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Alzheimer’s disease (AD) is the most common form of
dementia, accounting for 60–80% of all dementia cases
[1]. Due to variation in age at onset (AAO), AD is clas-
sified as either early onset (AAO < 60 years) or late
onset (AAO ≥ 60 years). Approximately 5% of all AD
cases are classified as early-onset AD (EOAD) [2], of
which10–15% having the family history of disease fol-
low the autosomal dominant inheritance [3] with known
mutations in three genes: APP, PSEN1, and PSEN2 [4].
Majority of the remaining EOAD cases are sporadic with
a complex genetic etiology.

Late-onset AD (LOAD) that comprises about 95% of
all AD cases is genetically even more complex with poly-
genic risk inheritance. LOAD has a substantial genetic
component with heritability estimates up to 79% [5].
Until recently, APOE was the only established suscepti-
bility gene for LOAD. Substantial progress has been made
via large-scale genome-wide association studies (GWAS)
as well as meta-analyses of GWAS that have identified
more than 30 susceptibility loci for LOAD [6–14], mostly
among populations of European ancestry. However,
known common polymorphisms at these loci explain
16% of the AD phenotypic variance (or 31% of genetic
variance) [15]. Recent application of whole-exome micro-
array, whole-exome sequencing, whole-genome sequenc-
ing, and targeted sequencing has identified rare variants in
additional novel LOAD genes [16–24].

The purpose of this brief synopsis is to provide an update
on the known number of AD genes and loci that have been
independently replicated or meet stringent criteria of genome-
wide significance (Table 1). In addition to the three causal
genes for autosomal dominant EOAD, to date, 43 suscepti-
bility genes/loci have been identified for LOAD. The APP
gene for EOAD also harbors a protective variant for LOAD.
This list of genes will need to be amended as more genes/loci
are discovered and GWAS-implicated loci are refined to iden-
tify specific genes. Unlike APOE and those LOAD genes
where the sequencing approach has revealed rare and coding
AD-associated variants, the identity of specific genes driving
the associations within most GWAS-implicated loci is not
known. Functional follow-up of these genetic loci in
in vitro and/or in vivo studies will help to identify the specific
genes and their relevance to AD pathology.

The ultimate goal of understanding the complete genetic
architecture of AD is to discover novel pathways that may
converge in the causation of this heterogeneous disease,
and to identify drug targets for therapeutic treatment.
Manually curated pathways based on a selected set of
probable LOAD genes provide some insights about possi-
ble disease mechanisms [25], but without including the
products (proteins) of all known genuine and yet to be
discovered AD genes (both for early and late onset), and
those interacting with these genes/proteins, the interpreta-
tion of these pathways is incomplete.
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Table 1 AD-associated genes/loci

Chromosome Region Gene/locus Variant frequency Variant effect Reference

Autosomal dominant genes
1 1q42.13 PSEN2 Rare Risk [4]
14 14q24.2 PSEN1 Rare Risk [4]
21 21q21.3 APP Rare Risk [4]

LOAD susceptibility genes
4 4q23 UNC5C Rare Risk [21]
6 6p21.1 TREM2 Rare Risk [17, 23]
7 7q21.2 AKAP91 Rare Risk [22]
7 7q AC099552.4* Rare Risk [23]
15 15q21.3 ADAM10 Rare/common Risk/protective [7, 24]
15 15q26.3 TM2D3 Rare Risk [20]
16 16q24.1 PLCG2 Rare Protective [19]
17 17q21.32 ABI3 Rare Risk [19]
19 19q13.32 APOE Common Risk/protective [6–9]
19 19q13.2 PLD3 Rare Risk [18]
21 21q21.3 APP Rare Protective [16]

LOAD susceptibility loci
1 1q32.2 CR1 Common Risk [6, 7]
2 2q37.1 INPP5D/SHIP1 Common Risk [6, 7]
5 5q31.3 HBEGF/PFDN12,3 Common Risk [11, 13]
5 5q14.3 MEF2C/TMEM161B Common Protective [6]
6 6p12.3 CD2AP/ADGRF2 Common Risk [6–9]
6 6p21.32 HLA-DRB1/HLA-DQB1 Common Risk [6, 7]
7 7p12.1 COBL1 Rare Protective [10]
7 7p14.1 NME8/EPDR1 Common Protective [6]
7 7q22.1 NYAP1/PILRA/STAG3 Common Protective [6, 7, 23]
7 7q34-q35 EPHA1/TAS2R60 Common Protective [6, 7]
8 8p21.2 PTK2B Common Risk [6, 7]
8 8p21.2 CLU/APOJ Common/rare Risk/protective [6, 7]
10 10p14 ECHDC3/USP6NL2,3 Common Risk [7, 11, 13]
11 11p11.2 SPI1/CELF1 Common Risk/protective [6, 7]
11 11q12.1 MS4A2/MS4A6A Common Protective [6–9]
11 11q14.2 PICALM Common Protective [6, 7]
11 11q24.1 SORL1 Common/rare Risk/protective [6, 7]
13 13q33.1 SLC10A2/METTL21EP1 Rare Protective [10]
14 14q22.1 FERMT2 Common Risk [6, 7]
14 14q32.12 SLC24A4/RIN3 Common Protective [6, 7]
15 15q21.2 SPPL2A/TRPM73 Common Protective [13]
15 15q22.31 TRIP4 Rare Risk [14]
16 16p12.3 IQCK/DEF8 Common Protective [7]
17 17p13.2 SCIPM/ZNF594/USP63 Common Protective [13]
17 17q21.31 KANSL1/MAPT4 Common Protective [12]
17 17q22 TSPOAP1/BZRAP1-ASI2 Common Protective [11]
17 17q23.3 ACE Rare Risk [7]
18 18q12.1 DSG2/DSG3 Common Protective [6]
19 19p13.3 ABCA7 Rare/common Risk [6, 7, 9], [23]
19 19p13.3 NFIC2,5 Common Protective [11]
19 19q13.41 CD33/SIGLECL1 Common Protective [6, 8, 9]
20 20q13.31 CASS4/GSTF1 Common Protective [6, 7]
21 21q21.3 ADAMTS1/ADAMTS5 Common Protective [7]

*Long non-coding RNA, 1 unique in African blacks, 2 transethnic GWAS, 3GWAS by proxy (GWAX), 4 GWAS among non-APOE*4, 5 interaction with
APOE*4
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