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Abstract
This paper investigates an SIS epidemic model with variable population size including a vaccination program. Dynam-
ics of the endemic equilibrium of the model are obtained, and it will be shown that this equilibrium exists and is locally 
asymptotically stable when 

0
> 1 . In this case, the disease uniformly persists, and moreover, using a geometric approach 

we conclude that the model is globally asymptotically stable under some conditions. Also, a numerical discussion is given 
to verify the theoretical results.
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Introduction

The susceptible–infected–susceptible (SIS) model is one 
of the most well-known type of epidemic models. These 
models are appropriate for some infections, for instance, 
common cold and influenza, or bacterial diseases such as 
meningitis and cholera, or sexually transmitted diseases, 
that do not cause permanent immunity after recovery. To 
immunize individuals from infection and control the infec-
tious diseases, vaccination is usually preferred because 
of its efficiency compared with other drug and non-drug 
interventions. There are many epidemic models [1, 3, 8, 13, 
14, 16, 19] and also some SIS epidemic models in which 
temporary or permanent vaccination has been included [6, 
9–11, 17, 22]. These models may be deterministic [10, 11] 
or stochastic [4, 6, 22], with constant [10, 13] or variable 
[9] population size, and with general incidence [7, 21] or a 
particular incidence such as standard, bilinear, and saturated 
[2, 5, 13]. In this paper, we introduce an SIS epidemic model 
with vaccination and standard incidence. In the next section, 

we first describe the model and then some basic properties of 
it will be given. Sections “Local asymptotical stability” and 
“Global asymptotical stability” are devoted to investigating 
the local and global stability of endemic equilibrium of the 
model, respectively. Finally, we summarize the conclusions 
in section “Conclusions”, after a numerical consideration in 
section “Numerical examples”.

Model description

Consider the following system:

Here, the population has been divided into three subpopu-
lations as susceptible, infected, and vaccinated individuals. 
The size of population in each class at time t is denoted by 
S, I, and V, respectively, whereas the number of all individu-
als in this time is given by N = S + I + V . The recruiting is 
done by entering a number of � individuals into population 
per unit time that may be either immigrants or newborns. The 

(1)

dS

dt
= (1 − �)� −

�SI

N
− (� + �)S + �I + �V ,

dI

dt
=

�SI

N
− (� + � + �)I,

dV

dt
= �� + �S − (� + �)V .
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vaccination program is applied on the new members by a pro-
portion � . A proportion � of susceptible individuals are also 
vaccinated, and the rate of losing immunity of vaccination is 
� . The vaccine is supposed to be completely effective, and no 
vaccinated individual becomes infected. Susceptible individu-
als become infected at standard incidence rate �SI

N
, where � 

is transmission coefficient, whereas the rate of recovery is � . 
The rate of natural death in population is � , and the mortality 
due to disease is also included in the model with a rate � . All 
values in the model are nonnegative except � and � that are 
assumed positive.

From system (1), it can be seen that the total number of 
members N is not fixed in general and it is expressed by the 
following equation:

We have dN
dt

≤ � − �N , and thus, lim supN(t)
t→∞

≤
�

�
 . This 

also states that I, S, and V are bounded. We can see that the 
feasible region

is a positively invariant set for system (1), and the system is 
well posed for mathematical and epidemiological considera-
tions in � .

The equilibria of the model (1) are obtained by solving the 
following equations:

The system has two solutions: When Ī = 0 , the disease-free 
equilibrium (DFE) E0

and when Ī > 0 , the endemic equilibrium E∗ = (I∗, S∗,V∗) , 
where

(2)
dN

dt
= � − �N − �I.

� =
{
(I, S,V) ∈ ℝ

3
+
∶ I + S + V ≤

�

�

}

(3)

(1 − 𝜗)𝛬 −
𝛽S̄Ī

N̄
− (𝛿 + 𝜎)S̄ + 𝜂Ī + 𝜉V̄ = 0,

(
𝛽S̄

N̄
− (𝛿 + 𝜂 + 𝛼)

)
Ī = 0,

𝜗𝛬 + 𝜎S̄ − (𝛿 + 𝜉)V̄ = 0.

(4)

E0 = (I0, S0,V0) =

(
0,

�(�(1 − �) + �)

�(� + � + �)
,
�(�� + �)

�(� + � + �)

)
,

(5)

I∗ =
�(0 − 1)

�̃0 + �(̃0 − 1)
,

S∗ =
�(� + � + �)

��

(
1 −

�(0 − 1)

�̃0 + �(̃0 − 1)

)
,

V∗ =
��

� + �

(
1 +

�(� + �� + �)∕�(� + � + �)

�̃0 + �(̃0 − 1)

)
.

Here,

and thus, we have

The quantity 0 is called the basic reproduction number 
of the model. Furthermore, the total population sizes at two 
equilibria E0 and E∗ are obtained, respectively, as follows:

and

In the following sections, we investigate dynamics of the 
model (1) at the endemic equilibrium E∗ and its asymptotic 
stability will be obtained. The next section is devoted to 
consider the local asymptotic stability.

Local asymptotical stability

Letting F =
�SI

N
 , the Jacobian matrix of the model (1) at E∗ 

has the following form:

in which

The characteristic equation of matrix J∗ is

where

0 =
�(�(1 − �) + �)

(� + � + �)(� + � + �)
,

̃0 =
�(� + �)

(� + � + �)(� + � + �)
,

̃0 −0 =
���

(� + � + �)(� + � + �)
.

N0 =
�

�
,

N∗ =
�

�

(
1 −

�(0 − 1)

�̃0 + �(̃0 − 1)

)
.

(6)J∗ =

⎛⎜⎜⎝

a1 − (� + � + �) a2 a3
−a1 + � − a2 − (� + �) − a3 + �

0 � − (� + �)

⎞⎟⎟⎠
,

a1 =
�F

�I
|E∗ =

�S∗

N∗2
(N∗ − I∗),

a2 =
�F

�S
|E∗ =

�I∗

N∗2
(N∗ − I∗),

a3 =
�F

�V
|E∗ = −

�S∗I∗

N∗2
.

(7)p(�) = �3 + b1�
2 + b2� + b3,
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We have

Obviously a3 < 0 and a
1
= (� + � + �) 

(
(𝛿+𝛼)(�

0
−

0
)+𝛿

𝛿 �
0
+𝛼(�

0
−

0
)

)
> 0 .  

Moreover, notice that the equilibrium E∗ exists if 0 > 1 and 
this implies

and thus, a2 > 0.
Using (8), we obtain

 (I) −a1 + a2 = −(� + � + �) + ��
(

0−1

�̃0+�(̃0−0)

)
; thus, 

 (II) We can see that 

 and therefore, 

b1 = − tr(J∗) = −a1 + a2 + (� + � + �) + (2� + � + �),

b2 = −
1

2
(tr(J∗2) − tr2(J∗))

= − a1(2� + � + �) + a2(2� + � + �) + a3�

+ �(� + � + �) + (� + � + �)(2� + � + �),

b3 = − det(J∗) = −a1�(� + � + �)

+ a2(� + �)(� + �) + a3�(� + �)

+ �(� + � + �)(� + � + �).

(8)

a1 = (� + � + �)

(
1 −

�(0 − 1)

�̃0 + �(̃0 −0)

)
,

a2 = �(� − (� + � + �))

(
0 − 1

�̃0 + �(̃0 −0)

)
,

a3 = −�(� + � + �)

(
0 − 1

�̃0 + �(̃0 −0)

)
.

𝛽 > 𝛽

(
𝛿(1 − 𝜗) + 𝜉

𝛿 + 𝜎 + 𝜉

)
> (𝛿 + 𝜂 + 𝛼),

b1 = 𝛿𝛽

(
0 − 1

𝛿 �0 + 𝛼(�0 −0)

)
+ (2𝛿 + 𝜎 + 𝜉) > 0.

− a1(2� + � + �) + a3� + (� + � + �)(2� + � + �)

= (� + � + �)

(
�(0 − 1)

�̃0 + �(̃0 −0)

)
(2� + �),

b2 = (𝛿 + 𝜂 + 𝛼)

(
𝛿(0 − 1)

𝛿 �0 + 𝛼(�0 −0)

)
(2𝛿 + 𝜉)

+ a2(2𝛿 + 𝛼 + 𝜉) + 𝛿(𝛿 + 𝜎 + 𝜉) > 0.

 (III) We have 

   Besides,  �0 > 0  and 0 > 1 implies 
𝛽(𝛿 + 𝜉) > (𝛿 + 𝜎 + 𝜉)(𝛿 + 𝜂 + 𝛼) . Therefore, 

(IV)  

 We see that a
1
= (� + � + �)

(
1 −

�(
0
−1)

�̃
0
+�(̃

0
−

0
)

)

< (𝛿 + 𝜂 + 𝛼), and as a result, 

In preceding relations, we got b1 > 0 , b2 > 0 , b3 > 0 
and b1b2 − b3 > 0 ; thus, by using Routh–Hurwitz criterion 
the real part of all eigenvalues of the Jacobian matrix J∗ 
must be negative. Therefore, the following theorem has 
been proven:

Theorem 1 For epidemic model (1), the endemic state E∗ 
exists and is stable if 0 > 1.

Corollary 1 The endemic state E∗ is stable if parameter val-
ues � and � lie under the following line in the �-� plane:

Corollary 1 gives minimum amount of vaccination pro-
portions that is needed to the vaccine be effective. Indeed, 
those values of � and � that lie above the mentioned line 
in (9) are sufficient to the disease eradicated from popula-
tion. When the proportion of vaccination in new members 

b3 =�(� + � + �)(� + � + �)

(
�(0 − 1)

�̃0 + �(̃0 −0)

)

+ (�(� + �)

− (� + � + �)(� + � + �))�(� + �)

(
0 − 1

�̃0 + �(̃0 −0)

)

+ �(� + � + �)(� + � + �).

b
3
> 𝛿(𝛿 + 𝜎 + 𝜉)(𝛿 + 𝜂 + 𝛼)

(
1 +

𝛿(
0
− 1)

𝛿 �
0
+ 𝛼(�

0
−

0
)

)
> 0.

b
1
b
2
− b

3
= (� + �)(b

2
− a

2
(� + �))

+ (� + � + �)(b
2
− �(� + � + �))

+ (−a
1
+ a

2
+ � + �)b

2

+ a
1
�(� + � + �) − a

3
�(� + �)

= (� + �)(b
2
− a

2
(� + �))

+ ((� + � + �) − a
1
)(b

2
− �(� + � + �))

+ (a
2
+ � + �)b

2
− a

3
�(� + �).

b
1
b
2
− b

3
> (𝛿 + 𝜉)(b

2
− a

2
(𝛿 + 𝛼))

+ (a
2
+ 𝛿 + 𝜎)b

2
− a

3
𝜎(𝛿 + 𝛼) > 0.

(9)(��)� + (� + � + �)� = (� − (� + � + �))(� + �).
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and in susceptibles is equal, i.e., � = � = � , this optimum 
amount of vaccination will be as

Global asymptotical stability

The global asymptotical stability of the endemic state E∗ 
is discussed in this section. The analysis of the global sta-
bility of epidemic models is generally a difficult task, and 
the methods introduced for carrying this out are scant. To 
analyze the global asymptotic stability of the endemic state, 
we employ a geometric method developed by Li and Mul-
downey [12] and used by many authors [2, 15, 18–20, 23]. 
The following result has been proved in [12].

Theorem 2 Assume that f is a C1 function on a simply con-
nected open set D ⊂ ℝ

n , the system x� = f (x) has a unique 
equilibrium x̄ in D, and there exists a compact absorbing set 
𝛩 ⊂ D . Then, x̄ is globally stable in D if

in which  � = �f�
−1 + �J[2]�−1 .  Here ,  �  is  an (

n

2

)
×

(
n

2

)
 matrix-valued function, J[2] is the second addi-

tive compound matrix of the Jacobian matrix J, �f  is 
obtained by (𝜎ij)f =

(
𝜕𝜎ij

𝜕x

)⊤

.f (x) , and � (� ) is the Lozinski𝚤  

measure of �  with respect to a vector norm |.| in ℝm , with 

m =

(
n

2

)
 , defined by � (� ) = lim

h→0+

|I+h� |−1
h

.

The global stability of the endemic state is expressed in 
the next theorem.

Theorem  3 When 0 > 1 and 𝛿 + 𝜎 > 𝜉 , the endemic 
equilibrium  E∗ is globally asymptotic stable if 
𝛿 + 𝜉 > max{𝜎, 𝛼} + 𝜂.

Proof Considering the feasible region �  , we see that inte-
rior and boundary of �  are 

◦

𝛤 = {(I, S,V) ∈ 𝛤 ∶ I > 0} and 
�� = � ⧵

◦

� = {(I, S,V) ∈ � ∶ I = 0} , respectively. When 
0 > 1 , there exists an unique endemic state E∗ , and moreo-
ver, the disease-free equilibrium (DFE) E0 ∈ ��  is unsta-
ble. Now, using Acyclicity Theorem similar to the proof of 
Theorem 3.2 in [18] we find that when 0 > 1 , system (1) 
is uniformly persistent. On the other hand, we know that the 

(10)�∗ =
(� − (� + � + �))(� + �)

(� + � + �) + ��
.

lim sup
t→∞

sup
x0∈𝛩

1

t ∫

t

0

𝛹 (𝛶 (x(r, x0)))dr < 0,

solutions are bounded because the total population size N is 
bounded. Considering this with the uniform persistence of 
the system, it can be concluded that there exists a compact 
absorbing set 𝛩 ⊂ 𝛤 .

The Jacobian matrix of the system at E∗ was given by (6), 
and thus, its second additive compound matrix is

where

Matrix � in Theorem 2 acts as a Lyapunov function. So, 
for the method to be applicable and efficient, this matrix 
must be chosen suitable. Now, we choose matrix � as 
� =

S

I
�3 , where �3 is the 3 × 3 identity matrix. Then, 

�−1 =
I

S
�3 , �f =

(
dS

dt

I
−

S
(

dI

dt

)

I2

)
�3 and �f�

−1 =

(
dS

dt

S
−

dI

dt

I

)
�3

.
Therefore,

The matrix �  can be written in the block form as 

� =

(
�11 �12

�21 �22

)
, in which

J∗
[2] =

⎛
⎜⎜⎝

a1 − a2 − n1 − a3 + � − a3
� a1 − n2 a2
0 − a1 + � − a2 − n3

⎞
⎟⎟⎠
,

n1 = 2� + � + � + �,

n2 = 2� + � + � + �,

n3 = 2� + � + �.

(11)

� = �f�
−1 + �J∗

[2]�−1

=

⎛⎜⎜⎜⎜⎝

dS

dt

S
−

dI

dt

I
+ a1 − a2 − n1 − a3 + � − a3

�
dS

dt

S
−

dI

dt

I
+ a1 − n2 a2

0 − a1 + �
dS

dt

S
−

dI

dt

I
− a2 − n3

⎞⎟⎟⎟⎟⎠
.

�11 =

dS

dt

S
−

dI

dt

I
+ a1 − a2 − n1,

�12 = ( −a3 + �, −a3 ),

�21 =

�
�

0

�
,

�22 =

⎛⎜⎜⎝

dS

dt

S
−

dI

dt

I
+ a1 − n2 a2

−a1 + �
dS

dt

S
−

dI

dt

I
− a2 − n3

⎞⎟⎟⎠
.
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Considering the vector norm |(�1,�2,�2)| = max{|�1|,
|�

2
| + |�

3
|} for all (�1,�2,�3) ∈ ℝ

3 as in [12], we have

where

Thus, we obtain

and

From the second equation in system (1)

Therefore, we have

and

Hence, assuming

yields to

� (� ) ≤ sup{�1,�2},

�1 = � (�11) + |�12| and �2 = �(�22) + |�21|.

� (�11) =

dS

dt

S
−

dI

dt

I
+ a1 − a2 − n1, |�12| = −a3 + �, |�21| = �

� (�22) = max

{ dS

dt

S
−

dI

dt

I
+ � − n2,

dS

dt

S
−

dI

dt

I
− n3

}

= max

{ dS

dt

S
−

dI

dt

I
− (2� + � + �),

dS

dt

S
−

dI

dt

I
− (2� + � + �)

}

=

dS

dt

S
−

dI

dt

I
− (2� + �) −min{�, �}.

dI

dt

I
=

�S

N
− (� + � + �).

�1 =

dS

dt

S
−

dI

dt

I
+ a1 − a2 − n1 − a3 + �

=

dS

dt

S
−

�I

N

(
1 −

S

N

)
− (� + � − �)

≤

dS

dt

S
− (� + � − �),

�2 =

dS

dt

S
−

dI

dt

I
− (2� + �) −min{�, �} + �

≤

dS

dt

S
− (min{�, �} − (� + � + �) + (� + �)).

d = min{𝛿 + 𝜎 − 𝜉, (𝛿 + 𝜉) − (max{𝜎, 𝛼} + 𝜂)} > 0,

Thus, for each solution (I(0), S(0),V(0)) ∈ � , we have

which implies

Therefore, the conditions of Theorem 2 are hold and this 
concludes that E∗ is globally asymptotically stable.   □

Numerical examples

Suppose the parameters in model (1) as � = 30 , � = 0.8 , 
� = 0.2 , � = 0.1 , � = 0.1 , and � = 0.2 . For these values, 
the mentioned line in (9) is shown in Fig. 1. The ordered 
pair (�, �) = (0.2, 0.1) lies below the line and by corollary 1 
the endemic state E∗ = (I∗, S∗,V∗) = (34.74, 66.32, 31.58) 
is stable. The point (�, �) = (0.4, 0.5) lies above 
the line. In this case, the disease-free equilibrium 
E0 = (I0, S0,V0) = (0, 53.33, 96.67) is stable and the infec-
tion will be wiped out from population. Besides, for these 

� (� ) ≤

dS

dt

S
− d.

1

t �

t

0

� (B)dr ≤
1

t �

t

0

( dS

dt

S
− d

)
dr =

1

t
ln

S(t)

S(0)
− d,

lim sup
t→∞

sup
1

t ∫

t

0

𝛹 (B)dr < −
d

2
< 0.

Fig. 1  The line of optimal proportions of vaccine. For those values 
of � and � that lie below the line, E∗ is stable (red point), and for such 
values that lie above the line, E0 is stable (blue point)
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Fig. 2  Solutions of model (1) for � = 0.05 (left) and � = 0.4 (right)

Fig. 3  Solutions of I(t) (a) and the phase diagram of I(t) and S(t) (b) for � = 0.4 with different initial values in each subpopulation. In this case, 


0
= 0.80 < 1 and disease will be extinct with I0 = 0, S

0 = 53.33,V
0 = 96.67
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values for (�, �) we have 0 = 1.44 > 1 and 0 = 0.71 < 1 , 
respectively. Thus, these results can be confirmed also by 
Theorem 1. Now, if it is supposed that the vaccination pro-
portions in new members and in susceptibles are equal, then 
the optimal value of such quantity is given by relation (10) 
as �∗ = 0.286 . For 𝜏 = 0.05 < 𝜏∗ , the infection will remain 
in the population and the endemic state is stable, while for 
𝜏 = 0.4 > 𝜏∗ the number of infected individuals vanishes 
and the disease-free state is stable (see Fig. 2). Figures 3 
and 4 describe the behavior of the model for various initial 
values and show the solutions are stable. Figure 3 shows the 
number of infected individuals (sub-figure (a)) and the phase 
diagram of I(t) and S(t) (sub-figure (b)) when � = 0.4 , and it 
can be seen that E0 is stable. Figure 4 shows that I(t) does not 
vanish when � = 0.05 , and in this case, E∗ is stable .   

Conclusions

In this paper, a deterministic SIS epidemic model with 
temporary vaccination was studied. Vaccination includes 
both susceptible and new members, and disease transmis-
sion takes place at standard incidence rate. The number of 
individuals which are added to the population per unit time 
is constant and differs from the number of individuals that 
die and leave the population per unit time. Thus, the total 
population size is variable. Dynamics of the model at the 

endemic equilibrium were determined by the basic repro-
duction number 0 ; when 0 > 1 , the unique endemic 
equilibrium E∗ is locally asymptotically stable and uni-
formly persists. In addition, it was shown that in this case 
E∗ is globally asymptotically stable under some conditions 
by employing a geometric approach and second additive 
compound matrix method. A numerical discussion was 
also performed to support the theoretical results.
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