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Abstract
Purpose of Review Post-prandial lipemia (PPL), characterized by elevated levels of triglyceride (TG) following a meal, is an
independent risk factor for cardiovascular disease. This review summarizes current knowledge on the genetic and epigenetic
determinants of the PPLTG response and provides perspectives on future directions.
Recent Findings Recent studies suggested that PPL-related traits have heritability between 38 and 80%. Genomics studies
identified genetic variants in or near APOA1/C3/A4/A5 cluster region affecting PPL TG levels. Epigenomics studies found
DNA methylation levels of many genes known to be related to lipid metabolism including CPT1A gene are associated with
fasting TG and PPL TG.
Summary Both genetic polymorphisms and epigenetic modifications are important determinants of PPL variation. Epigenetics
may have even more significant impact than genetic variants on PPL. Further studies with multi-omics system biology approach
are needed to fully elucidate the mechanisms of PPL regulation to combat the atherogenic effect of PPL.
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Introduction

Cardiovascular disease (CVD) is the leading cause of death
in the USA with prevention and treatment efforts largely
targeted at traditional CVD factors (e.g., fasting LDL,
blood pressure, adiposity, and smoking). Identifying novel
CVD risk factors and understanding more completely the
mechanisms by which the established risk factors exert
their effects remain a priority of CVD risk prevention, so
that these risks can be more fully mitigated.

The association of hypertriglyceridemia (HTG) with
CHD has long been recognized. HTG has been consistently
shown through longitudinal [1–3] to increase CVD risk in-
dependently of other known risk factors, and genetic vari-
ants that are associated specifically with elevated triglycer-
ides are also associated with CVD [4–6]. The importance of
HTG (triglyceride (TG) > 150 mg/dL) as a CVD risk factor
is highlighted by its high prevalence (i.e., frequency of 25%

in the USA [7]). While elevated levels of fasting TG have
long been known to predict CVD, fasting levels do not re-
flect the wide fluctuations and sustained high levels that can
occur throughout the day. Unlike the relatively constant
plasma LDL-C level, circulating TG increases after a meal,
peaking at ~ 4 h and slowly returning to the fasting level
after 6–8 h following a meal [8–12]. Consequently, the sig-
nificance of TG as a CVD risk factor should be recognized
in the context that most of the day is spent in the post-
prandial state (i.e., post-prandial lipemia, PPL).

A systematic assessment of PPL requires an oral fat tol-
erance test (OFTT) whereby the fasting subject ingests a
standardized fat meal and TG levels are measured at regular
intervals for up to 6 h to determine the rate of TG increase
and clearance. Multiple cross-sectional studies have now
been revealed an association between an elevated TG re-
sponse after a standardized OFTT and delayed clearance
of TGs with presence of CVD [13–17]. Moreover, non-
fasting TG levels have been significantly associated with
incident CVD events, and this association is stronger than
that for fasting TG and is independent of LDL and other
known CVD risk factors [18–21].

The atherogenic mechanisms underlying PPL are only
broadly understood. Initially, there is a rapid and prolonged
change in circulating lipid profiles after ingesting a high-fat
meal, characterized by production of TG-rich remnant
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particles from lipolysis of chylomicrons and generation of
very low density lipoproteins from liver, as well as a reduction
in high density lipoprotein (HDL) [22–25]. These changes are
pro-atherogenic and occur in the context of post-prandial in-
flammation with ensuing endothelial dysfunction [26] and
pro-thrombotic activity [24]. Post-prandial inflammation ap-
pears to be the central event triggering these atherogenic
changes that follow prolonged/intensified PPL [27, 28].
Consistent with the post-prandial inflammation state, a single
high-fat meal induces increased secretion of the inflammatory
biomarker interleukin-6 (IL-6) during the post-meal period
and activation of white blood cells in terms of both the cell
count and individual cell activation markers (e.g., granulocyte
and mononuclear cells) [29, 30•]. Exactly how this sequence
of events unfolds is unclear.

Behavioral and Clinical Determinants of PPL

Variability in the PPL response at the population level is influ-
enced by a range of factors, including sex, age, baseline TG level,
aerobic capacity, adiposity, diet, and disease status (e.g., diabetes,
insulin resistance, periphery artery disease, hypertension, coro-
nary artery diseases, and inflammation) [2, 8, 13–17, 31]. As an
example, there has been much interest in studying the effect of
exercise on PPL [32], with numerous studies showing that acute
exercise prior to a high-fat meal can effectively attenuate the PPL
response (e.g., see review by Teeman et al. [33]). Much current
research has been directed into characterizing the optimal dura-
tion, intensity, and types of physical exercise that most efficiently
reduce the PPL response.

Genetic Determinants of PPL

The genetic basis of HTG has beenwell recognized from early
studies of monogenetic forms of this disorder. The most com-
mon monogenetic forms of HTG are due to loss-of-function
mutations in genes related to metabolism of triglyceride-rich
lipoproteins, such as LPL, APOC2, APOA5, LMF1,
GPIHBP1, and GPD1 [34]. Of these, a loss of function muta-
tion in the lipoprotein lipase gene (LPL) is the most common
etiology of monogenic HTG. The main function of LPL is to
hydrolyze TG in chylomicrons and VLDL particles. In con-
trast to these monogenic forms, the majority of HTG is due to
a polygenic form of the condition. Heritability analyses have
revealed that genetic effects can account for 54–59% of the
variation of fasting TG in population [35, 36]. In fact, the most
recent large-scale genome-wide association studies (GWAS)
have identified at least 224 common and low-frequency SNPs
from 137 genes/regions that are associated with triglyceride
levels, mostly measured in the fasting state [37]. Among these
genomic loci are many with known functions in lipid

metabolism, such as LPL, APOA5, APOB, APOC1, APOE,
and GCKR. However, it is currently unknown how most of
other associated loci outside of these known lipid metabolism
genes are involved in the regulation of TG metabolism.

The heritability of the PPL TG, assessed as the integrated
area under the curve of TG across 6 h, was estimated at 38% in
Amish subjects from the Heredity and Phenotype Intervention
(HAPI) Heart Study [38]; the slope of the TG increase at 3.5 h
after OFTT had a heritability of ~ 80% in the Genetics of Lipid
Lowering Drugs and Diet Network (GOLDN) study [39•].
Multiple genetic association studies of PPL TG have been
carried out, most utilizing the candidate gene approach and
focusing on genes known to be related to lipid absorption,
apolipoproteins, and lipid clearance pathways, including the
APOA1/C3/A4/A5 gene cluster, ABCA1, CETP, GCKR, IL6,
LPL, PLIN1, andTCF7L2 [40, 41]. Unlike candidate gene
studies, the GWAS approach has the appeal of offering an
agnostic survey of the whole genome and could discover nov-
el candidates.

To date, GWAS of PPL TG have been conducted in only
the Amish HAPI Heart [11] and GOLDN studies [42••]. In
2008, the Amish HAPI Heart Study identified a null mutation
(R19X) in APOC3 that is carried by ~ 5% of Amish subjects
in Lancaster County, PA, USA. The R19X carriers had ap-
proximately one half of the levels of apoC-III protein com-
pared to non-carriers and demonstrated a significantly reduced
PPLTG excursion during the OFTT. These subjects also had a
relatively cardioprotective risk profile that included lower cor-
onary calcification scores [11]. This cardioprotective pheno-
type occurs because apoC-III inhibits lipoprotein lipase
(LPL), the primary hydrolyzer of TG-rich chylomicrons.
The mutation leads to increased LPL activity, thereby promot-
ing chylomicron hydrolysis and reducing PPL.

The GWAS of PPL conducted in the GOLDNStudy, which
was based on 872 subjects of European ancestry, identified
two SNPs significantly associated with PPL TG excursion at
genome-wide thresholds of significance level (i.e., p < 5E
−08), one of which, rs964184, was replicated in the Amish
HAPI Study [42••]. rs964184 is located near ZPR1 and close
to the APOA1/C3/A4/A5 cluster. rs964184 falls in a linkage
disequilibrium block that includes APOA5, the gene-encoding
apolipoprotein A5, a component of HDL and which plays a
major role in regulating important determinant of plasma TG
level. rs964184 has been previously associated with fasting
TG [43], TG response to fenofibrate [44], fat intake and TG
response interaction [45], metabolic syndrome [46], and cor-
onary artery disease [47].

Epigenetic Determinants of PPL

The two SNPs significantly associated with PPL TG in the
GOLDN Study (rs964184 and rs10243693) account for
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only 4.5% of the variation in PPL TG AUC in the GOLDN
population [42••, 48•], and the Amish APOC3 R19X vari-
ant (rs76353203) accounts for virtually none of the pheno-
typic variation in European populations because the fre-
quency of this variant is so rare outside of the Amish.
Even for the relatively well-studied fasting TG measure,
it is estimated that one half of the variance in this trait
cannot be explained by the common and rare variants iden-
tified in current GWAS [49]. For example, 86 common
SNPs associated with increased TG through meta-
analysis account for less than 12% variance of triglyceride
levels in the Framingham heart study [43, 50]. The missing
heritability of HTG could be due to unstudied rare genetic
variants, gene-gene interactions, epigenetics, and/or gene-
environment interactions [49].

Epigenetic changes constitute a potential source of vari-
ability in PPL TG excursions that is not captured by
genome-wide genotype data. Epigenetic changes refer to
molecular factors or processes that do not affect the DNA
sequence but can influence gene expression [51] via several
mechanisms, including the following: (1) methylation of
DNA nucleotide base almost exclusively at cytosines of
CpG (5’—C—phosphate—G—3’) dinucleotides in human;
(2) biochemical modification of the histone molecules that
package DNA sequences; and (3) non-coding RNAs that
interact with DNA methylation and chromatin modification
machinery. Epigenetics has been shown to regulate many
important biological processes, including development, dis-
eases, and response to behaviors [52–56]. Epigenetic regu-
lation can be modified by both genetic and environmental
factors, for example, genetic polymorphisms can act as
quantitative trait loci (QTL) to influence epigenetic modifi-
cation of DNA sequence; in addition, epigenetic modifica-
tion of DNA sequence can be dynamic and respond to en-
vironmental changes. Thus, epigenetic variation represents
the interface of gene and environment interaction, and this
provides another source of variation in PPL response across
subjects. This review will focus on DNA methylation, the
most studied mechanism of epigenetic regulation.

Similar to GWAS, an epigenome-wide association study
(EWAS) examines associations between epigenetic varia-
tion, mostly DNA methylation variation, and a particular
trait. To date, six EWAS have been published of fasting TG
(see Table 1). These have revealed associations of fasting
TG with DNA methylation sites at 34 unique loci mapping
to 17 different genes [48•, 59•, 60•, 61•, 62•, 63•]. The only
EWAS of PPL TG published to date is from the GOLDN
Study [57••]. This analysis was based on 979 GOLDN sub-
jects who underwent a standard OFTT, and DNAwas puri-
fied peripheral lymphocytes at baseline before OFTT. The
goal of this analysis was to identify DNA methylation sites
at baseline that predicted PPL TG response to the OFTT.
Eight loci at five genes (LPP, CPT1A, APOA5, SREBF1,

and ABCG1) had methylation levels at baseline that were
significantly associated with PPL TG at genome-wide sig-
nificance (P < 1.1 × 10−7) [57••]; interestingly, these eight
CpG sites together account for 14.9% of the variance in
PPL TG and 16.3% of the phenotypic variance in fasting
TG in the GOLDN Study cohort [57••]; in contrast, the two
previously identified genetic loci for PPL TG (rs964184
and rs10243693) explained only 4.5% phenotypic variance
for both PPL TG AUC and fasting TG. This suggests that
epigenetics may be a more significant contributor than
DNA sequence variation to PPL TG variability at the pop-
ulation level. Four out of the five identified genes have
established roles in lipid metabolism; four CpG loci them-
selves, mapping to the genes CPT1A, APOA5, SREBF1,
and ABCG1, have been directly reported to be associated
with fasting TG in European populations (KORA and
InCHIANTI) [63•]. The association of PPL TG with
CPT1A methylation, which was the most strongly associat-
ed locus, was particularly noteworthy because of the func-
tion of this gene. CPT1A (Carnitine Palmitoyltransferase
1A) is a key enzyme for the mitochondrial oxidation of
long-chain fatty acid, catalyzing the transfer of the acyl
group of long-chain fatty acid-CoA conjugates onto carni-
tine that is essential for the mitochondrial uptake of long-
chain fatty acids, which is a metabolism product and com-
ponent of triglyceride, and their subsequent beta-oxidation.
Thus, it is not surprising that CPT1A might play major role
in PPL and fasting triglyceride metabolism.

It must be pointed out that the baseline epigenetic profiles
correlated with PPL TG response could be inherited inter-
generationally or could be the consequence of certain
behavior/environmental factors. Besides the heritable epi-
genetic profiles in epigenome, the aforementioned
behavioral/environmental factors that are associated with
PPL TG response variation, such as exercise, diet, and
smoking, could also modify epigenetic machinery and gene
transcription both acutely and chronically, which in turn
could alter the PPL TG response after meal intake. For ex-
ample, both acute and chronic exercise could induce wide-
spread DNA methylation and gene expression changes in
skeletal muscle and in peripheral blood cells [64–66]. One
time or long-term dietary interventions also could induce
significant DNA methylation and gene expression changes
[67, 68]. It was found that dietary polyunsaturated fatty
acids can modify the epigenome and some of the methyla-
tion changes were correlated with changes in plasma triglyc-
eride [68, 69]. The interplay among genetics, epigenetics,
and environmental/behaviors factors and how these factors
may collectively lead to an abnormal PPLTG response and
increased CVD risk are depicted in a working hypothesis
model in Fig. 1. As implied by this model, an integrative
multi-omics, multi-system approach is necessary to dissect
the pro-atherosclerosis mechanism of HTG.
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Conclusions and Future Directions

Genetic and epigenetic association studies are complemen-
tary strategies to identify molecular mechanisms underly-
ing adverse PPL TG excursion after meals. However, we
are still in the infancy stage with only a handful of genetic
variants and DNA methylation loci identified that explain
only a small portion of the population variation in PPL TG
excursion. Further work is needed on several fronts to ad-
vance our understanding of PPL TG as a risk factor for
cardiovascular diseases and its management. First, we must
increase the sample size for genomic, epigenetic, and epi-
demiologic studies of PPL TG. Currently, PPL has been
understudied in large population studies due to the resource
demand in administering a standard fat meal challenge and
time course blood sampling. There is also not a solid con-
sensus on the standards for the fat meal challenge. Second,
we will need to devote efforts to dissect the dynamic
changes in epigenomics, transcriptomic, metabolomics,
and proteomics along with PPL TG excursion. Multi-
level-omics data has not yet been systematically collected
over time for PPL TG. Although Mendelian randomization
analysis has demonstrated a causal link between increased
TG and cardiovascular risk, the mediating mechanisms re-
main largely unknown. Natural history studies with extend-
ed time course sampling of PPL TG excursions are needed
to reveal such mediating signaling pathways and patholog-
ical events that are perturbed by the increased PPL TG and
which eventually lead to foam cell formation and athero-
sclerosis plaque development. Third, we will need to de-
sign effective behavior intervention to effectively manage
PPL TG and prevent CVD. To date, multiple behavioral
factors such as diet, exercise, and smoking have been as-
sociated with PPL TG variation, but it is not clear what
kinds of diet combination or what kind of exercise regime
would be optimal to reduce PPL TG exposure. Last but not
the least, we will need to design more effective pharmaco-
logical treatment for managing PPL TG. Fibrates are the
most often used drugs that could specifically target TG

and lower TG levels by ∼ 36% [70]; however, the cardio-
vascular outcome of fibrate therapy varied across different
studies so far [71]. Moreover, fibrates could result in ad-
verse effects such as increases in creatinine levels, myopa-
thy, and rhabdomyolysis. Mechanistic genetic and epige-
netic study of factors that influence PPLTG response could
help the discovery of novel therapy targets.
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