendritic solidification
mode, which imposes a curved solidification front. The
curved solidification front leads to an undercooling to
solidification. However, as was seen in Section 2.2, this
undercooling is small for the low welding speeds that we are
interested in in this work.

To estimate GBLF solidification using the Scheil-
Gulliver model, the dendritic solid-liquid interfaces of the
GBLF are approximated as planar, as shown in Fig. 3.

Let 2h0 be the undeformed thickness of the flat GBLF.
The undeformed thickness is defined as the GBLF thickness
that results when no thermal or mechanical strains act on
the GBLF. By assuming that the two opposing dendritic
interfaces of the undeformed GBLF are separated by the
primary dendrite arm spacing λ1, h0 can be written as (see
Fig. 3)

h0 = λ1

2
(1 − fs) (5)

where fs is the fraction of solid given by the Scheil-
Gulliver model. This corresponds to a grain boundary with
a low misorientation angle, which was chosen due to its
simplicity. A grain boundary with a large misorientation
angle is more messy and a larger value than λ1 should be
used in Eq. 5. The deformed GBLF thickness is derived later
in Section 2.4.

The primary dendrite arm spacing is related to the
solidification process, and in this study, it is estimated from
the following expression [4]

λ1 = C1

(GL)1/2 (RL)1/4
(6)

where C1 is a parameter. The RL term can be replaced with
the cooling rate by substituting Eq. 2 into Eq. 6, which gives

λ1 = C1 (GL)1/4

(− ∂T
∂t

)1/4 (7)

All terms in Eq. 7 are evaluated at the intersection between
the GBLF axis and the liquidus isotherm. The C1 parameter
is determined by inverse modeling such that the computed
λ1 value agrees with the measured λ1 value from an
experiment at a given location [8].

Fig. 3 a Schematic of a GBLF.
b GBLF approximated with
planar interfaces
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The solidification speed v∗ of the solid-liquid interface of
the idealized GBLF shown in Fig. 3b can now be computed
as the negative time derivative of h0 in Eq. 5, which gives

v∗ = λ1

2

dfs

dT

dT

dt
(8)

In this study, we assume that all liquid that remains
when the temperature drops to solidus (which is given by
the Scheil-Gulliver model) will instantly solidify. Thus, if
the liquid can flow to the Ts isotherm due to, e.g., tensile
deformation of the GBLF, it will instantly solidify when it
reaches this isotherm.

All temperature-dependent variables above are evaluated
from the macroscopic temperature field obtained from an
FE model of the welding process; see part III of this
study [8] for more details.

2.4 GBLF thickness

In this section, we show how the deformed GBLF thickness,
2h, can be estimated from the macroscopic mechanical
strain field of a finite element computational welding
mechanics model.

2.4.1 GBLF thickness derivation

During solidification of the weld metal, deformation
can strongly localize in the weak GBLFs. To compute
the deformed GBLF thickness, we consider an arbitrary
location on the axis of a given GBLF. At this location, we
assume that all macroscopic mechanical strains, normal to
the GBLF axis and within a distance 2h + l0, will localize
in the GBLF during the infinitesimal time dt , as shown
in Fig. 4. Here, l0 is a length scale that represents the
amount of surrounding solid phase of the GBLF that can
transmit normal tensile loads. The value of l0 depends on
the ability of the solid phase to transmit loads, and therefore,
changes during the solidification of the alloy. This is further
discussed in Section 2.4.3. In the above assumption, we
have assumed that the solid phase is much stiffer than the
liquid phase such that all mechanical strains are localized
in the GBLF. We can now estimate h as follows. Let εm

be the macroscopic mechanical strain tensor obtained from
a computational welding mechanics model. With the above
reasoning, the velocity of the solid-liquid interface of the
GBLF can be written as (see Fig. 4)

ḣ =
(

h + l0

2

)
ε̇m⊥,max − v∗ (9)

where v∗ is given by Eq. 8. ε̇m⊥,max in Eq. 9 is the largest
macroscopic mechanical strain rate in a plane normal to
the GBLF axis of the GBLF, evaluated on the GBLF axis,

which is further discussed in Section 2.4.2. Equation 9 can
be integrated with a Euler backward method, which gives

i+1h =

⎧
⎪⎨

⎪⎩

2 ih+�t
(

i+1l0
i+1ε̇m⊥,max−2 i+1v∗

)

2
(
1−�t i+1ε̇m⊥,max

) , i+1h > hmin

hmin,
i+1h ≤ hmin

(10)

where i is the index of the time increment and �t is the time
step. hmin is a cut-off value which ensures that division by
zero is avoided when we later solve for the liquid pressure.
A value of 0.01 μm was used for hmin in this study.

2.4.2 Maximum normal strain rate to the GBLF axis

ε̇m⊥,max in Eq. 9 is computed as follows. We assume that the
normal to the GBLF at a given location is always oriented
parallel to the direction of ε̇m⊥,max . In this way, the normal
deformation of the GBLF is maximized, which is assumed
to be most detrimental. The mechanical strain rate tensor is
determined with the central difference

i ε̇m =
i+1εm − i−1εm

2�t
(11)

Let xyz be the global Cartesian coordinate system of the
computational welding mechanics model that is used to
determined εm. Further, let x′y′z′ be a local Cartesian
coordinate system whose z′ axis is parallel to the tangent of
the GBLF axis and with origin on the GBLF axis where we
want to evaluate ε̇′m. The components of the ε̇m tensor in
the x ′y′z′ system are obtained from
[
ε̇m

]′ = [Q]
[
ε̇m

]
[Q]T (12)

where Q is the transformation tensor from the xyz system
to the x′y′z′ system. Because z′ is tangent to the GBLF
axis, ε̇m⊥,max is given as the largest eigenvalue of the matrix
[
ε̇m

]′
2x2, where

[
ε̇m

]′
2x2 is the 2 × 2 submatrix of

[
ε̇m

]′ that
contains the 11, 12, 21, and 22 components of the matrix[
ε̇m

]′.

2.4.3 Strain partition length

The strain partition length l0 in Section 2.4.1 depends on
several features of the solidifying weld metal. For example,
it is affected by the degree of coalescence and interlocking
of dendrites and grains that surrounds the GBLF, and also
by the GBLF morphology. In this study, we estimate l0
from the temperature field and primary dendrite arm spacing
as follows. At the liquidus temperature, the GBLF in the
FZ just starts to form. Therefore, no strain localization can
occur, which gives l0 = 0. At the coherent temperature,
the dendrites of individual grains start to coalescence such
that the solidifying structure can transmit small tensile
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Fig. 4 Strain partitioning in a
GBLF

loads. In this case, l0 is assumed to be of the same size
as the primary dendrite arm spacing. Below the coherent
temperature, strains are assumed to localize between the
grains and their clusters. The grain cluster formation
depends on variations in GBLF thicknesses. Because thin
GBLFs can withstand larger tensile loads than thick GBLFs,
the deformations will localize in the thicker GBLFs. If a
GBLF is very thin, it can coalescence and form a solid
grain boundary, GB. The temperature when this occurs
depends on the GB force, which in turn depends on the GB
misorientation angle. If the misorientation angle is small,
the GB force is attractive and coalescence will occur as
soon as the opposite solid-liquid interfaces come in contact.
However, if the misorientation angle is large, the GB force
is repulsive and undercooling is required for coalescence
to occur. Rappaz et al. [14] have showed that the required
undercooling for GB coalescence of a pure metal is given by

�Tb = γgb − 2γsl

�Sf δ
(13)

where γgb is the GB energy, γsl is the solid-liquid interfacial
energy, �Sf is the volumetric entropy of fusion, and δ is the
thickness of the diffuse solid-liquid interface. γgb depends
on the misorientation angle, and for small misorientation
angles, γgb is smaller than 2γsl , which result in �Tb < 0
in Eq. 13. Therefore, no undercooling is required for GB
coalescence to occur. However, if the misorientation angle
is large, γgb is larger than 2γsl , which results in �Tb > 0 in
Eq. 13, and undercooling is required for GB coalescence to
occur.

The variations in GBLF thicknesses, and that GB
coalescence depends on the GB misorientation angle, will
lead to formation of grain clusters in the solidifying weld
metal, i.e., clusters of grains separated by thicker liquid
films. When these clusters start to form depends on the
temperature. In this study, we assume that all mechanical
macroscopic strain localizes between such grain clusters
when the temperature is close to the solidus temperature.
l0 at Ts is therefore assumed to be of the same size as the

size of a grain cluster. The grain cluster size is not known.
In this study we assume it to be proportional to the primary
dendrite arm spacing, given by

l0(Ts) = C2λ1 (14)

where C2 is a calibration constant that is determined by
inverse modeling of a experimental Varestraint test with
threshold agumeted strain for crack initiation, which is
described in part III of this study [8].

We have now estimated the values of l0 at the
temperatures Tl , Tc, and Ts . At temperatures between these
values, it is assumed to vary linearly. Figure 5 shows l0 as
function of the temperature for alloy 718 when λ1 = 20μm.
At Ts , l0 = 0.8 mm in the Figure, which was obtained by
inverse modeling to a Varestraint test with 0.4% augmented
strain, see part III.

2.4.4 Initial condition

The initial value of h must be known in order to integrate
(9). We assume that h has the same value as the undeformed
thickness h0 when the GBLF is first formed. If tstart is
the time of a given point on the GBLF axis when the
temperature drops below the liquidus temperature, the above
initial condition can be written as

h(tstart ) = h0(tstart ) (15)

2.5 Liquid pressuremodel

The GBLF pressure is determined by assuming that the
liquid flow in a GBLF only occurs in the direction of the
grain growth, i.e., parallel to the GBLF axis, and that it is
governed by Stokes flow at lower fractions of liquid and by
Darcy’s law at higher fractions of liquid. How the GBLF
pressure is computed from those assumptions is shown
below.
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Fig. 5 l0 as a function of
temperature for alloy 718 with
λ1 = 20 μ m

2.5.1 Liquid flow through a volume element of a GBLF

Let v be the liquid velocity field in a given GBLF and
assume that the flow is incompressible:

∇·v = 0 (16)

Consider a cross-section volume element of the GBLF, as
shown in Fig. 6. Let x ′y′z′ be a local Cartesian coordinate
system such that the x′-coordinate is tangent to the GBLF
axis and the y′-coordinate is normal to the GBLF axis, see
Fig. 6. By integrating (16) over the volume element in Fig. 6,
and using the divergence theorem, gives
∫

V

∇·vdV =
∫

∂V

n·vdS = 0 (17)

where V and ∂V are the volume and boundary of the volume
element, respectively. n is the outward unit normal to the
boundary of the volume element. The second integral in
Eq. 17 can be split into two parts: one over the solid-liquid
interfaces, ∂Vsl , and one over the cross-section parts, ∂Vl ,
of the liquid film:
∫

∂V

n·vdS =
∫

∂Vsl

n·vdS +
∫

∂Vl

n·vdS (18)

As was previously stated, we assume that the flow is
dominated by that in the longitudinal direction of the
GBLF, i.e., in the columnar direction of the grains, and is
independent of the transverse z′ direction. This assumption
gives the velocity field

v = v(x′, y′)ex′ (19)

By inserting (19) into the integral over ∂Vsl in Eq. 18, it can
be rewritten as

∫

∂Vsl

n·vdS = (
v∗
l + (

v+
sl + v∗)) �x′�z′ + (

v∗
l − (

v−
sl − v∗)) �x′�z′

(20)

where v+
sl and v−

sl are the velocities of the two opposing
solid-liquid interfaces, as shown in Fig. 6. v∗

l is the liquid
flow caused by solidification shrinkage, which is given by
[4]

v∗
l = βv∗ (21)

where β is the solidification shrinkage factor and v∗ is the
solidification velocity, which is given by Eq. 8. Note that
we have neglected the liquid flow through the solid-liquid
interfaces in Eq. 20. This assumption is discussed in the end
of Section 3.3.

By inserting (19) into the integral over ∂Vl in Eq. 18, it
can be expressed as

∫

∂Vl

n·vdS = (
2h+v+ − 2h−v−)

�z′ (22)

where h+ and h− are the half GBLF thicknesses, and v+
and v− are the average normal liquid velocities at the cross
sections in the GBLF axis direction, as shown in Fig. 6.

The term v+
sl − v−

sl in Eq. 20 is the relative normal
velocity term of the two opposing solid-liquid interfaces of
the GBLF, and can therefore be determined from the GBLF
thickness rate as:

v+
sl − v−

sl = 2
dh

dt
(23)

Combining (18) and (20)–(23) and taking the limit �x′ →
0, we obtain

d (hv)

dx′ = − (1 + β) v∗ − dh

dt
(24)

Equation 24 correlates v, dh/dt , and v∗. v is determined for
two different cases: at low and high fractions of liquid. This
is done as follows.
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Fig. 6 Cross-section volume
element of a GBLF

2.5.2 Liquid flow at low fractions of liquid

At low fractions of liquid, the secondary dendrite arms of
individual dendrites are almost fully coalescenced. Thus,
liquid flow around secondary arms is difficult and the flow
is therefore assumed to be restricted to the grain boundaries.
Furthermore, at low fractions of liquid, large grain cluster
may have formed such that the flow is further restricted
to the GBLFs between these grain clusters. In this study,
we assume that the flow at low fractions of liquid occurs
between large grain cluster as wide liquid films. Moreover,
the liquid is assume to be Newtonian and the flow is
assumed to occur at low Reynolds numbers such that the
inertial forces are small compared with the viscous forces.
The flow can then be approximated with Stokes equations
[15]:

μ∇2v − ∇p = 0 (25)

where p is the liquid pressure and μ is the dynamic
viscosity. Substituting the velocity field in Eq. 19 into (25)
gives

μ

(
∂2v

∂x′2 + ∂2v

∂y′2

)
− ∂p

∂x′ = 0 (26)

The first term on the left-hand side is much smaller than the
other terms, which is shown by the following scaling. Let us
introduce the normalized variables

x̃′ = x′

Lc

, ỹ′ = y′

2h
, ṽ = v

vc

, p̃ = p

pc

(27)

where Lc is the characteristic length of a GBLF, vc is
a characteristic liquid velocity, and pc is a characteristic
liquid pressure. By inserting these variables into Eq. 26, it
can be written as

μvc

L2
c

∂2ṽ

∂x̃′2 + μvc

4h2
∂2ṽ

∂ỹ′2 − pc

Lc

∂p̃

∂x̃′ = 0 (28)

Characteristic values for this study are (i.e., for TIG weld-
ing of a 3-mm-thick plate of alloy 718 with a welding speed
of 1 mm/s, see part III):

Lc ∼ 10−3 m, vc ∼ 10−3 m/s, μ ∼ 10−2 m2/s,

h ∼ 10−6 m, pc ∼ −105 Pa (29)

Inserting these values into the coefficients of Eq. 28 then
gives
pc

Lc

∼ −108,
μvc

L2
c

∼ 101,
μvc

4h2
∼ 107 (30)

The coefficient in front of the ∂2ṽ/∂x̃ ′2 term is several
orders of magnitude smaller than the other two. Thus, the
∂2v/∂x′2 term in Eq. 26 can be neglected, which then
reduces to

μ
∂2v

∂y′2 − ∂p

∂x′ = 0 (31)

By integrating (31) twice across the liquid film, and
applying the non-slip boundary conditions v(y′ = −h) =
v(y′ = h) = 0, gives the solution for a Poiseuille flow
between parallel plates:

v = 1

2μ

∂p

∂x′
(
y′2 − h2

)
(32)

The relative parallel velocity component between the
two opposing solid-liquid interfaces has been neglected.
Poiseuille flow between parallel plates has been used by
Sistaninia et al. [16] in their granular model to compute the
pressure in GBLFs between globular grains.

The mean velocity across the GBLF can be obtained from
Eq. 32 as

v = − h2

3μ

dp

dx′ (33)

Substituting (33) into Eq. 24 finally gives

d

dx′

(
h3

3μ

dp

dx′

)
= dh

dt
+ (1 + β) v∗, fl ≤ 0.1 (34)

This is Reynolds equation (without relative parallel motion
of the two opposing interfaces of the GBLF).
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2.5.3 Liquid flow at high fractions of liquid

At high fractions of liquid, flow can occur around the
secondary dendrite arms. Therefore, the Poiseuille parallel
plate flow, which was previously used for low fractions of
liquid, is not good in this case. Instead, we assume that
the flow now more resembles a porous flow governed by
Darcy’s law [4]. The average liquid velocity v in Eq. 24 can
then be approximated as

v = − K‖
f ∗

l μ

dp

dx′ (35)

where K‖ is the longitudinal permeability of the GBLF in
the axial direction of the GBLF, and f ∗

l is an effective
fractions of liquid for the GBLF, see Eq. (39). Heinrich
and Poirier [6] have estimated the columnar interdendritic
longitudinal permeability as

K‖ =

⎧
⎪⎪⎨

⎪⎪⎩

3.75 × 10−4f 2
l d2

1 , fl ≤ 0.65

2.05 × 10−7
[

fl

1−fl

]10.739
d2
1 , 0.65 < fl ≤ 0.75

0.074
[
log

(
1

1−fl

)
+ 0.01 − fl − 0.5f 2

l

]
d2
1 , 0.75 < fl ≤ 1.0

(36)

and the transverse columnar dendritic permeability as

K⊥ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1.09 × 10−3f 3.32
l d2

1 , fl ≤ 0.65

4.04 × 10−6
[

fl

1−fl

]6.7336
d2
1 , 0.65 < fl ≤ 0.75

(
−6.49−2 + 5.43−2

[
fl

1−fl

]0.25)
d2
1 , 0.75 < fl ≤ 1.0

(37)

where d1 is the primary dendrite arm distance. The
above permeabilities were obtained with regression analysis
of empirical data when fl ≤ 0.65 and by numerical
simulations when fl > 0.65 [6].

To estimate the GBLF permeability, we assume it to be
equivalent to the above permeability in Eq. 36, but with
modified values of d1 and fl in order to account for the
increase in permeability that occurs when deformation is
localized in the GBLF. The modified d1 and fl are approxi-
mated as follows. Two dendrites on the opposite sides of the
solid-liquid interfaces of a GBLF, with an initial spacing of
λ1, will have the spacing

d∗
1 = λ1 + 2h − 2h0 (38)

when the GBLF thickness is 2h. Consider an arrangement
of columnar dendrites situated on a square grid with spacing
λ1. Now, consider the same arrangement with the same
dendrites, but with the grid spacing d∗

1 . The fraction of
liquid for this system can then be written as

f ∗
l = 1 − λ21 (1 − fl)

d∗2
1

(39)

where fl is the fraction of liquid of the system with the grid
spacing λ1. We now assume that the GBLF permeability is
the same as in Eq. 36, but with d1 and fl given by Eqs. 38
and 39, respectively, in order to account for the change in
permeability caused by deformation.

By inserting (35) into Eq. 24, the following equation
for the pressure in the GBLF at high fractions of liquid is
obtained

d

dx′

(
K‖h
μf ∗

l

dp

dx′

)
= dh

dt
+ (1 + β) v∗, fl > 0.1 (40)

where K‖ is given by Eq. 36 with d1 and fl given by Eqs. 38
and 39, respectively.

The cross permeability in Eq. 37 is not used in any flow
calculations in this study, it is just used to compute the
ratio between K⊥ and K‖ in order to discuss the effect
of neglecting the transverse flow through the solid-liquid
interface of the GBLF (see Section 3.3). To compute this
ratio, the permeability of the GBLF for fl ≤ 0.1 (when the
flow is governed by the Poiseuille flow) must be known.
This is obtained by setting the right-hand side of Eq. 35
equal to that of Eq. 33 and solving for K‖, which gives

K‖ = h2f ∗
l

3
, fl ≤ 0.1 (41)

2.5.4 Pressure integration

The GBLF pressure is now determined as follows. Let s

be a curved coordinate along the GBLF axis with origin at
the fusion boundary (Fig. 7). The pressure in the GBLF is
computed by integrating (34) and (40) along s. Since the
GBLF thickness is much smaller than the radius of curvature
of the GBLF axis, the influence of the curvature in the
integration is neglected. For a given time, the location of the
start of the integration, s = sTs , is at the intersection of the
GBLF axis with the Ts isotherm. The location of the end of
the integration, s = sTl

, is at the intersection of the GBLF
axis with the Tl isotherm, as shown in Fig. 7. Note that
s = sTs and s = sTl

move with time when the solidification
progresses.

The transition point between Poiseuille flow and Darcy
flow is set as the location where the fraction of liquid is fl =
0.1. As was previously stated, the Poiseuille flow model is
associated with the part of the GBLF whose interfaces are
bounded by grain clusters. Vernede [17] has developed a 2D
granular numerical model for flow simulation in the mushy
zone. He used that model to show, for an aluminum alloy
that solidifies with granular grains, that grain clusters start
to form at a rapid rate when the fraction of liquid is less
than approximately fl = 0.1. This value of fl was used as
the transition point between the Poiseuille and Darcy flows
in this study. We define s = strans as the location of this
transition point at a given time. It is determined from the
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Fig. 7 Schematic of the
integration path for the GBLF
pressure

intersection of the GBLF axis with the temperature isotherm
corresponding to fl = 0.1.

The GBLF pressure is now integrated as follows. First,
Reynolds equation (34) is integrated between sTs and strans

with the boundary condition for dp/ds at sTs , which is
given in the next section. Then, Eq. 40 is integrated twice
between strans and sTl

. In the first integration, the following
boundary condition at strans is used, which ensures that the
liquid flow (v) is continuous at the transition point:

dp(s = s+
trans)

ds
=

(
h2f ∗

l

3K‖
dp

ds

)∣∣∣∣∣
s=strans

(42)

where dp(s = strans)/ds can be obtained from the
first integration of the Reynolds equation. The boundary
condition in Eq. 42 is obtained by combining (33) and (35).
In the second integration of Eq. 40, the boundary condition
p(sTl

) is used, which is defined in the next section. The
value of p(strans) can now be computed from this second
integration and is used in the second integration of the
Reynold equation (34). The pressure in the GBLF can then
finally be written as

p(s) =
{

p (strans) − ∫ strans

s
FR

(
s′) ds′, s ≤ strans

p
(
sTl

) − ∫ sTl
s

FD

(
s′) ds′, s > strans

(43)

where

FR(s) = 3μ

h3

[∫ s

sTl

(
dh

dt
+ (1 + β) v∗

)
ds′ +

(
h3

3μ

dp

ds

)∣∣
∣∣∣
s=Ts

]

(44)

and

FD(s)= μf ∗
l

K‖h

[∫ s

strans

(
dh

dt
+ (1 + β) v∗

)
ds′ +

(
10K‖h

μ

dp

ds

)∣∣∣
∣
s=strans

]

(45)

The variables v∗ and h in Eqs. 44 and 45 are given
by Eqs. 8 and 10, respectively. The pressure in Eq. 43
is solved by numerical integration. The integrands are
evaluated from temperature and macroscopic strain data

from a computational welding mechanics model of the
welding process (see part III [8]). These data are evaluated
from the same Lagrangian sample points that were used to
trace out the GBLF axis, which was discussed previously in
Section 2.4.1.

2.5.5 Boundary conditions

The boundary conditions p(s = sTl
) and dp(s = sTs )/ds

are used to evaluate the pressure in Eq. 43. These are defined
as follows. At the location of intersection of the GBLF axis
with the Tl isotherm, the GBLF pressure is assumed to be
the same as the atmospheric pressure, hence

p(sTl
) = patm (46)

At sTs , i.e., at the intersection of the GBLF axis with the Ts

isotherm, dp(sTs )/ds can be expressed as

dp(sTs )

ds
=

(
3μβ

h2

dsTs

dt

)∣∣∣∣
s=Ts

(47)

where dsTs /dt is the solidification velocity at sTs in the
direction of the GBLF axis. Note that dp/ds is related to
the liquid flow in the GBLF according to Eq. 33. Thus, the
boundary condition in Eq. 47 corresponds to the pressure
drop at the end of the liquid film due to the flow caused by
solidification shrinkage of the remaining liquid at the end of
the GBLF.

3 Evaluation

The derived GBLF pressure model was evaluated on
Varestraint tests of alloy 718. The test specimens were
prepared from 3.2-mm-thick plates and autogenous TIG
welding with a welding speed of 1 mm/s was used in the
tests. The augmented strain was applied to a test specimen
by bending it over a die block when the weld length reached
40 mm. The stroke rate was 10 mm/s and welding continued
for 5 s after the start of the bending. The amount of
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Fig. 8 Evolution of GBLF thickness at the weld surface for a Vare-
straint test with 1.1% augmented strain. Only the left part of the
symmetric weld is shown. The time in the plots represents the elapsed

time since the start of the bending. The abscissa and ordinate represent
the distance from the weld start and weld centerline, respectively



1514 Weld World (2019) 63:1503–1519

Fig. 9 Evolution of GBLF pressure drop at the weld surface for a
Varestraint test with 1.1% augmented strain. Only the left part of the
symmetric weld is shown. The time in the plots represents the elapsed

time since the start of the bending. The abscissa and ordinate represent
the distance from the weld start and weld centerline, respectively
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Fig. 10 Evolution of longitudinal permeability at the weld surface for
a Varestraint test with 1.1% augmented strain. Only the left part of the
symmetric weld is shown. The time in the plots represents the elapsed

time since the start of the bending. The abscissa and ordinate represent
the distance from the weld start and weld centerline, respectively
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Fig. 11 Ratio between transverse and longitudinal permeability at 1 s
of bend time, evaluated at the weld surface for a Varestraint test with
1.1% augmented strain

augmented strain was controlled by the radius of the die
block. More details about the Varestraint test can be found
in part III of this work [8].

The evolution of the pressure drop, thickness, and
permeability of GBLFs in the Varestraint test with 1.1%
augmented strain, as predicted by the developed model in
this paper, is shown below. These quantities were evaluated
on GBLF axes that are located at the surfaces of the
weld. The x and y coordinates in the below plots represent
the distances from the weld start and weld centerline,
respectively. The welding direction is from the left to right.
The blue lines in the plots represent the computed GBLF
axes. They are separated approximately 1 mm at the fusion
boundary, such that they together cover the region with the
highest crack susceptibility. This region is located 31 to 35
mm from the weld start. The apex of the die block is located
40 mm from the weld start [8]. Only GBLFs whose axis
intersects the solidus isotherm inside the fusion zone were
considered. GBLFs that extend into the partially melted
zone will be considered in future work. The bend time in the
below plots represents the elapsed time from the initiation
of bending. The temperature field and macroscopic strain
field, which are required to evaluate the above quantities,
are obtained from the computational welding mechanics
model which is described in part III of this work
[8].

3.1 GBLF thickness

Figure 8 shows the evolution of GBLF thickness for a
Varestraint test with 1.1% augmented strain. Only the
left part of the symmetric weld is shown. The full
bending takes 3.6 s to complete. When the bending starts,
2h is approximately equal to 2hmin at s = sTs , as
can be seen from the Figure. However, with increasing
bending, deformations start to localize in the GBLFs.

The rate of deformation is highest for the GBLFs that
are directed perpendicular to the bending direction, i.e.,
directed perpendicular to the weld centerline. The rate
of deformation is also higher at the ends of the GBLFs
(s = sTs ) compared to the starts of the GBLFs (s = sTl

)
because the strain localization is largest at the GBLF end. A
maximum value of 2h = 20 μm is reached approximately
3 s after the bending started. This shows that the 1.1%
augmented strain that is applied in the Varestraint test is
strongly localized in GBLFs. The maximum values of 2h for
Varestraint tests with 0.4% and 0.8% augmented strains are
approximately 7 and 15 μm, respectively. For more details
on the variation of 2h with time for Varestraint tests with
different augmented strains, please refer to the appended
animations.

3.2 GBLF pressure drop

Figure 9 shows the evolution of the GBLF pressure drop
(�p = patm−p) for a Varestraint test with 1.1% augmented
strain. �p reaches a maximum approximately 0.30 s after
the bending started. Thereafter, it starts to decrease, even
though 2h continues to increase, as can be seen in Fig. 8.
This is because the deformation increases the permeability,
which is shown in Fig. 10. The increase in permeability
simplifies liquid feeding, which results in a decrease in the
pressure drop. Note that the pressure drop is almost zero at
the end of the bending (Fig. 9). �p in the 0.4% and 0.8%
tests evolves with the same trends as in the 1.1% test (see
the appended animations).

3.3 GBLF permeability

Figure 10 shows the evolution of the longitudinal permeabil-
ity (36 and 41) for a Varestraint test with 1.1% augmented
strain. As can be seen from the plots, K‖ increases several
orders at the GBLF ends when deformation increases the
GBLF thickness.

One major assumption in this work is that the liquid
flow in a GBLF is solely confined to the GBLF such
that no liquid can flow across the solid-liquid interfaces
of the GBLF. This is a rough approximation. However,
when fl goes to zero, the ratio between the transverse and
longitudinal permeability also goes to zero. This is shown in
Fig. 11 for a Varestraint test with 1.1% augmented strain, at
1 s of bend time. It can be seen in this figure and Fig. 9 that
the largest pressure drops occur in the part of the film where
this ratio is less than 0.1. Thus, the assumption of no liquid
flow through the solid-liquid interfaces of the GBLF seems
valid in the part of the GBLF where the largest pressure drop
occurs, which is also where cracking occurs.
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4 Conclusions

A solidification cracking criterion was introduced in part
I of this work. In order to evaluate this criterion for
estimating the crack susceptibility, the GBLF pressure and
GBLF thickness must be known. In this paper, we introduce
a model for estimating these quantities in a columnar
dendritic microstructure. This model contains a submodel
that determines an axis of a GBLF from the temperature
field of a computational welding mechanics model. The
liquid flow in the GBLF is assumed to be along the
direction of this axis. The solidification of the liquid in
the GBLF is governed by the Scheil-Gulliver model. A
submodel is used to compute the GBLF thickness from the
macroscopic mechanical strain field of the computational
welding mechanics model, where a temperature-dependent
length scale is used to localize the macroscopic mechanical
strain to the GBLF. At the liquidus temperature, this length
is zero; at the coherent temperature, it is equal to the primary
dendrite arm spacing; and at solidus, it is the same as the
diameter of a grain cluster, which is a calibration constant.
Between these temperatures, it is assumed to vary linearly.
The liquid flow within the GBLF is assumed to be governed
by a combination of Poiseuille and Darcy flows. For the part
of the GBLF with less than 0.1 fractions of the liquid, the
flow is a Poiseuille flow. For the remaining part, the flow is
a Darcy flow. The permeability used for the Darcy flow is
derived from empirical data and numerical simulations and
depends on the deformation of the GBLF.

The model has been evaluated on Varestraint tests of
alloy 718. The evolution of the GBLF thickness, GBLF
pressure drop, and GBLF permeability was studied.
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Appendix

The undercooling models that were used in Section 2.2 are
given in this appendix.

Constitutional undercooling model Foster et al. [9] used
the following model to estimate the constitutional under-
cooling for alloy 718

�TC =
n∑

i=1

(
Ci
0m

i
0 − C∗i

l mi
RL

)
(48)

Here, Ci
0 is the nominal concentration of the ith element

in the liquid phase, mi
0 is the equilibrium liquidus slope,

mi
RL

is the velocity-dependent liquidus slope, and C∗i
l is the

liquid concentration of the ith element at the dendrite tip.
C∗i

l is determined by the following expression

C∗i
l = Ci

0

1 −
(
1 − ki

RL

)
Iv(Pei

C)
(49)

where ki
RL

is the velocity-dependent partitioning coeffi-
cient, given by:

ki
RL

= ki
0 + a0RL/Di

l

1 + a0RL/Di
l

(50)

In the above expression, ki
0 is the equilibrium partition

coefficient of the ith element, a0 is the characteristic
diffusion distance, RL is the growth velocity of the dendrite
tip, and Di

l is the solute diffusivity of element “i.” In Eq. 49,
Pei

C is the solutal Peclet number, defined by

Pei
C = RLRtip

2Di
l

(51)

and Iv(Pei
C) is the Ivantsov function, given by:

Iv(Pei
C) = Pei

C exp
(
Pei

C

)
E1

(
Pei

C

)
(52)

where E1 is the exponential integral:

E1

(
Pei

C

)
=

∫ ∞

PeiC

exp(−s)

s
ds (53)

The mi
RL

term in Eq. 49 is defined as

mi
RL

= mi
0

⎡

⎣
1 − ki

RL

(
1 − ln

(
ki
RL

/ki
0

))

1 − ki
0

⎤

⎦ (54)

The curvature of the dendrite tip and the thermal gradient
at the tip are related by the interface instability criteria:

4π2
+GLR2
t ip+2Rtip

n∑

i=1

(
mi

RL
Pei

C

(
1 − ki

RL

)
C∗i

l ξ i
C

)
= 0

(55)

where 
 is the Gibbs-Thompson coefficient and ξ i
C is the

absolute stability coefficient, given by

ξ i
C = 1 − 2ki

RL

2ki
RL

− 1 +
√
1 + (

2π/Pei
C

)2
(56)
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Table 1 Parameters used for
the undercooling models, from
[9]

Element ID Comp. [At. Pct] ki
0 - mi

0 [K×(At. Pct)−1] Parameters Value

Al 1.27 1.16 –5.76 a0 [m] 3.0 × 10−10

Cr 20.09 1.07 –2.63 
 [mK] 3.37 × 10−7

Fe 18.13 1.19 –1.04 Di
l [m

2s−1] 5.0 × 10−9

Mo 1.77 0.65 –6.35

Nb 3.20 0.20 –14.63

Ti 1.03 0.40 –15.19

C 0.16 0.13 –10.70

Ni 54.01 1.02 1.04

O 0.04 0.25 –3.66

For given values of RL and GL, and for given values of
the parameters ki

0, mi
0, a0, 
, and Di

l , the only unknown
in Eq. 55 is Rtip, which can be solved for by a numerical
root finder such as the Matlab function fzero. When Rtip is
known, �TC in Eq. 48 can finally be determined.

Foster et al. [9] used the thermodynamic software
Thermo-Calc to calculate ki

0 and mi
0 for the elements in

alloy 718, which are reproduced in Table 1. Due to lack of
data, they used the same value for Di

l for all the elements.
The �TC curve in Fig. 2 was calculated with the model

in Eq. 48 for given values of RL and GL, together with the
data in Table 1.

Curvature undercooling model Foster et al. [9] calculated
the curvature undercooling with the following model

�TR = 2


Rtip

(57)

where Rtip is determined from Eq. 55. The �TR curve in
Fig. 2 is computed with this model together with the 
 value
in Table 1.

Thermal undercooling The following thermal undercooling
model, stated in Dantzig and Rappaz [4], was used to
compute �TT in Fig. 2

�TT = Lf

cp

Iv(PeT ) (58)

Here, Lf and cp are the latent heat of fusion and the
specific heat capacity, respectively. PeT is the thermal Peclet
number, given by:

PeT = RLRtip

2αl

(59)

where αl is the thermal diffusivity of the liquid. The value
of Rtip that goes into Eq. 58 was computed from Eq. 55.
Lf = 241 × 103 Jkg−1K−1, cp = 720 Jkg−1K−1, and
αl = 5.5 m2s−1, taken from part III [8], were used in Eq. 58.

Kinetic undercooling The kinetic undercooling for a pure
metal with isotropic attachment kinetic at the interface is
given by [4]

�TK = RL

μk

(60)

where μk is the attachment kinetics coefficient. For nickel,
μk ≈ 2×104 ms−1K−1 [4]. The model in Eq. 60 withμk ≈
2 × 104 ms−1K−1 was used to approximate �TK for alloy
718, which is plotted in Fig. 2.
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