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Abstract
This paper introduces an approach based on hybrid operational matrix to obtain a numerical scheme to solve fractional

differential equations. The idea is to convert the given equations into a system of equations, based on the block-pulse and

Legendre polynomials. Also, we employ the Banach fixed-point theorem to analyze the problem on the Banach algebra

C[0, b] for some fractional differential equations, which include many key functional differential equations that arise in

linear and nonlinear analysis.
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Introduction

The fractional differential equation (FDE) has received

considerable interest and has constituted many applications

in various scientific such as continuum and statistical

mechanics [10], dynamical systems [8], and optimal con-

trol problems [2, 7, 9]. The most of FDEs cannot be solved

analytically, and on the other hand, many applications of

these problems motivate us to develop numerical schemes

for their solutions. For this purpose, some techniques were

suggested and there are some studies on the numerical

method to solve FDEs, for example, see [9, 11, 12, 14, 15].

Another technique applied to solve FDE is to use the

operational matrix of fractional order [2, 6, 11, 17]. In this

study, we present a numerical technique to solve FDEs

CDlgðsÞ ¼F s; gðsÞð Þ; m� 1\l�m; ð1aÞ

gðjÞð0Þ ¼ dj; j ¼ 0; 1; . . .;m� 1; ð1bÞ

where m 2 N and CD: denotes the Caputo fractional

derivative [3, 14]. Our suggested method is based upon the

piecewise continuous functions and Legendre polynomials,

depending on the operational matrices of fractional inte-

gration. The exclusivities of hybrid functions with the

operational matrix are used to convert the FDE to an

algebraic equation, and then, are utilized to evaluate the

upon expanding unknown function by the basis functions

with unknown coefficients.

The following is an overview of this article. In Sect. 2,

briefly some definitions and mathematical preliminaries of

the fractional calculus have been introduced. In Sect. 3, we

consider existence and uniqueness theorems of the desired

FDEs. Some proper properties of the hybrid basis con-

sisting of the block-pulse functions and Legendre polyno-

mials, and approximation of function by these basis are

presented in Sect. 4. The relevant operational matrix is

obtained in Sect. 5, end of this section is devoted to

applying the hybrid functions method for solving FDEs. In

Sect. 6, through the provided examples, our numerical

finding reported and the reliability and performance of the

proposed scheme is demonstrated.
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Preliminaries and basic definitions

We give a few traits concerning of fractional calculus

[3, 14]. Let g 2 L1½0; b� (space of Lebesgue integrable real

functionsÞ; and l 2 Rþ ¼ ð0;1Þ; be a fixed number.

Definition 1 The operator Jl, defined on L1½0; b� by

Jlg sð Þ ¼ 1

CðlÞ

Z s

0

s� uð Þl�1
g uð Þdu;

for 0� s� b, is denominated the Riemann–Liouville frac-

tional integral operator of order l, where Cð:Þ denotes the
Gamma function.

The operator Jl transforms the space L1½0; b� into itself

[14].

Definition 2 The operator RLDl, defined by

RLDlg ¼ D ld eJ ld e�lg

ð :d e denote ceiling function, xd e ¼ min z 2 Z : z� xf gÞ is

called the Riemann–Liouville fractional differential

operator.

Definition 3 For g 2 L1½0; b�,

CDlg sð Þ ¼
Jm�lDmgðsÞ; m� 1\l\m; m 2 N;

dm

dtm
g sð Þ; l ¼ m;

8<
:

is the Caputo fractional derivative.

Note that Jl CDlg sð Þ ¼ g sð Þ �
Pm�1

j¼0 g jð Þ 0þð Þ sj
j! ;

m� 1\l�m; m 2 N:

Lemma 1 [3] Let l� 0. Assume that g is such that both
CDlg and RLDlg exist. Then,

CDlg sð Þ ¼RLDlg sð Þ �
Xld e�1

j¼0

Djyð0Þ
Cðj� lþ 1Þ s

j�l:

Under the hypotheses of Lemma 1, CDlg sð Þ ¼RLDlg sð Þ
holds if and only if g has an ld e-fold zero at 0, i.e., if and

only if Djy 0ð Þ ¼ 0; for j ¼ 0; 1; . . .; ld e � 1:

Existence and uniqueness

We study the solvability of Problem () for g 2 C½0; b�. In
what follows, we suppose that Fðs; :Þ : ½0; b� � R �! R; be

satisfied in the Lipschitz condition respect to the second

component, with Lipschitz constant l, and there exist the

constants k and g such that F s; gðsÞð Þj j � kþ g gðsÞj j(sub-
linear nonlinearity), for all s 2 ½0; b� and gðsÞ 2 R.

Theorem 1 For 0\h ¼ lbl

Cðlþ1Þ\1, Eq. (1a) and (1b) has

a unique solution.

Proof To prove this result, we define operator K on the

space C[0, b] with

Kgð ÞðsÞ ¼ 1

C lð Þ

Z s

0

s� uð Þl�1
F u; gðuÞð Þdu; s 2 0; b½ �:

We shall show that K : ½0; b� � R �! R is a contraction

map. For g1; g2 2 C½0; b� and s 2 ½0; b�, we have

Kg1ð ÞðsÞ � Kg2ð ÞðsÞj j

¼ 1

CðlÞ

Z s

0

s� uð Þl�1
F u; g1ðuÞð Þ � F u; g2 uð Þð Þ½ �du

����
����

� 1

C lð Þ

Z s

0

s� uð Þl�1
l g1 uð Þ � g2 uð Þj j½ �du

� 1

C lð Þ l g1 � g2k k
Z s

0

s� uð Þl�1
du

¼ lsl

C lþ 1ð Þ g1 � g2k k� h g1 � g2k k:

Therefore, according to condition 0\h\1; the mapping K
is contraction, so by the Banach’s principle has a unique

fixed-point, and there exists a unique solution to problem

(1). h

Theorem 2 K maps bounded sets into equicontinuous sets

of C[0, b].

Proof Let s1; s2 2 ½0; b�; s1\s2; and g belong to a boun-

ded set, then we have

KðgÞðs2Þ � KðgÞðs1Þj j

� 1

CðlÞ

Z s1

0

s2 � uð Þl�1�ðs1 � uÞl�1
h i

F u; gðuÞð Þdu
����

����
þ 1

CðlÞ

Z s2

s1

ðs2 � uÞl�1
F u; gðuÞð Þdu

����
����

� kþ g gðuÞk k
CðlÞ

Z s1

0

ðs2 � uÞl�1 � ðs1 � uÞl�1
h i

du

����
����

þ kþ g gðuÞk k
CðlÞ

Z s2

s1

ðs2 � uÞl�1
du

����
����

� 2
kþ g gðuÞk k
Cðlþ 1Þ ðs2 � s1Þl:

As s1 ! s2 the last term tends to zero. The equicontinuous

for the cases s1\s2 � 0 and s1 � 0� s2 is explicit. h

Basis functions

A set of block-pulse functions bpðsÞ; p ¼ 1; 2; . . .;P for s 2
½0; 1Þ is defined as follows [11, 12]:
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bp sð Þ ¼ 1;
p� 1

P
� s\

p

P
;

0; o:w:

8<
: ð2Þ

These functions are disjoint and have the property of

orthogonality on [0, 1).

The hybrid functions hpqðsÞ; p ¼ 1; 2; . . .;P; q ¼
0; 1; . . .;Q� 1; on ½0; sf Þ are defined as

hpqðsÞ ¼
Lq

2P

sf
s� 2pþ 1

� �
; s 2 p� 1

P
sf ;

p

P
sf

� �
;

0; o:w:

8<
:

where p is the order of the block-pulse functions and LqðsÞs
are the well-known Legendre polynomials of order q with

the following recursive formula:

L0ðsÞ ¼ 1; L1ðsÞ ¼ s;

Lqþ1ðsÞ ¼
2qþ 1

qþ 1

� �
sLqðsÞ �

q

qþ 1

� �
Lq�1ðsÞ; q ¼ 1; 2; . . .

It is obvious that the set of hybrid functions is orthogonal.

A function g(s), defined on ½0; sf Þ can be expanded as

gðsÞ ffi
XP
p¼1

XQ�1

q¼0

cpqhpqðsÞ ¼ CS
THSðsÞ; ð3Þ

where S ¼ PQ,

CS ¼ c10; . . .; c1ðQ�1Þ; c20; . . .; c2ðQ�1Þ; . . .; cP0; . . .; cPðQ�1Þ
� �T

;

and

HSðsÞ ¼ h10ðsÞ; . . .; h1ðQ�1ÞðsÞ; h20ðsÞ; . . .;
�

h2ðQ�1ÞðsÞ; . . .; hP0ðsÞ; . . .; hPðQ�1ÞðsÞ�T: ð4Þ

Applying operational matrices

Let

JlHSðsÞ 	 P
l
S�SHSðsÞ; ð5Þ

where P
l
S�S is obtained as the operational matrix of the

fractional integration for hybrid functions, by the following

formula:

P
l
S�S ¼ US�SF

l
S�SU

�1
S�S: ð6Þ

Also, matrix US�S is an invertible matrix and define using

vector HSðsÞ in collocation points sp ¼ 2p�1
2S

; p ¼
1; 2; . . .; S as following:

US�S ¼ HS

1

2S

� �
HS

3

2S

� �
. . . HS

2S� 1

2S

� �� �
;

and

F
l
S�S ¼

1

Sl
1

Cðlþ 2Þ

1 e1 e2 . . . eS�1

0 1 e1 . . . eS�2

0 0 1 . . . eS�3

..

. . .
. ..

.

0 0 0 0 1

2
66666664

3
77777775
;

with ej ¼ ðjþ 1Þlþ1 � 2jlþ1 þ ðj� 1Þlþ1; for j ¼ 1; 2;

. . .; S� 1.

Furthermore, using Eq. (2) and taking BSðsÞ ¼ ½b1ðsÞ;
b2ðsÞ; . . .; bSðsÞ�T; hybrid functions can be expanded by S-

term of the block-pulse functions as

HSðsÞ ¼ US�SBSðsÞ; ð7Þ

and since F
l
S�S is the operational matrix associated with the

block-pulse functions, we get

JlBSðsÞ 	 F
l
S�SBSðsÞ: ð8Þ

Finally, from Eqs. (6)–(8), one can conclude that

JlHSðsÞ ¼ JlUS�SBS sð Þ ¼ US�SJ
lBSðsÞ

	 US�SF
l
S�SBSðsÞ ¼ P

l
S�SUS�SBSðsÞ:

ð9Þ

Method implementation

Consider a nonlinear differential equation of fractional

order. We approximate CDlgðsÞ by the hybrid functions as

CDlgðsÞ 	 CS
THSðsÞ; ð10Þ

where CS ¼ c1; c2; . . .; cS½ �T is an unknown vector. From

Eq. (10), we get

Jl CDlgðsÞ 	 CS
TJlHSðsÞ ¼) gðsÞ 	 CS

TJlHSðsÞ þ
Xm�1

j¼0

dj

j!
s j;

from Eq. (9), we have

gðsÞ 	 CS
TP

l
S�SUS�SBSðsÞ þ

Xm�1

j¼0

dj

j!
s j: ð11Þ

Substituting CDlgðsÞ and g(s) from relations (10), (11) in

Eq. (1a) and (1b), we obtain a system of algebraic equa-

tions. Implementation of the proposed method is presented

in the next section via numerical experiments.

Numerical experiments

We present some examples to comprehend overview and

demonstrate the efficiency of the described method.

Example 1 Consider the following FDE [1]:
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CD0:5gðsÞ ¼ �gðsÞ þ hðsÞ ð12Þ

with gð0Þ ¼ 0, where hðsÞ ¼ s2 þ 2
Cð2:5Þ s

1:5 and the exact

solution is gðsÞ ¼ s2. To solve Eq. (12), let CD0:5gðsÞ ¼
CS

THSðsÞ, using Eqs. (3), (11), we have

gðsÞ ¼ CS
TP0:5

S�SUS�SBSðsÞ;

hðsÞ ¼ hTSHSðsÞ;

where hTS is a known constant vector.

Substituting these equations into Eq. (12), we give

CS
TUS�SBSðsÞ þ CS

TP0:5
S�SUS�SBSðsÞ � hTSUS�SBSðsÞ ¼ 0:

ð13Þ

We solved the problem, applying the technique described

in Sect. 4, the absolute errors for Q ¼ 3;P ¼ 2; 4; 6 are

listed in Table 1.

From Table 1, observed that, we have an acceptable ap-

proximation of the exact solution. Also, increasing the

number of basis functions, provide improvement in the

accuracy of the solutions.

Example 2 In [4, 16, 17], the FDE

CDlg sð Þ ¼ �g sð Þ; 0\l� 2;

gð0Þ ¼ 1; g0ð0Þ ¼ 0;

	
ð14Þ

has been solved by different methods. The exact solution is

as follows [4]:

gðsÞ ¼ Elð�slÞ;

where

ElðxÞ ¼
X1
j¼0

xj

Cðljþ 1Þ ;

is the Mittag–Leffler function of order l.
Since Jl CDlgðsÞ ¼ gðsÞ � gð0Þ � tg0ð0Þ; we have the

following algebraic system for Eq. (14):

CS
TUS�SBSðsÞþCS

TP
l
S�SUS�SBSðsÞ� ½1;1; . . .;1�BSðsÞ ¼ 0:

For l ¼ 1 and l ¼ 2, the exact solutions of Eq. (14) are

gðsÞ ¼ e�s and gðsÞ ¼ cos s, respectively. Figure 1 displays

the numerical results for g(s) with S ¼ 12, l ¼
0:25; 0:5; 0:75; 0:95; 1; and l ¼ 1; 1:25; 1:5; 1:75; 1:95; 2. It

is evident that as l approaches close to 1 or 2, the

numerical solution by the presented hybrid method in

previous sections converges to the exact solution.

Table 2 shows the absolute errors for l ¼ 0:85; 1:2; 1:5

and S ¼ 8; 10; 24. Clearly, the approximations achieved

through the hybrid scheme are in accordance with those

established with other mentioned numerical schemes

[16, 17].

Example 3 Consider the following fractional Riccati

equation [1, 13, 18]:

CDlgðsÞ ¼ 2gðsÞ � g2ðsÞ þ 1; gð0Þ ¼ 0; 0\l � 1:

ð15Þ

Table 1 Absolute errors with Q ¼ 3;P ¼ 2; 4; 6 in different values of

s for Eq. (12)

s values P ¼ 2 P ¼ 4 P ¼ 6

0.1 3:1466� 10�3 8:09955� 10�4 5:85414� 10�5

0.2 2:90251� 10�3 7:31332� 10�4 5:23805� 10�5

0.3 2:69346� 10�3 6:743� 10�4 4:82954� 10�5

0.4 2:51946� 10�3 6:31962� 10�4 4:52297� 10�5

0.5 2:37916� 10�3 5:98139� 10�4 4:27865� 10�5

0.6 2:27367� 10�3 5:70408� 10�4 4:07613� 10�5

0.7 2:17927� 10�3 5:46509� 10�4 3:90388� 10�5

0.8 2:09596� 10�3 5:25812� 10�4 3:75444� 10�5

0.9 2:02375� 10�3 5:07526� 10�4 3:62287� 10�5

1 3:04263� 10�3 6:10456� 10�4 4:13375� 10�5

g s

µ=0.25
µ=0.5
µ=0.75
µ=0.95
µ=1

µ=1 (Exact)

s
0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

µ=1.25
µ=1.5
µ=1.75
µ=1.95

µ=1
µ=1 (Exact)

µ=2
µ=2 (Exact)

s

g s

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 1 Numerical solutions of Example 2, for S ¼ 12; 0\l� 1 (left) and 1� l� 2 (right)
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Assume CDlgðsÞ ¼ CS
THSðsÞ, using Eq. (11), we have

gðsÞ ¼ CS
TP

l
S�SUS�SBSðsÞ:

Let

CS
TP

l
S�SUS�S ¼ ½a1; a2; . . .; aS�;

applying virtues of the block-pulse function, we get

g2ðsÞ ¼ ½a21; a22; . . .; a2S�BSðsÞ ¼ AT
SBSðsÞ:

Substituting these equations into FDE (15), we have the

following system of nonlinear equations:

CS
TUS�SBSðsÞ � 2CS

TP
l
S�SUS�SBSðsÞ þ AT

SBSðsÞ
� 1; 1; . . .; 1½ �BSðsÞ ¼ 0:

For l ¼ 1, the analytic solution of Eq. (15) is

gðsÞ ¼ 1þ
ffiffiffi
2

p
tanh

ffiffiffi
2

p
sþ 1

2
ln

ffiffiffi
2

p
� 1ffiffiffi

2
p

þ 1

� �� �
:

In Table 3, the results for Example 3 with l ¼ 0:5; 1 and

S ¼ 16; by the hybrid method in some points s 2 ½0; 1�; are
given. Also, these outcomes are compared with Refs.

[13, 18]. Moreover, absolute errors of approximate solu-

tions of Example 3 for S ¼ 48 are shown in Fig. 2.

Table 2 Absolute errors of

solution Example 2, with

comparison to Refs. [16, 17] for

l ¼ 0:85; 1:2; 1:5 and S ¼
8; 10; 24 in different values of s

s l ¼ 0:85 l ¼ 1:2 l ¼ 1:5

[17] ðm ¼ 8Þ Ours ðS ¼ 8Þ [17] ðm ¼ 10Þ Ours ðS ¼ 10Þ [16] ðm ¼ 24Þ Ours ðS ¼ 24Þ

0.1 8:0� 10�4 4:916� 10�4 3:1� 10�3 2:64� 10�4 1:051� 10�4 6:905� 10�5

0.2 1:2� 10�3 1:703� 10�4 – 3:556� 10�4 4:99� 10�5 3:532� 10�5

0.3 6:6� 10�4 1:079� 10�4 2:8� 10�3 3:988� 10�4 1:455� 10�5 2:291� 10�5

0.4 8:0� 10�4 1:29� 10�4 – 5:661� 10�4 1:178� 10�5 8:041� 10�6

0.5 7:5� 10�4 4:104� 10�4 4:5� 10�3 5:208� 10�4 3:282� 10�5 6:492� 10�5

0.6 5:9� 10�4 4:156� 10�4 – 4:956� 10�4 4:285� 10�5 4:974� 10�5

0.7 7:6� 10�4 2:683� 10�4 3:6� 10�3 4:716� 10�4 6:324� 10�5 6:689� 10�5

0.8 1:8� 10�4 1:785� 10�4 – 4:349� 10�4 7:365� 10�5 7:061� 10�5

0.9 6:2� 10�4 1:319� 10�4 1:8� 10�3 3:949� 10�4 8:126� 10�5 7:968� 10�5

Table 3 The results of Example 3 compared with Refs. [13, 18] for S ¼ 16

s l ¼ 0:5 l ¼ 1

[13] [18] ðm ¼ 192Þ Ours ðS ¼ 16Þ [13] [18] ðm ¼ 192Þ Ours ðS ¼ 16Þ Exact

0.1 0.321730 0.592756 0.600043 0.110294 0.110311 0.110302 0.110295

0.2 0.629666 0.9331796 0.952271 0.241965 0.241995 0.241968 0.241977

0.3 0.940941 1.1739836 1.174001 0.395106 0.395123 0.395112 0.395105

0.4 1.250737 1.3466546 1.348733 0.568115 0.567829 0.567815 0.567812

0.5 1.549439 1.4738876 1.475924 0.757564 0.756029 0.756022 0.756014

0.6 1.825456 1.5705716 1.573608 0.958259 0.953576 0.953581 0.953566

0.7 2.066523 1.646199 1.646551 1.163459 1.152955 1.152952 1.152949

0.8 2.260633 1.706880 1.705330 1.365240 1.346365 1.346368 1.346364

0.9 2.396839 1.756644 1.750815 1.554960 1.526909 1.526912 1.526911

1 2.466004 1.798220 1.783109 1.723810 1.689494 1.689501 1.689498

(s)

 s
0.2 0.4 0.6 0.8 1.0

5. 10 7

1. 10 6

1.5 10 6

2. 10 6

2.5 10 6

3. 10 6

Fig. 2 Absolute errors of Example 3 for S ¼ 48
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Example 4 [5] We implement the presented hybrid

method in this study for solving nonlinear FDE

CD1:5gðsÞ þ 1

10
g3ðsÞ ¼ 4

ffiffiffi
s

p

r
þ 1

10
s6; 0\s \2;

gð0Þ ¼ g0ð0Þ ¼ 0;

8<
:

ð16Þ

with the exact solution gðsÞ ¼ s2. The behavior of the

results with S ¼ 4; 8; 12 is plotted in Fig. 3.

Example 5 For FDE [4, 17],

CDlgðsÞ ¼ 40320

Cð9� lÞ s
8�l � 3

C 5þ l
2

� �

C 5� l
2

� � s4�l
2 þ 9

4
C lþ 1ð Þ þ ð3

2
sl=2 � s4Þ3 � g

3
2ðsÞ;

0\l\2; gð0Þ ¼ 0; g0ð0Þ ¼ 0;

gðsÞ ¼ s8 � 3s4þ
l
2 þ 9

4
sl ðexactsolutionÞ;

8>>>>>>><
>>>>>>>:

the absolute errors for l ¼ 0:2; 0:4; . . .; 1:8 and S ¼ 4

reported in Table 4.

Example 6 Finally, consider the multi-order FDE

with the exact solution gðsÞ ¼ cos s and nonlocal boundary

value conditions

gð0Þ ¼ 1; g0ð0Þ ¼ 0;

gð0Þ � 0:65g
p
4

� �
¼ gð1Þ;

(
ð18Þ

where pFqðl1; l2; . . .; lp; m1; m2; . . .; mq; sÞ denotes the gen-

eralized hypergeometric function. Applying our proposed

approach with Eqs. (11), (18), we have [12],

CD2:5gðsÞ ¼ CS
THSðsÞ; CD

2
3gðsÞ ¼ CS

TP
11
6

S�SUS�SBSðsÞ þ d2s;

gðsÞ ¼ CS
TP2:5

S�SUS�SBSðsÞ þ 1þ d2

2
s2;

therefore,

gð1Þ ¼ CS
TP2:5

S�SUS�SBSð1Þ þ 1þ d2

2
;

g
p
4

� �
¼ CS

TP2:5
S�SUS�SBS

p
4

� �
þ 1þ d2

p2

32
:

ð19Þ

From boundary condition (18) and Eq. (19), one concludes

that

d2 ¼ �
CS

TP2:5
S�SUS�SBSð1Þ þ 0:65CS

TP2:5
S�SUS�SBS

p
4

 �
þ 0:65

2 1þ 0:65 p2
16

 � :

ð20Þ

Consequently, FDE (17) can be shown as the following

algebraic system:

CS
TUS�SBSðsÞ � 2CS

TP
11
6

S�SUS�SBSðsÞ þ AS
TBSðsÞ

þ 2CS
TP2:5

S�SUS�SBSðsÞ
þ d2s

2CS
TP2:5

S�SUS�SBSðsÞ ¼ hðsÞ;

ð21Þ

where AS
T ¼ ½a21; a22; . . .; a2S�, with

CS
TP2:5

S�SUS�S ¼ ½a1; a2; . . .; aS�;

and

hðsÞ ¼ 2d2s� 1� d22
4
s4 � d2s

2 þ f ðsÞ:

Using the hybrid method with Q ¼ 5;P ¼ 5; 10; 20 for

s 2 ð0; 1Þ, the maximum absolute errors of Example 6 are

g s

s

S=4
S=8
S=12
Exact

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

Fig. 3 Comparison of g(s) for S ¼ 4; 8; 12 with exact solution of

Example 4

CD2:5gðsÞ � 2 CD
2
3gðsÞ þ g 2ðsÞ ¼ f ðsÞ;

f ðsÞ ¼ cos2 sþ 9

2 C
1

3

� � s4=3 1F2 1;
7

6
;
5

3
;� s2

4

� �
þ 0:752253 s1:5 1F2ð1; 1:75; 1:25;�

s2

4
Þ;

8>>><
>>>:

ð17Þ
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reported in Table 5. Also, the approximate error of our

proposed scheme for this example is illustrated in Fig. 4.
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