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Abstract
In this paper, a linear combination of quadratic modified hat functions is proposed to solve stochastic Itô–Volterra integral 
equation with multi-stochastic terms. All known and unknown functions are expanded in terms of modified hat functions 
and replaced in the original equation. The operational matrices are calculated and embedded in the equation to achieve a 
linear system of equations which gives the expansion coefficients of the solution. Also, under some conditions the error of 
the method is O(h3) . The accuracy and reliability of the method are studied and compared with those of block pulse functions 
and generalized hat functions in some examples.
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Introduction

Nowadays, modelling different problems in different issues 
of science leads to stochastic equations [1]. These equa-
tions arise in many fields of science such as mathemat-
ics and statistics [2–7], finance [8–10], physics [11–13], 
mechanics [14, 15], biology [16–18], and medicine [19, 
20]. Whereas most of them do not have an exact solution, 
the role of numerical methods and finding a reliable and 
accurate numerical approximation have become high-
lighted [21].

In recent years, different orthogonal basic functions and 
polynomials have been used to find a numerical solution 
for integral equations such as block pulse functions [2, 21, 
22], hat functions [23], hybrid functions [24, 25], wavelet 
methods [26–28], triangular functions [3, 29], and Bernstein 
polynomials [30]. In this paper, MHFs will be applied to 

find an approximate solution for the following stochastic 
Itô–Volterra integral equation with multi-stochastic terms,

where t ∈ D = [0, T),X, f ,� and �j, j = 1, 2,… , n , for 
s, t ∈ D are the stochastic processes defined on the same 
probability space ( Ω,F,P ) and X is unknown. Also 
∫ t

0
�j(s, t)X(s) dBj(s) , j = 1, 2,… , n are Itô integrals and 

B1(t),B2(t),… Bn(t) are the Brownian motion processes 
[31, 32].

The paper is organized as follows: In “MHFs and their 
properties” section, the MHFs and their properties are 
described. In “Operational matrices” section, the opera-
tional matrices are found. In “Solving stochastic Itô–Vol-
terra integral equation with multi-stochastic terms by 
the MHFs” section, the sets and operational matrices are 
applied in the above equation and the approximate solu-
tion is found. In “Error analysis” section, the error analy-
sis of the present method is discussed. In the “Numerical 
examples” section, some numerical examples are solved by 
using this method. And finally, the last section concludes 
the paper.

X(t) = f (t) + ∫
t

0

�(s, t)X(s) ds

+

n∑
j=1

∫
t

0

�j(s, t)X(s) dBj(s),

http://crossmark.crossref.org/dialog/?doi=10.1007/s40096-018-0269-x&domain=pdf
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MHFs and their properties

In this section, we recall the definition and properties of 
modified hat functions [33]. Let m ≥ 2 be an even integer and 
h =

T

m
 . Also assume that the interval [0, T) is divided into m

2
 

equal subintervals [ih, (i + 2)h], i = 0, 2,… , (m − 2) and let 
Xm be the set of all continuous functions that are quadratic 
polynomials when restricted to each of the above subinter-
vals. Because each element of Xm is completely determined 
by its values at the (m + 1) nodes ih, i = 0, 1,… ,m , the 
dimension of Xm is (m + 1) . Considering that f ∈ � = C3(D) 
can be approximated by its expansion with respect to the 
following set functions, (m + 1) set of MHFs are defined 
over D as

If i is odd and 1 ≤ i ≤ (m − 1),

If i is even and 2 ≤ i ≤ (m − 2),

and

Properties of the MHFs

By considering the above definition, the following properties 
come as a result.

3) They are linearly independent.

Suppose

h0(t) =

{ 1

2h2
(t − h)(t − 2h), 0 ≤ t ≤ 2h

0, otherwise.

(1)

hi(t) =

{ −1

h2
(t − (i − 1)h)(t − (i + 1)h), (i − 1)h ≤ t ≤ (i + 1)h

0, otherwise.

h
i
(t) =

⎧
⎪⎨⎪⎩

1

2h2
(t − (i − 1)h)(t − (i − 2)h), (i − 2)h ≤ t ≤ ih

1

2h2
(t − (i + 1)h)(t − (i + 2)h), ih ≤ t ≤ (i + 2)h

0, otherwise,

hm(t) =

{ 1

2h2
(t − (T − h))(t − (T − 2h)), T − 2h ≤ t ≤ T

0, otherwise.

1) hi(jh) =

{
1, i = j

0, i ≠ j
.

2) hi(t)hj(t) =

{
0, i even and |i − j| ≥ 3

0, i odd and |i − j| ≥ 2
.

4)

m∑
i=0

hi(t) =1.

(2)�(t) = [h0(t), h1(t),… , hm(t)]
T ,

by applying the second property and considering definition 
(1), we obtain

7) Let � be an (m + 1) × (m + 1) matrix and �(t) be the vector 
of (m + 1)-MHFs defined in (2) then �(t)T��(t) ≃ �(t)T�̃ , 
where �̃ is a column vector with (m + 1) entries equal to the 
diagonal entries of the matrix �.

Function approximation

An arbitrary real function f on D can be expanded by these 
functions as [34]

where � = [f0, f1,… , fm]
T  and �(t) is defined in rela-

tion (2) and the coefficients in (3) are given by 
fi = f (ih), i = 0, 1,… ,m.

Similarly, an arbitrary real function of two variables 
g(s, t) on D × D can be expanded by these basic functions as

where �(s), �(t)  are, respectively, (m1 + 1) - and (m2 + 1)

-dimensional MHFs vectors. � is the (m1 + 1) × (m2 + 1) 
M H F s  c o e f f i c i e n t  m a t r i x  w i t h  e n t r i e s 
Gij, i = 0, 1, 2,… ,m1 , j = 0, 1, 2,… ,m2 and Gij = g(ih, jk), 
where  h =

T

m1

  and k = T

m2

. For convenience, we put 

m1 = m2 = m.

Operational matrices

In this section, we present both operational matrix of inte-
grating the vector �(t) , denoted by � , and stochastic opera-
tional matrix of Itô integrating the vector �(t) , denoted by 
�s . Therefore, by integrating the vector �(t) defined in (2), 
we have [34, 35]

where � is the following  (m + 1) × (m + 1) operational 
matrix of integration of MHFs

5)�(t)�T (t) ≃

⎛⎜⎜⎜⎝

h0(t) 0 … 0

0 h1(t) … 0

⋮ ⋮ ⋱ ⋮

0 0 0 hm(t)

⎞⎟⎟⎟⎠
.

6)�(t)�(t)T� ≃diag(�)�(t),

(3)f (t) ≃

m∑
i=0

fihi(t) = �T�(t) = �T (t)�,

(4)g(s, t) ≃ �T (s)��(t),

(5)∫
t

0

�(�) d� = ��(t),
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Theorem 1  Let �(t) be the vector defined in (2), the Itô inte-
gral of �(t) can be expressed as

where �s is the following (m + 1) × (m + 1)stochastic opera-
tional matrix of integration

with

� =
h

12

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 5 4 4 4 … 4 4 4 4

0 8 16 16 16 … 16 16 16 16

0 − 1 4 9 8 … 8 8 8 8

⋱ ⋱ ⋱ ⋱ ⋱

⋱ ⋱ ⋱ ⋱ ⋱

⋱ ⋱ ⋱ ⋱ ⋱

⋱ ⋱ ⋱ ⋱ ⋱

0 0 0 0 0 … − 1 4 9 8

0 0 0 0 0 … 0 0 8 16

0 0 0 0 0 … 0 0 − 1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(6)∫
t

0

�(�) dB(�) = �s�(t),

(7)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 �1 �2 �2 �2 … �2 �2 �2 �2
0 B(h) + �1,1 �2,1 �2,1 �2,1 … �2,1 �2,1 �2,1 �2,1
0 �1,2 B(2h) + �2,2 �3,2 �4,2 … �4,2 �4,2 �4,2 �4,2

⋱ ⋱ ⋱ ⋱ ⋱

⋱ ⋱ ⋱ ⋱ ⋱

⋱ ⋱ ⋱ ⋱ ⋱

⋱ ⋱ ⋱ ⋱ ⋱

0 0 0 0 0 … �1,m−2 B(T − 2h) + �2,m−2 �3,m−2 �4,m−2
0 0 0 0 0 … 0 0 B(T − h) + �1,m−1 �2,m−1
0 0 0 0 0 … 0 0 �1,m B(T) + �2,m

�1 = − ∫
h

0

1

2h2
(2� − 3h)B(�) d�

�2 = − ∫
2h

0

1

2h2
(2� − 3h)B(�) d�,

�1,i =∫
ih

(i−1)h

1

h2
(2� − 2ih)B(�) d�,

�2,i =∫
(i+1)h

(i−1)h

1

h2
(2� − 2ih)B(�) d�,

�1,i = − ∫
(i−1)h

(i−2)h

1

2h2
(2� − (2i − 3)h)B(�) d�,

�2,i = − ∫
ih

(i−2)h

1

2h2
(2� − (2i − 3)h)B(�) d�,

�3,i = − ∫
ih

(i−2)h

1

2h2
(2� − (2i − 3)h)B(�) d�

− ∫
(i+1)h

ih

1

2h2
(2� − (2i + 3)h)B(�) d�,

and

Proof  By considering definitions of hi(t), i = 0, 1,… ,m and 
integrating by parts, we have

expanding ∫ t

0
hi(�)dB(�) in terms of MHFs yields

�4,i = −∫
ih

(i−2)h

1

2h2
(2� − (2i − 3)h)B(�) d�

− ∫
(i+2)h

ih

1

2h2
(2� − (2i + 3)h)B(�) d�.

∫
t

0

hi(�)dB(�) = hi(t)B(t) − hi(0)B(0) − ∫
t

0

h�
i
(�)B(�)d�

= hi(t)B(t) − ∫
t

0

h�
i
(�)B(�)d�,

and

so we obtain

∫
t

0

hi(�)dB(�) ≃

m∑
j=0

aijhj(t)

aij = ∫
jh

0

hi(�)dB(�),

= hi(jh)B(jh) − ∫
jh

0

h�
i
(�)B(�)d�

a0j =

⎧⎪⎨⎪⎩

0, j = 0

− ∫ h

0

1

2h2
(2s − 3h)B(s)ds, j = 1

− ∫ 2h

0

1

2h2
(2s − 3h)B(s)ds, j ≥ 2.
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If i is odd and 1 ≤ i ≤ (m − 1)

If i is even and 2 ≤ i ≤ (m − 2),

and

Putting the obtained components in the matrix form ends the 
proof. 	�  □

Solving stochastic Itô–Volterra integral 
equation with multi‑stochastic terms 
by the MHFs

Our problem is to define the MHFs coefficients of X(t) in 
the following linear stochastic Itô–Volterra integral equation 
with several independent white noise sources,

where X, f ,� and �j, j = 1, 2,… , n for s, t ∈ D , are stochastic 
processes defined on the same probability space(Ω,F,P) . 
Also B1(t),B2(t),… ,Bn(t) are Brownian motion processes, 
and ∫ t

0
�j(s, t) dBj(s) , j = 1, 2,… , n are the Itô integrals.

aij =

⎧
⎪⎨⎪⎩

0, j ≤ i − 1

B(ih) − ∫ ih

(i−1)h

−1

h2
(2s − 2ih)B(s)ds, j = i

− ∫ (i+1)h

(i−1)h

−1

h2
(2s − 2ih)B(s)ds, j ≥ i + 1.

aij =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, j ≤ i − 2

− ∫ (i−1)h

(i−2)h

1

2h2
(2s − (2i − 3)h)B(s)ds, j = i − 1

B(ih) − ∫ ih

(i−2)h

1

2h2
(2s − (2i − 3)h)B(s)ds, j = i

− ∫ ih

(i−2)h

1

2h2
(2s − (2i − 3)h)B(s)ds

− ∫ (i+1)h

ih

1

2h2
(2s − (2i + 3)h)B(s)ds, j = i + 1

− ∫ ih

(i−2)h

1

2h2
(2s − (2i − 3)h)B(s)ds

− ∫ (i+2)h

ih

1

2h2
(2s − (2i + 3)h)B(s)ds, j ≥ i + 2.

amj =

⎧⎪⎨⎪⎩

0, j ≤ m − 2

− ∫ (T−h)

(T−2h)

1

2h2
(2s − 2T + 3h)B(s)ds, j = m − 1

B(T) − ∫ T

(T−2h)

1

2h2
(2s − 2T + 3h)B(s)ds, j = m.

(8)

X(t) = f (t) + ∫
t

0

�(s, t)X(s) ds

+

n∑
j=1

∫
t

0

�j(s, t)X(s) dBj(s), t ∈ D,

We replace X(t), f (t),�(s, t) and �j(s, t) , j = 1, 2,… , n by 
their approximations which are obtained by MHFs:

where � and � are stochastic MHFs coefficient vectors and � 
and �j , j = 1, 2,… , n are stochastic MHFs coefficient matri-
ces. Substituting (9)–(12) in relation (8), we obtain

Using the 6-th property in relation (13), we get

Utilizing operational matrices defined in relations (5) and 
(6) in (14), we have

Let � = �Tdiag(�)� and �j = ��
Tdiag(�)��, j = 1, 2,… , n. 

Applying property (7) in relation (15) yields

therefore, by using the third property and replacing ≃ by = , 
we have

which is a linear system of equations that gives the approxi-
mation of X with the help of MHFs.

(9)X(t) ≃ �T�(t) = �(t)T�,

(10)f (t) ≃ �T�(t) = �(t)T�,

(11)�(s, t) ≃ �(t)T�T�(s) = �(s)T��(t),

(12)
�j(s, t) ≃ �(t)T�T

j
�(s) = �(s)T�j�(t),

j = 1, 2,… , n,

(13)

�(t)T� ≃ �(t)T� +

(
∫

t

0

�(t)T�T�(s)�(s)T� ds

)

+

n∑
j=1

(
∫

t

0

�(t)T��
T�(s)�(s)T� dBj(s)

)
.

(14)

�(t)T� ≃ �(t)T� +�(t)T�Tdiag(�)

(
∫

t

0

�(s) ds

)

+

n∑
j=1

�(t)T��
Tdiag(�)

(
∫

t

0

�(s) dBj(s)

)
.

(15)

�(t)T� ≃ �(t)T� +�(t)T�Tdiag(�)��(t)

+

n∑
j=1

�(t)T��
Tdiag(�)���(t).

�(t)T� ≃ �(t)T� +�(t)T�̃ +

n∑
j=1

�(t)T �̃j,

� = � + �̃ +

n∑
j=1

�̃j,
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Error analysis

In this section, the error analysis is studied. We propose 
some conditions to show that the rate of convergence for 
this method is O(h3).

Theorem 2  [34] Let tj = jh, j = 0, 1,… ,m, f ∈ � and fm  be 
the MHFs expansion of f defined as  fm(t) =

∑m

j=0
f (tj)hj(t) 

and also assume that em(t) = f (t) − fm(t) , for t ∈ D , then 
we have

and hence ‖em‖ = O(h3) . Where ‖.‖ denotes the sup-norm 
for which any continuous function f  is defined on the inter-
val [0, T) by

T h e o r e m   3   [ 3 4 ]  L e t  s
i
= t

i
= ih, i = 0, 1,… ,m,

� ∈ C
3(D × D) and �m(s, t) =

∑m

i=0

∑m

j=0
�(si, tj)hi(s)hj(t), 

be the MHFs expansion of �(s, t), and also assume that 
em(s, t) = �(s, t) − �m(s, t), then we have

and so ‖em‖ = O(h3).

Theorem 4   Let X  be the exact solution of  (8) and Xm be the 
MHFs series approximate solution of (8) , and also assume 
that

then

‖em‖ ≤ h3

9
√
3
‖f (3)‖,

‖f‖ = sup
t∈[0,T)

�f (t)�.

‖e
m
‖ ≤ h

3

9

√
3

�
‖�(3)

s
‖ + ‖�(3)

t
‖
�

+
h6

243
‖�(3+3)

s,t
‖,

H1 ∶ ‖X‖ ≤ 𝜌,

H2 ∶ ‖𝜇‖ ≤ K,

H3 ∶ ‖𝜎j‖ ≤ Mj, j = 1, 2,… , n,

H4 ∶ T(K + 𝛾(h)) +

n�
j=1

(Mj + 𝜆j(h))‖Bj‖ < 1,

‖X − Xm‖ ≤
Γ(h) + T��(h) + �

n∑
j=1

�j(h)‖Bj‖

1 −

�
T(K + �(h)) +

n∑
j=1

(Mj + �j(h))‖Bj‖
� ,

and ‖X − Xm‖ = O(h3) , where

Proof  From relation (8), we have

now the following relation is concluded

where

and

using Theorems 2 and 3, we also have

and

Γ(h) =
h3

9

√
3

‖f (3)‖,

�(h) =
h3

9

√
3

�
‖�(3)

s
‖ + ‖�(3)

t ‖
�

+
h6

243
‖�(3+3)

s,t ‖,

�j(h) =
h3

9

√
3

�
‖�(3)

js
‖ + ‖�(3)

jt
‖
�

+
h6

243
‖�(3+3)

js,t
‖,

j = 1, 2,… , n.

X(t) − Xm(t) = f (t) − fm(t)

+ ∫
t

0

(
�(s, t)X(s) − �m(s, t)Xm(s)

)
ds

+

n∑
j=1

∫
t

0(
�j(s, t)X(s) − �jm(s, t)Xm(s)

)
dBj(s),

(16)|X(t) − Xm(t)| ≤ |f (t) − fm(t)| + tN +

n∑
j=1

|Bj(t)|Nj,

N = sup
s,t∈[0,T)

|�(s, t)X(s) − �m(s, t)Xm(s)|,

Nj = sup
s,t∈[0,T)

|�j(s, t)X(s) − �jm(s, t)Xm(s)|,

(17)
N ≤ ‖�‖‖X − Xm‖ + ‖� − �m‖

�‖X − Xm‖ + ‖X‖�
≤ ‖X − Xm‖(K + �(h)) + �(h)�,

(18)
Nj ≤ ‖�j‖‖X − Xm‖ + ‖�j − �jm‖(‖X − Xm‖ + ‖X‖)

≤ (Mj + �j(h))‖X − Xm‖ + �j(h)�,
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j= 1, 2, ..., n.
By substituting (17) and (18) in relation (16), we obtain

and so

which means ‖X − Xm‖ = O(h3) . Thus, the proof is com-
plete. 	�  □

Numerical examples

In this section, we use our algorithm to solve stochastic 
Itô–Volterra integral equation with multi-stochastic terms 
stated in “Solving stochastic Itô–Volterra integral equation 
with multi-stochastic terms by the MHFs” section. In order 
to compare it with the method proposed in [22, 23], we con-
sider some examples. The computations associated with the 
examples were performed using Matlab 7 and [36].

Example 1  Consider the following linear stochastic Itô–Vol-
terra integral equation with multi-stochastic terms [22]

‖X − Xm‖ ≤ Γ(h) + T((K + �(h))‖X − Xm‖ + ��(h))

+

n�
j=1

‖Bj‖
�
(Mj + �j(h))‖X − Xm‖ + ��j(h)

�
,

‖X − Xm‖ ≤
Γ(h) + T��(h) + �

n∑
j=1

�j(h)‖Bj(t)‖

1 −

�
T(K + �(h)) +

n∑
j=1

(Mj + �j(h))‖Bj(t)‖
� ,

Table 1   Numerical results for 
Example 1

(m = 10)  (m = 40)

Nodes t 
i

Errors of 
BPFs in [22]

Errors of 
GHFs in [23]

Errors of pre-
sent method

Errors of 
BPFs in [22]

Errors of 
GHFs in [23]

Errors of 
Present 
method

0 7.9e − 5 0 0 3.6e−5 0 0
0.1 5.4e−5 1.6e−5 8.9e−6 1.6e−5 1.3e−5 1.0e−5

0.2 1.4e−4 3.9e−5 1.5e−5 6.6e−5 3.4e−5 2.2e−5

0.3 1.1e−5 9.1e−5 3.8e−5 1.7e−6 8.2e−5 3.8e−5

0.4 1.9e−4 1.3e−4 3.7e−5 7.4e−5 1.2e−4 5.1e−5

0.5 7.2e−5 1.9e−4 6.7e−5 8.9e−5 1.7e−4 6.5e−5

0.6 7.1e−5 2.7e−4 6.2e−5 4.8e−5 2.5e−4 7.9e−5

0.7 1.0e−4 3.5e−4 9.0e−5 4.8e−5 3.2e−4 9.6e−5

0.8 9.7e−5 2.9e−4 8.2e−5 1.2e−4 2.5e−4 1.0e−4

0.9 5.7e−5 2.8e−4 1.0e−4 5.2e−5 2.4e−5 1.1e−4
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Fig. 1   Numerical results for Example 1 with m = 10
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Fig. 2   Numerical results for Example 1 with m = 40
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with the exact solution

for 0 ≤ t < 1 where X  is the unknown stochas-
tic process,  def ined on the probability space 
(Ω,F,P) and B1(t),B2(t),… ,Bn(t) are the Brown-
ian motion processes. The numerical results for 
X0 =

1

200
, r =

1
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, �1 =

1
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, �2 =

2

50
, �3 =

4

50
, �4 =

9

50
 a r e 

shown in Table  1. Also curves in Figs. 1 and 2 show the 
exact and approximate solutions computed by this method 
for m = 10 and m = 40 . Figures 3 and 4 represent the errors 
of the present method.

Example 2  Let [22]

be a linear stochastic Itô–Volterra integral equation with 
multi-stochastic terms with the exact solution

X(t) = X0 + ∫
t

0

rX(s) ds

+

n∑
j=1

∫
t

0

�jX(s)dBj(s), s, t ∈ [0, 1),

X(t) = X0e
(r−

1
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j
)t+
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�jBj(t),

X(t) = X0 + ∫
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r(s)X(s) ds
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�j(s)X(s)dBj(s), s, t ∈ [0, 1),
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Fig. 3   Error curve of the method for Example 1 with m = 10
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Fig. 4   Error curve of the method for Example 1 with m = 40

Table 2   Numerical results for 
Example 2

(m = 10) (m = 40)

Nodes t 
i

Errors of 
BPFs in [22]

Errors of 
GHFs in [23]

Errors of pre-
sent method

Errors of 
BPFs in [22]

Errors of 
GHFs in [23]

Errors of 
Present 
method

0 4.3e − 4 0 0 1.0e−4 0 0
0.1 7.5e−4 1.2e−4 1.8e−4 3.3e−4 1.2e−4 1.3e−4

0.2 9.5e−5 3.2e−4 1.7e−4 4.1e−4 2.2e−4 4.3e−5

0.3 9.5e−4 7.6e−4 4.4e−4 3.1e−4 4.7e−4 1.0e−4

0.4 3.7e−3 5.6e−3 1.2e−3 9.7e−4 2.6e−3 5.1e−4

0.5 4.2e−3 3.4e−2 2.2e−3 1.6e−3 1.1e−2 8.0e−4

0.6 1.1e−3 5.3e−3 3.1e−3 8.3e−4 1.5e−1 1.4e−3

0.7 1.5e−3 5.7e−2 3.9e−3 1.5e−3 3.5e−2 2.1e−3

0.8 4.2e−4 6.5e−3 9.3e−3 8.2e−3 2.6e−2 5.2e−3

0.9 2.4e−2 2.9e−2 8.8e−3 1.0e−2 1.0e−2 5.0e−3

1 1.6e−2 6.9e−2 1.6e−2 1.1e−2 6.3e−1 1.1e−2
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for 0 ≤ t < 1, where X  is the unknown stochas-
t ic process def ined on the probabil i ty space 
(Ω,F,P)  a n d  B1(t),B2(t),… ,Bn(t)   a r e  t h e 

X(t) = X0e
(∫ t

0
r(s)−

1

2

∑n

j=1
�2
j
(s)ds+

∑n

j=1
∫ t

0
�j(s)dBj(s))

Brownian motion processes. The numerical results for 
X0 =

1

12
, r =

1

30
, �1 =

1

10
, �2(s) = s2, �3(s) =

sin(s)

3
 are inserted 

in Table 2. Also curves in Figs. 5 and 6 show the exact and 
approximate solutions computed by this method for m = 10 
and m = 40 . Figures 7 and 8 represent the errors of the pre-
sent method.

Conclusion

Finding an analytical exact solution for stochastic equations 
usually seems impossible. Therefore, it is convenient to use 
stochastic numerical methods to find some approximate 
solutions. The MHFs, as a simple and suitable basis, adopt to 
solve stochastic Itô–Volterra integral equations with multi-
stochastic terms. With this choice, the vector and matrix 
coefficients are found easily. This method results in a linear 
system of equations that can be solved simply. Numerical 
results of the examples show that the MHFs tend to more 
accurate solutions than the BPFs and GHFs do.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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