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Abstract
Zn0.3Fe0.45O3 bimetallic oxide nanoparticle (ZnFeBONp) was synthesized and characterized by FESEM, EDS, XRD, BET, 
TEM and FT-IR techniques with the aim of exploring its application for removing of Congo red dye from waste samples. The 
effects of pH, contact time, adsorbent dosage and dye concentration on the removal of dye were investigated and optimized 
as pH 6.5, 40 min contact time, 0.2 g adsorbent dose for 20 ppm dye. Results indicated that the synthesized adsorbent could 
effectively remove high concentrations of dye in a short contact time. Isotherm modeling revealed that the Langmuir isotherm 
could better describe the adsorption of the dye on the ZnFeBONp as compared to other models. The qmax up to 333.33 mg g−1. 
The results showed that the adsorption system followed the Ho and McKay equations for the entire adsorption. Kinetics of 
Congo red adsorption on ZnFeBONp best fit with the pseudo-second-order model. Because of the high-specific surface area 
and nano-scale particle size, ZnFeBONp indicated favorable adsorption behavior for dye.

Keywords  ZnFeBONp · Isotherm modeling · Ho and McKay equations · Pseudo-second-order model

Abbreviations
αL	� Langmuir isotherm constant (L mg−1)
C0	� Initial dye concentration in liquid phase (mg L−1)
Ce	� Liquid phase dye concentration at equilibrium 

(mg L−1)
Ks	� Equilibrium rate constant of pseudo-second-order 

adsorption (g mg−1 min−1)
Kf	� Freundlich constant (L g−1)
KL	� Langmuir isotherm constant (L g−1)
qe	� Amount of dye adsorbed at equilibrium (mg g−1)
qt	� Amount of dye adsorbed at time t (mg g−1)
Qmax	� Maximum adsorption capacity of the adsorbent 

(mg g−1)
m	� Mass of adsorbent used (g)
n	� Freundlich isotherm exponent
R2	� Linear correlation coefficient

V	� Volume of dye solution (L)
RL	� Separation factor

Introduction

Water pollution due to industrial dye effluent is a very seri-
ous problem which undergoes chemical as well as biological 
changes, consume dissolved oxygen, and destroy aquatic life 
[1–3]. Dyes are used in various industries such as construc-
tion, textile, paper, plastics, leather, cosmetics, etc., for the 
purpose of coloring the related products. Therefore, large 
amount of colored wastewater is produced. Many dyes are 
highly poisonous, carcinogenic, and stable from daylight 
and oxidation. Dyes not only make water colorful but also 
do harm for the survival of aquatic life and the ecosystem 
[2]. For example, dyes will deadly affect the photosynthetic 
aquatic life due to the reduction of light penetration [3]. 
Thus, the researcher working for developing an effective and 
suitable way to eliminate dye contamination from wastewa-
ter has become an urgent issue.

Till date, several techniques, such as coagulation, bio-
logical treatment, chemical oxidation, photocatalytic deg-
radation and adsorption, have been explored to remove 
the dye contaminants from wastewater [4–7]. Adsorption 
is a more competitive method for removal of dyes due to 
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its high efficiency and economy. Currently, adsorption has 
been proved to be a simple and time-saving technology 
for removal of dyes [8], in which the key technology is to 
exploit selective and efficient adsorbents [9, 10]. Conven-
tional adsorbents such as silica gel [11], activated alumina 
[12] and zeolite molecular sieve [13, 14], displayed low 
removal efficiency.

In last few years, we synthesized the organic receptor 
for the selective and sensitive detection of metal ion and 
removal of phosphate from waste water [15–23]. In the 
current study, we report the synthesis of ZnFeBONP and 
explore its ability to remove Congo red (CR) from aqueous 
solution. Congo red was taken as models for azo dyes, for 
removal investigation. For the present study, a batch-contact-
time method was used, and the equilibrium of CR adsorption 
on to ZnFeBONP was investigated with attempts to fit the 
data to Langmuir, Freundlich and Temkin equations. The 
uptake of CR on ZnFeBONP was examined as a function of 
adsorbate concentration, adsorbent concentration and con-
tact time. The kinetic order and thermodynamic parameter 
was deduced on CR adsorption on ZnFeBONP (Scheme 1). 

Materials and method

Instrumentation

A Metrohm model 713 pH-meter was used for pH meas-
urements. Field emission scanning electron micros-
copy (FE-SEM) images were obtained with a Bruker 
S-4800 instrument operated at 15.0 kV. EDX was done 
on the same instrument at PM Image size: 500 × 375 
Mag:40,000 × HV:15.0 kV. X-ray diffraction (XRD) pat-
tern was recorded by X-ray diffractometer (Germany, 
Bruker D8-advance, Cu Ka k = 1.54056 nm) for 2µ val-
ues over 10–700. The UV–Vis spectra were recorded on 

Shimadzu UV-1800 spectrophotometer at room temperature 
using quartz cell of 1 cm path length, multipoint Brunau-
ere–Emmere–Teller (BET) method were used for the deter-
mination of specific surface area of the nanoparticle from 
the N2 adsorption data at the relative pressure (P/P0) range 
of 0.05–1.0, FT-IR spectrum has been taken using Brukers 
instrument and in the range of 4000–500 cm−1.

Reagents and materials

All the chemicals and reagents used in this work were of 
analytical grade and purchased from Merck (Merck, Darm-
stadt, Germany). The water used for aqueous phase was 
MiliQ water (A Grade) in every stage of the study.

Synthesis of ZnFeBONP

The ZnFeBONP were synthesized according to a co-pre-
cipitation method followed by magnetic stirring. First, 4.5 g 
of ZnCl2 and 7.4 g of FeCl3 were added to 300 ml of DW. 
Then, 35 ml of 1 M NaOH solution was added to the former 
solution dropwise. The whole solution is then stirred with 
magnetic stirrer for 2 h at 60 °C temperature, leading to 
smaller and more homogenized particles. A brown precipi-
tate quickly formed, which was allowed to crystallize com-
pletely for another 30 min. The precipitate was washed with 
DW by magnetic decantation until the pH of the suspension 
was less than 7.5. The suspension was filtered by means of 
suction pump, after filtration precipitate was dried at about 
100 °C and then crush into powder and use for further study.

Solution preparation and adsorption behavior

Adsorption behavior was performed by adding 0.05 g 
of ZnFeBONP to the 50 ml of CR solution in a 100 ml 
conical flask. The pH of the CR solution was adjusted 

Scheme 1   Molecular structure of Congo red (CR)
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at 6.5 using 0.01 molL−1 HCl or 0.1 mol L−1 NaOH and 
the solution was shaken on rotary shaker at 200 rpm for 
90 min. The aliquot taken from the solution at a fixed 
time point was centrifuged at 2000 rpm for 3 min. The 
concentration of CR in the solution was measured spec-
trophotometrically at 498 nm. The concentration of CR 
decreased with time due to its adsorption by ZnFeBONP.

The adsorption capacity of each dye in the adsorption 
system, qe, was calculated by

where Ci and Ce are initial and equilibrium concentrations 

(mg L−1), respectively, m is the mass of the adsorbent (g); 
and V is volume of the solution (L).

Results and discussion

Characterization

The ZnFeBONP were synthesized according to a co-pre-
cipitation method at constant temp 60 °C with stirring. 
Figure S1a (Supplement file) shows typical SEM images of 
the ZnFeBONP. As shown in Fig. S1a, it is found that the 
product is composed of a large quantity of nanostructures. 
The low magnification image shows the particle size and 
the average size of nanoparticle was 37.72 nm. The TEM 
image of ZnFeBONP nanoparticles was shown in Fig. 1a, 
and the average particle size was about 20 nm, which is 

(1)qe =
(

Ci − Ce

)

V∕m,

much smaller than the SEM morphology shown in Fig. 1a 
and it is good in terms of adsorption point of view. EDX was 
used to observe the elemental composition of the samples. 
The results reveal that the sample is composed of Zn, Fe 
and O in which the concentrations are about 21.76, 26.94 
and 51.29 wt%, respectively (Fig. 1b). A FT-IR spectrum 
of ZnFeBONP is presented in Fig. 2. The absorption bands 
below 687 cm−1 is attributed to Fe–O stretching vibrational 
modes. The peak at 1631 cm−1 is ascribed to the O–H bend-
ing vibration of adsorbed water molecules and the broad 
absorption band at 3372 cm−1 corresponds to the O–H 
stretching region. The observed peak at 1351 cm−1 in the 

FT-IR spectrum of ZnFeBONP may be endorsed to C–O 
single bond. The band appeared at 1473 cm−1 may be due 
to C–H bending vibration. In Fig. 3, it could be seen that 
the curve belonged to the nitrogen sorption isotherm whose 
adsorption curve was not coincident with desorption curve 
thus forming a hysteresis loop. The calculated specific sur-
face area was 133.3 m2 g−1. The X-ray diffraction patterns of 
ZnFeBONPs are shown in Fig. 4. Significant X-ray diffrac-
tion peaks occurred at 31.24°, 34.35°, 36.29°, 56.19°, 62.63° 
and 67.80° corresponds to reflection from (1 1 1), (2 0 0), (0 
0 2), (1 0 2), (3 1 1) and (2 0 0) miller planes of ZnFeBONPs 
and the corresponding peaks became stronger and narrower, 
which implied that the crystallinity was higher. The struc-
tural characterization results obtained from the XRD pat-
tern reveals that the powder is polycrystalline (cubic and 
hexagonal lattice).   

Fig. 1   a TEM image of NPs. b EDX spectra of the ZnFeBONP
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Effect of pH solution

pH of solution has very deep impact on the adsorption pro-
cess. In this study, the adsorption experiments have been 
conducted in the initial pH range from 5.0 to 8.5 and the 
corresponding result is shown in Fig. 5. The effect of the 
solution pH on the adsorption of dye onto ZnFeBONP was 
assessed at different values, ranging from 5 to 8.5. In these 
experiments, the initial concentration of dye and adsorbent 
dosage were set at 20 mg L−1 and 0.05 g, respectively, for all 
batch tests in this experiment. The % adsorption is maximum 
at pH 6.5 that is 98.88%. Therefore, further parameters were 
performed at pH 6.5. The surface of metal oxides is gener-
ally covered with hydroxyl groups that vary in form with 
pH. The experimentally calculated pHzpc of ZnFeBONPs 
is 7.1. The surface charge is positive at pH values lower 
than pHzpc, neutral at pHzpc, and negative at pH values 
higher than it. Therefore, adsorption efficiency decreases at 
pH value higher than 6.5.

Effect of time variation

The effect of contact time is a very crucial factor which 
persuades the adsorption of dye pollutant from wastewa-
ter. For this purpose, 50 mL of desired (20 mg L−1 CR 
dye) solution was prepared and further it was treated with 
50 mg of adsorbent at 298 K, the CR were separated from 
aqueous solutions and the residual concentration of dye 
pollutant in aliquot were measured by spectrophotometric 
method. The results show a very high adsorption rate at 
initial times which is recognized to the high concentration 
of adsorption sites on the surface and strong interaction 
between the adsorbate and adsorbent (Fig. 6). Over time, 
the concentration gradient reduces due to the adsorption 
of CR molecules onto the adsorbent and leads to a lower 
adsorption during the later stages. The graph shows that 
within 20 min the 88% dye was adsorbed and at 40 min 
the adsorption reaches up to 92% and remains constant.

The effect of adsorbent concentration

The effect of ZnFeBONP quantity for % adsorption was 
investigated by adding various amounts of adsorbent in 

Fig. 2   IR spectrum of the ZnFeBONP
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the range 0.05–0.2 g into the beaker containing 50 mL 
of dye solution (20 mg L−1) at pH 6.5 and 25 °C for all 
batch experiments. The results are shown in Fig. 7 and 
indicated that addition of 0.2 g of adsorbent per 50 mL 
solution of dye (20 mg L−1) lead to maximum adsorption 
of dye. The supernatant was analyzed for the remaining 
dye. The results showed that the adsorption efficiencies 
increased by increasing adsorbent dose. It was observed 
that by increasing the ZnFeBONP dosage from 0.05 to 
0.2 g, the removal efficiency (%) of dye increased from 
69.51 to 92.88%. This observation can be explained by 

the greater number of adsorption sites made available at 
greater ZnFeBONP dosages. Above 0.2 g of ZnFeBONP 
dosage, the adsorption equilibrium of dye was reached and 
the removal ratio of dye held almost no variety. Neverthe-
less, the adsorption capacity initially increased and then 
decreased as the ZnFeBONP dosage increased.

Chemical kinetic models (pseudo‑second‑order)

The pseudo-second-order model, proposed by Ho and 
McKay, can be represented in the following linear form 
[23].

Fig. 3   N2 sorption isotherm of 
magnetic ZnFeBONPs calcined 
at 450 °C for 1.5 h with abso-
lute alcohol of 20 mL
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In this model, plotting the t/qt of experimental data 
versus t is used to show its suitability for explanation of 
whole adsorption data. It was found that the plot of t/qt 
versus t is a straight line. The high and reasonable val-
ues of R2 and closeness of experimental and theoretical 
(qe) value indicate this model ability for explanation of 
adsorption process over the whole concentration range. 
Sorption kinetic studies were conducted at RT under ini-
tial dye concentration of 20 mg L−1. Adsorption kinetics 
were studied using kinetic model, namely the pseudo-
second-order model.

The pseudo-second-order kinetic model is described 
by the formula

The results showed that the adsorption system followed 
the Ho and McKay equations for the entire adsorption. 
Kinetics of Congo red adsorption on ZnFeBONP best 
fit the pseudo-second-order model, suggesting that the 
adsorption mechanism depends on the adsorbate and 
adsorbent, and the rate-limiting step may be chemisorp-
tion involving valence forces through the sharing or 

(2)t∕qt = 1∕kadq
2

e
+ t∕qe.

Fig. 5   Effect of initial pH 
of dye solution on removal 
of CR (ZnFeBONP dos-
age = 0.05 g, initial dye con-
centration = 20 mg L−1, stirring 
time = 90 min)
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exchange of electrons. This confirmed that adsorption of 
dye takes place probably via surface exchange reactions 
until the surface functional sites are fully occupied.

Adsorption isotherms

The equilibrium adsorption isotherm model, which is the 
number of mg adsorbed per gram of adsorbent (qe) vs. the 
equilibrium concentration of adsorbate (Fig. 9a), is fun-
damental in describing the interactive behavior between 
adsorbate and adsorbent. Analysis of isotherm data is impor-
tant for predicting the adsorption capacity of the adsorbent, 
which is one of the main parameter required for the design 
of an adsorption system. Equilibrium isotherm studies 
were carried out with different initial concentrations of CR 
(50–200 mg L−1) at 25 °C and pH 6.0. Three models were 
used to analyze the equilibrium adsorption data: Langmuir, 
Freundlich and Temkin [24, 25]. Langmuir’s model does 
not take into account the variation in adsorption energy, but 
it is the simplest description of the adsorption process. It is 
based on the physical hypothesis that the maximum adsorp-
tion capacity consists of a monolayer adsorption, that there 
are no interactions between adsorbed molecules, and that 
the adsorption energy is distributed homogeneously over the 
entire coverage surface.

The general form of the Langmuir isotherm is:

where Ce is the equilibrium concentration of the CR in the 
solution (mg L−1), qe is the amount of CR adsorbed per unit 

(3)qe�L∕KL = KLCe∕
(

1 + KLCe

)

,

mass of adsorbent (mg g−1), at equilibrium concentration, 
Ce, αL (L mg−1) and KL (Lg−1) are the Langmuir constants 
with αL related to the adsorption energy and qmax [= KL/αL] 
signifies the maximum adsorption capacity (mg g−1), which 
depends on the number of adsorption sites. The Langmuir 
isotherm shows that the amount of anions adsorbed increases 
as the concentration increases up to a saturation point. As 
long as there are available sites, adsorption will increase 
with increasing CR concentrations, but as soon as all of the 
sites are occupied, a further increase in concentrations of CR 
solutions does not increase the amount of CR on adsorbents 
(Table 1).

After linearization of the Langmuir isotherm, Eq. (3), we 
obtain

The values of αL and KL are calculated from the slope and 
intercept of the plot of Ce/qe vs. Ce (Fig. 8). The amount of 
CR adsorbed (mg g−1) was calculated based on a mass bal-
ance equation as given below:

where Co is the initial concentration of CR in mg L−1, V is 
the volume of experimental solution in L, and m is the dry 
weight of nanoparticles in g. The parameters of the Lang-
muir equation were calculated and are given in Table 2. 
Table 2 indicates that the maximum adsorption capacity of 
ZnFeBONP (qmax = 333.33 mg g−1) for CR is very much 
higher than that of other adsorbents.

(4)Ce∕qe = Ce�L∕KL + 1∕KL.

(5)qe = V
(

Co − Ce

)

∕m,

Fig. 7   Effect of adsorption of 
CR to ZnFeBONP at different 
initial ZnFeBONP concentra-
tions (at 25 °C, pH 6.5)
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The Freundlich equilibrium isotherm equation was also 
used to describe experimental adsorption data. This isotherm 
is an empirical equation which is used for the description of 
multilayer adsorption with interaction between adsorbed mol-
ecules. The Freundlich isotherm is the earliest known rela-
tionship describing the adsorption equation. The Freundlich 
empirical model is represented by

where Ce is the equilibrium concentration (mg L−1), qe is the 
amount adsorbed at equilibrium (mg g−1), and Kf (mg g−1) 
and 1/n are Freundlich constants depending on the tempera-
ture and the given adsorbent–adsorbate couple. n is related 
to the adsorption energy distribution, and Kf indicates the 
adsorption capacity. The linearized form of the Freundlich 
adsorption isotherm equation is

The values of Kf and 1/n calculated from the intercept 
and slope of the plot of ln qe vs. ln Ce (Fig. 9b) are listed 
in Table 2. Table 2 shows that the values of correlation 

(6)qe = KfC
1∕n
e

,

(7)ln qe = ln Kf + ln Ce∕n.

coefficient R2 for the fit of experimental isotherm data to 
Langmuir equation is more close to 0.964 than that of Fre-
undlich equation. Therefore, the Langmuir model represents 
the experimental data better on the basis of values of regres-
sion coefficients.

The Temkin isotherm contains a factor that explicitly 
accounts the interaction between adsorbing species–adsor-
bent. The Temkin equilibrium isotherm equation was also 
used to describe experimental adsorption data (Fig. 9c). 
The heat of the adsorption and the adsorbent–adsorbate 
interaction using Temkin isotherm model were evaluated 
[26].

Table 1   Percentage composition 
of metal present in the sample

El AN Series Unn. C Norm. C Atom. C Error (1 Sigma)
(wt%) (wt%) (at%) (wt%)

O 8 K-series 13.69 21.89 51.29 3.42
Fe 26 K-series 25.10 40.14 26.94 1.23
Zn 30 K-series 23.75 37.97 21.76 1.85

Total 62.54 100.00 100.00

Fig. 8   Pseudo-second-order 
adsorption kinetic plots of CR 
onto ZnFeBONP at different 
initial dye concentrations
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Table 2   Data deduced from Langmuir, Freundlich and Temkin iso-
therm plot

Langmuir isotherm Freundlich iso-
therm

Temkin isotherm

1/KL 0.262 ln Kf 4.098 B 0.029

qmax = KL/αL 333.33 1/nf 0.399 BlnKT 1.441
R2 0.993 R2 0.979 R2 0.975
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where Ce is the equilibrium concentration (mg L−1), qe is the 
amount adsorbed at equilibrium (mgg−1), B is the Temkin 
constant related to heat of the adsorption (J mol−1), T is the 
absolute temperature (K), R is the universal gas constant 
(8.314 J mol−1 K−1), KT is the equilibrium binding con-
stant (L mg−1). The values of the Temkin constants and the 
correlation coefficient are lower than the Langmuir value. 
Therefore, the Langmuir isotherm provides the best correla-
tion for the experimental data. The correlation coefficients 
R2 obtained from Temkin model were comparable to that 
obtained for Langmuir and Freundlich equations, which 
explain the applicability of Temkin model to the adsorption 
of CR onto ZnFeBONP.

(8)qe = Bl ln KT + Bl lnCe,
Separation factor

The essential feature of the Langmuir isotherm can be 
expressed in terms of a dimensionless constant separation 
factor (RL) given by the following equation:

RL values within the range 0 < RL < 1 indicate favorable 
adsorption (Fig. 9d) [27]. In this study, RL value of ZnFe-
BONP for the initial CR concentration of 50  mg  L−1, 
obtained as 0.0476, indicate favorable adsorption of CR 
onto them. The Freundlich isotherm model is an empirical 
equation that describes the surface heterogeneity of the sorb-
ent. It considers multilayer adsorption with a heterogeneous 
energetic distribution of active sites, accompanied by inter-
actions between adsorbed molecules.

(9)RL = 1∕
(

1 + �LCo

)
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Adsorption thermodynamic parameters

Thermodynamic parameter related to the adsorption pro-
cess i.e., free energy change (ΔG, kJ mol−1) for adsorp-
tion at 25 ◦C was calculated using the following equation:

where R is the universal gas constant (8.314 J mol−1 K−1), 
T is the temperature and KL is Langmuir constant (L mol−1) 
obtained from the plot of Ce/qe versus Ce. The calculated 
ΔG value was found to be − 2.430 kJ mol−1. The negative 
value of free energy change indicated the spontaneous nature 
of sorption and confirmed affinity of adsorbent for the dye 
[28, 29].

Regeneration of ZnFeBONP by heating

Regeneration capacity of an adsorbent shows the cost effec-
tiveness of the adsorbent and this over-all process plays a 
key role in its commercial application. The regeneration was 
conducted by calcinations of used ZnFeBONP at 300 °C for 
2 h. During calcinations, the adsorbed organic components 
were driven-off by its oxidative decomposition along with 
desorption of water molecules. Adsorption studies over 
regenerated ZnFeBONP were carried out at pre-optimized 
conditions. The process of regeneration and recycle of the 
adsorbent was carried out three times to confirm the per-
formance in CR removal. The adsorption capacity after 
successive regeneration and use is presented in Fig. 10. 
After first regeneration, the ZnFeBONP exhibited about 5% 
lower adsorption capacities than the fresh sample. However, 
after second and third regenerations, the adsorption capac-
ity remained constant. This suggests that, ZnFeBONP can 

(10)ΔG = −RT ln KL,

be regenerated by calcination process with an acceptable 
adsorption capacity.

Industrial applications

The most important feature of any research is that it can 
be suitability applied for industry and environment. In the 
current work, synthesized ZnFeBONP absorbent is applied 
to dye removal of industrial waste samples. The variation in 
removal percentage, particularly at higher sample volume 
and concentration of dye molecule must not exceed ± 5% to 
suppose that the method can be applied as pilot plant. The 
efficiency of the present adsorbents for the removal of CR 
from real effluents was examined using two effluent streams. 
Thereafter, in our experiments, 50 mL of concentrated 
wastewater was diluted to 500 mL, and optimized procedure 
was carried out. The result shows the significant adsorption 
of CR take place, when the volume is large but again we 
carried out experiment at high volume and concentration. 
In all the examined approaches, using 0.2 g of adsorbent 
for 1 h, more than 98% of CR removal was achieved. All 
the experimental conditions, results and comparison data 
with other material are shown in [30–42] Tables 3 and 4, 
respectively. It was found that in most cases, more than 98% 
of dye removal was achieved. This confirms the usefulness 
of the adsorbent for the CR dye removal. 

Fig. 10   Influence of regenera-
tion of ZnFeBONP by calcina-
tions on adsorption capacity
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Conclusion

ZnFeBONP were synthesized according to a co-precipitation 
method at constant temp 60 °C with stirring an average size 
distribution of 37.72 nm and utilized it as an efficient adsor-
bent for removing of Congo red from wastewater samples. 
The effects of pH, contact time, adsorbent dosage, dye con-
centration on the removal of dye were investigated separately 
through batch experiments. Results indicated optimized pH 
6.5, 40 min contact time, 0.2 mg adsorbent dose for 20 ppm 
dye. Isotherm modeling revealed that the Langmuir iso-
therm could better describe the adsorption of the dye onto 
the ZnFeBONP as compared to other models. Because of 
the high-specific surface area and nano-scale particle size, 
ZnFeBONP indicated favorable adsorption behavior for dye. 
The results showed that the adsorption system followed the 
Ho and McKay equations for the entire adsorption. Kinetics 
of Congo red adsorption on ZnFeBONp best fit the pseudo-
second-order model. At the end of this study, we can say that 
the modified ZnFeBONP nanoparticles may be used as an 
alternative sorbent for the removal of some dye molecules 
from wastewaters.
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