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Abstract In this paper, a new numerical technique implements on the time-space pseudospectral method
to approximate the numerical solutions of nonlinear time- and space-fractional coupled Burgers’ equation.
This technique is based on orthogonal Chebyshev polynomial function and discretizes using Chebyshev–
Gauss–Lobbato (CGL) points. Caputo–Riemann–Liouville fractional derivative formula is used to illustrate
the fractional derivatives matrix at CGL points. Using the derivatives matrices, the given problem is reduced
to a system of nonlinear algebraic equations. These equations can be solved using Newton–Raphson method.
Two model examples of time- and space-fractional coupled Burgers’ equation are tested for a set of fractional
space and time derivative order. The figures and tables show the significant features, effectiveness, and good
accuracy of the proposed method.

Mathematics Subject Classification 35R11 · 65M12 · 65M70 · 65Y99

1 Introduction

The time- and space-fractional Burgers’ equations arise in areas of many phenomena such as material science,
hereditary effects on nonlinear acoustic waves, chemical reaction fluid mechanics, plasma physics, optical
fibers, and finance [5,17,26,32].

In this paper, let us consider time-fractional-coupled Burgers’ equation:

∂α1

∂tα1
Z1 = ∂2

∂x2
Z1 + 2Z1

∂

∂x
Z1 − ∂

∂x
(Z1Z2), (0 < α1 ≤ 1), (1.1)

∂β1

∂tβ1
Z2 = ∂2

∂x2
Z2 + 2Z2

∂

∂x
Z2 − ∂

∂x
(Z1Z2), (0 < β1 ≤ 1), (1.2)

and space-fractional-coupled Burgers’ equation:

∂

∂t
Z1 = ∂2

∂x2
Z1 + 2Z1

∂α2

∂xα2
Z1 − ∂

∂x
(Z1Z2), (0 < α2 ≤ 1), (1.3)

∂

∂t
Z2 = ∂2

∂x2
Z2 + 2Z2

∂β2

∂xβ2
Z2 − ∂

∂x
(Z1Z2), (0 < β2 ≤ 1). (1.4)

with initial condition:

Z1(x, 0) = f1(x), Z2(x, 0) = f2(x), (x) ∈ �,
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and boundary conditions:

Z1(xL t) = g1(t), Z1(xR, t) = g2(t), t ∈ [0, 1], (x) ∈ ∂�,

Z2(xL , t) = g3(t), Z2(xR, t) = g4(t).

where � = [xL , xR], α1 and β1 are order of time-fractional derivative, and α2 and β2 are order of space-
fractional derivative.

In past years, several analytical and numerical methods have been developed for the time- and space-
fractional coupled Burger’s equation. Kurt et al. [16] have proposed exp- function method and perturbation–
iteration method for the analytical solutions of nonlinear time-fractional coupled Burgers’ equations. Senol
et al. [27] have introduced residual power series method for the numerical solutions of time-fractional burgers’
type equation with conformable fractional derivative. Cenesiz et al. [7] have obtained new type exact solutions
for time-fractional Burgers’ equation, modified Burgers’ equation, and Burgers’–Korteweg–de-Vries equation
using first integral method. Islam et al. [15] have obtained extract exact solutions for space-time-fractional
Burgers’ equation using rational fractional expansion method. Furthermore, authors have also employed exp-
function method and the extended tanh method to construct the closed form solutions. Prakash et al. [25]
have proposed fractional variational iteration method for the numerical solutions of time- and space-fractional
coupled Burgers’ equations. Chen and Li An [8] have introduced the Adomian decomposition method for
numerical solutions of coupled Burgers’ equations with time- and space-fractional derivatives. Yildirim and
Kelleci [30] have proposed homotopy perturbation method for the numerical solutions of coupled Burgers’
equations with time- and space-fractional derivatives. Asgari andHosseini [3] have proposed two semi-implicit
Fourier spectral schemes for the numerical solution of generalized time-fractional Burger’s equation. In this
method, the authors have shown unconditional stability and improve the computational cost. Momani [24]
has obtained the non-perturbative analytical solutions of space- and time-fractional Burgers’ equations using
Adomian decomposition method and describe the physical processes of unidirectional propagation of weakly
nonlinear acoustic waves through a gas-filled pipe.Mohammadizadeh et al. [23] have obtained unique solutions
under some special conditions for a special class of fractional Burgers’ equation. They have also found at
least one optimal solution for this problem. Moreover, this equation was solved by many different numerical
methods such as finite-difference method [18,19], finite-element method [31,33], variational iteration method
[14], spectral method [4,20–22], Adomian decomposition method [1], b-spline method [9,11,12], Galerkin
method [6], homotopy algorithm [29], generalized exp-function method [10], finite volume method [13],
residual power series method [34], and homotopy perturbation method [2], etc.

This paper is organized as follows. In Sect. 2, we describe some basic definitions and notations. Discretizing
and description of the methods are presented in Sects. 3 and 4. In Sect. 5, we present the convergence analysis
of time- and space-fractional coupled Burgers’ equation. In Sect. 5, we present numerical solutions and errors
by the proposed scheme. Finally, the conclusion of our work is given in the last section.

2 Preliminary

In this section, the definition of the Caputo–Riemann–Liouville fractional derivative is introduced systemati-
cally.
Definition 2.1: The partial fractional derivatives of order n − 1 < ν < n of a function ŁM (t), with respect to
variable t , in the Caputo–Riemann–Liouville fractional derivative formula are defined by:

Ł
′
M (t) = ∂ν

t ŁM (t)

=

⎧
⎪⎪⎨

⎪⎪⎩

1
�(−ν)

∫ t
0 (t − ξ)−ν−1 (ŁM (ξ) − ŁM (0)) dξ , ν < 0,

1
�(1−ν)

∂
∂t

∫ t
0 (t − ξ)−ν (ŁM (ξ) − ŁM (0)) dξ , 0 < ν < 1, ∀M,

1
�(n−ν)

∂n

∂tn
∫ t
0 (t − ξ)n−ν−1 (ŁM (ξ) − ŁM (0)) dξ, n − 1 ≤ ν < n,

(2.1)
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where ν ≥ 0 is the order of derivative,� is the gamma function, and n = �ν�+1 with �ν� denoting the integral
part of ν. Caputo–Riemann–Liouville fractional derivatives have some basic properties which are needed in
this paper as follows:

∂ν
t C = 0, C is constant,

∂ν
t t

υ =
{
0, for υ ∈ N and υ < �ν�,

�(υ+1)
�(υ+1−ν)

tυ−ν, for υ ∈ N and υ ≥ �ν�.
Moreover, construction of the first-order Chebyshev fractional differential matrix is given as:

Q(ν) =

⎡

⎢
⎢
⎢
⎢
⎣

Ł
′
0(t0) . . . . . . Ł

′
0(tM )

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

Ł
′
M (t0) . . . . . . Ł

′
M (tM )

⎤

⎥
⎥
⎥
⎥
⎦

.

3 Pseudospectral methodology

The method allows the representation of functions and their derivatives at given set of grid points and approx-
imate solutions of nonlinear partial differential equations as a sum of basis functions in both space and time
directions.

We seek a pseudospectral approximation F(x, t), as a finite linear combination of a chosen set of orthogonal
basis functions for the one-dimensional form:

F(x, t) =
M∑

i=0

M∑

j=0

τi (x)τ j (t) F(xi , t j ), (3.1)

where the trial basis functions defined by:

τk(z) = P(z)

Q(zk) (z − zk)
, k = 0, . . . , M,

and

P(z) =
M∏

k=0

(z − zk), Q(z) =
M∑

l=0

M∏

k=0,k 	=l

(z − zk).

Here, z is a dummy variable and represents x in spatial and t in time direction, τi (x) and τ j (t) are Mth degree
Lagrange polynomials in spatial and time variables, and F(xi , t j ) are unknowns spectral coefficients. Let us
define Chebyshev–Gauss–Lobatto points (CGL points):

zk = − cos(kπ/M), ∀ k = 0, . . . , M. (3.2)

These points are projection of equispaced points on upper half of unit circle on [−1, 1] and make cluster at
boundaries.

Next, define the Chebyshev differentiation matrix at CGL points {z0, z1, . . . , zM }, which is used to approx-
imate the derivatives of F(x, t) in the spatial and time directions. The first derivative matrix D(1) is defined
by:

D(1)
i j =

⎧
⎨

⎩

P
′
(zi )

Q (z j ) (zi−z j )
, i 	= j,

∑M
l=0,l 	=i (zi − zl)−1, i = j.

Then, Eq. (3.1) can be expressed in the form of direct product as:

F(x, t) = τ0(x) [τ0(t)F00 + · · · + τM (t)F0M ] + · · · + τM (x) [τ0(t)FM0 + · · · + τM (t)FMM ] ,

= [(τ0(x), . . . , τM (x)) ⊗ (τ0(t), . . . , τM (t))]F,
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= (
�[0:M](x) ⊗ �[0:M](t)

)T F, (3.3)

where

F = [
F00, . . . , F0M | · · · | FM0, . . . , FMM

]T
,

�[0:M](z) = [τ0(z), . . . , τM (z)]T .

In this manner, first spatial derivative of the function can be defined as follows:

∂F

∂x
=

(
∂

∂x
�T[0:M](x) ⊗ �T[0:M](t)

)

F =
(
�T[0:M](x)D

(1)
[0:M,0:M] ⊗ �T[0:M](t)

)
F,

= (
�[0:M](x) ⊗ �[0:M](t)

)T
(
D(1)

[0:M,0:M] ⊗ IM+1

)
F. (3.4)

In similar fashion, first spatial fractional derivative of the function can be defined as follows:

∂νF

∂xν
= (

�[0:M](x) ⊗ �[0:M](t)
)T

(
Q(ν)

[0:M,0:M] ⊗ IM+1

)
F. (3.5)

Next, time derivative and time-fractional derivative of the function can be defined by:

∂F

∂t
= (

�[0:M](x) ⊗ �[0:M](t)
)T

(
IM+1 ⊗ D(1)

[0:M,0:M]
)

F.

∂νF

∂tν
= (

�[0:M](x) ⊗ �[0:M](t)
)T

(
IM+1 ⊗ Q(ν)

[0:M,0:M]
)

F. (3.6)

Similarly, the second spatial derivative of the function is given by:

∂2F

∂x2
=

(
∂2

∂x2
�T[0:M](x) ⊗ �T[0:M](t)

)

F =
(

∂

∂x

(
∂

∂x
�T[0:M](x)

)

⊗ �T[0:M](t)
)

F,

=
((

∂

∂x
�T[0:M](x)D

(1)
[0:M,0:M]

)

⊗ �T[0:M](t)
)

F,

=
((

�T[0:M](x)D
(1)
[0:M,0:M] × D(1)

[0:M,0:M]

)
⊗ �T[0:M](t)

)
F,

= (
�[0:M](x) ⊗ �[0:M](t)

)T
(
D(2)

[0:M,0:M] ⊗ IM+1

)
F. (3.7)

where D(2) = D(1) × D(1).

4 Pseudospectral method-based discretization

Furthermore, let us consider following transformations which are used to transform the one-dimensional space
[xL , xR], [yL , yR] and time [0, T ] in to [−1, 1]. We obtain the time fractional coupled Burgers’ equation in
new space and time interval:

∂α1

∂tα1
Z1 = 2(2−α1)T α1

(xR − xL )2
∂2

∂x2
Z1 + 2(1−α1)Tα1

(xR − xL )
2Z1

∂

∂x
Z1 − Z1

2(1−α1)T α1

(xR − xL )

∂

∂x
(Z2) − Z2

2(1−α1)T α1

(xR − xL )

∂

∂x
(Z1),

∂β1

∂tβ1
Z2 = 2(2−β1)T β1

(xR − xL )2
∂2

∂x2
Z2 + 2(1−β1)T β1

(xR − xL )
2Z2

∂

∂x
Z2 − Z1

2(1−β1)T β1

(xR − xL )

∂

∂x
(Z2) − Z2

2(1−α1)T α1

(xR − xL )

∂

∂x
(Z1).

and space-fractional coupled Burgers’ equation:

∂

∂t
Z1 = 2T

(xR − xL )2
∂2

∂x2
Z1 + 2(α2−1)T

(xR − xL )α2
2Z1

∂α2

∂xα2
Z1 − Z1

T

(xR − xL )

∂

∂x
(Z2) − Z2

T

(xR − xL )

∂

∂x
(Z1),

∂

∂t
Z2 = 2T

(xR − xL )2
∂2

∂x2
Z2 + 2(β2−1)T

(xR − xL )β2
2Z2

∂β2

∂xβ2
Z2 − Z1

T

(xR − xL )

∂

∂x
(Z2) − Z2

T

(xR − xL )

∂

∂x
(Z1).

123



Arab. J. Math. (2020) 9:633–644 637

with initial conditions:

Z1(x,−1) = p1(x), Z2(x,−1) = p2(x), x ∈ [−1, 1], (4.1)

and boundary conditions:

Z1(−1, t) = q11(t), Z1(1, t) = q12(t), t ∈ [−1, 1], (4.2)

Z2(−1, t) = q21(t), Z2(1, t) = q22(t), t ∈ [−1, 1]. (4.3)

Furthermore, we consider a mapping for converting the non-homogeneous initial and boundary values to
homogeneous initial and boundary values:

χk(x, t) = 1 − t

2
pk(x) + 1 − x

2
q1k(t) + 1 + x

2
q2k(t) − (1 − t)(1 − x)

4
q1k(−1) − (1 − t)(1 + x)

4
q2k(−1).

(4.4)

Define new variables Yk(x, t), ∀k = {1, 2}:

Z1(x, t) = Y1(x, t) + χ1(x, t), Z2(x, t) = Y2(x, t) + χ2(x, t), (4.5)

the above time-fractional coupled Burgers’ equation can be modified with new variables and obtained the
residuals:

∂α1

∂tα1
(Y1 + χ1) = 2(2−α1)T α1

(xR − xL)2

∂2

∂x2
(Y1 + χ1) + 2(1−α1)T α1

(xR − xL)
2(Y1 + χ1)

∂

∂x
(Y1 + χ1)

−(Y1 + χ1)
2(1−α1)T α1

(xR − xL)

∂

∂x
(Y2 + χ2) − (Y2 + χ2)

2(1−α1)T α1

(xR − xL)

∂

∂x
(Y1 + χ1),

∂β1

∂tβ1
(Y2 + χ2) = 2(2−β1)T β1

(xR − xL)2

∂2

∂x2
(Y2 + χ2) + 2(1−β1)T β1

(xR − xL)
2(Y2 + χ2)

∂

∂x
(Y2 + χ2)

− (Y1 + χ1)
2(1−β1)T β1

(xR − xL)

∂

∂x
(Y2 + χ2) − (Y2 + χ2)

2(1−α1)T α1

(xR − xL)

∂

∂x
(Y1 + χ1),

and obtain the residuals of space-fractional coupled Burgers’ equation:

∂

∂t
(Y1 + χ1) = 2T

(xR − xL)2

∂2

∂x2
(Y1 + χ1) + 2(α2−1)T

(xR − xL)α2
2(Y1 + χ1)

∂α2

∂xα2
(Y1 + χ1)

− (Y1 + χ1)
T

(xR − xL)

∂

∂x
(Y2 + χ2) − (Y2 + χ2)

T

(xR − xL)

∂

∂x
(Y1 + χ1),

∂

∂t
(Y2 + χ2) = 2T

(xR − xL)2

∂2

∂x2
(Y2 + χ2) + 2(β2−1)T

(xR − xL)β2
2(Y2 + χ2)

∂β2

∂xβ2
(Y2 + χ2)

− (Y1 + χ1)
T

(xR − xL)

∂

∂x
(Y2 + χ2) − (Y2 + χ2)

T

(xR − xL)

∂

∂x
(Y1 + χ1).

Now, we apply CGL points and pseudospectral method in coupled equations and obtained the system of
nonlinear algebraic equation:

G1(Y1|Y2) = 0 G2(Y1|Y2) = 0. (4.6)

The system of nonlinear equation (4.6) can be solved using Newton–Raphson method.
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5 Convergence analysis

In this section, author study for the error analysis of the suggested expansion of Chebyshev polynomials is
investigated.

Theorem 51 If the series
∑∞

i=0
∑∞

k=0 τi (x)τk(t)Θik converges uniformly to Z1(x, t) on the interval [−1, 1]2,
then we have:

Θik = 1

ĥi ĥk

M∑

l=0

M∑

n=0

τi (xl)τk(tn)wl wm wn Z1(xi , tk). (5.1)

Proof We know that:

Z1(x, t) =
∞∑

i=0

∞∑

k=0

τi (x)τk(t)Θik . (5.2)

Taking L2
w [−1, 1] norm both side, we get:

‖Z1(x, t)‖2L2
w [−1,1] =

∞∑

i=0

∞∑

k=0

‖τi (x)τk(t)Θik‖2L2
w [−1,1] =

∞∑

i=0

∞∑

k=0

‖τi (x)τk(t)‖2L2
w [−1,1]|Θik |2,

≤
∞∑

i=0

∞∑

k=0

∫ 1

−1

∫ 1

−1
τ 2i (x)τ 2k (t)w(x)w(y)w(t) dx dt |Θik |2,

≤
∞∑

i=0

∞∑

k=0

τ 2i (x)w(x) dx
∫ 1

−1
dy

∫ 1

−1
τ 2k (t)w(t) dt |Θik |2,

≤
∞∑

i=0

∞∑

k=0

[τi (x), τi (x)]w [τk(t), τk(t)]w |Θik |2.

Finally, put the value of discrete inner product, and we get:

‖Z1‖2L2
w [−1,1] ≤

∞∑

i=0

∞∑

k=0

ĥi ĥk |Θik |2. (5.3)

Hence, function Z1(x, t) is bounded. In a similar fashion, we can obtain function Z2(x, t) is bounded. 
�

6 Numerical results and discussion

In this section, to demonstrate the performance, the proposed method is implemented on test problems of time-
and space-fractional Burgers’ equation. Error at different grid points will be expressed in terms of L2- norm
which is defined by:

L2 = ‖Z exa
i − Znum

i(α,β)‖2,

where Z exa
i and Znum

i(α,β), ∀i ∈ 1, 2, represent exact solutions and numerical solutions, respectively.
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6.1 Example 1

Let us consider the time-fractional coupled Burgers’ equation:

∂α1

∂tα1
Z1 = ∂2

∂x2
Z1 + 2Z1

∂

∂x
Z1 − ∂

∂x
(Z1Z2), (0 < α1 ≤ 1), (6.1)

∂β1

∂tβ1
Z2 = ∂2

∂x2
Z2 + 2Z2

∂

∂x
Z2 − ∂

∂x
(Z1Z2), (0 < β1 ≤ 1) (6.2)

with initial condition:

Z1(x, 0) = sin(x), Z2(x, 0) = sin(x), (x) ∈ �,

the exact solution for the problem is given: [1]

Z1(x, t) = sin(x) − sin(x)
tα1

�(α1 + 1)
+ (sin(x) − 2 sin(x) cos(x))

t2α1

�(2α1 + 1)

2 sin(x) cos(x)
tα1+β1

�(α1 + β1 + 1)
+ · · ·

Z2(x, t) = sin(x) − sin(x)
tβ1

�(β1 + 1)
+ (sin(x) − 2 sin(x) cos(x))

t2β1

�(2β1 + 1)

2 sin(x) cos(x)
tα1+β1

�(α1 + β1 + 1)
+ · · ·

When α1 = β1 = 1, then exact solution is:

Z1(x, t) = Z2(x, t) = e−t sin(x).

In this example, numerical solutions of the proposed method have obtained over the domain � =
[−10, 10], t ∈ [0, 0.005] and fractional-order derivative 0 < α1, β1 ≤ 1. The error norms for different
grid points and different fractional-order derivatives are presented in Table 1. In Table 1, it can be seen that
the accuracy of the numerical results is increased along with the number of grid points. We are also depicted
the 3D graph of numerical solutions Z1 and Z2 at time T = 0.005 and α1 = 0.5, β1 = 0.25 in Fig. 1. Figure
2 illustrates the 2D curve of the numerical and exact solutions with different fractional-order derivatives at
time T = 0.005. In this figure, the solid line represents the exact solutions; however, the block represents the
numerical solutions at various α1 and β1. Accuracy of numerical solutions is merely seen in Fig. 2. Authors
have discussed the numerical solutions of the equation with the different set of data, and for comparison
purpose, we refer to [1,8,28,30]. Furthermore, it is found that the results obtained by the proposed method
show very good agreement with published results. Moreover, proposed method has obtained the eighth order
of accuracy.

6.2 Example 2

Let us consider the space-fractional coupled Burgers’ equation:

∂

∂t
Z1 = ∂2

∂x2
Z1 + 2Z1

∂α2

∂xα2
Z1 − ∂

∂x
(Z1Z2), (0 < α2 ≤ 1), (6.3)

∂

∂t
Z2 = ∂2

∂x2
Z2 + 2Z2

∂β2

∂xβ2
Z2 − ∂

∂x
(Z1Z2), (0 < β2 ≤ 1) (6.4)

123



640 Arab. J. Math. (2020) 9:633–644

Table 1 Numerical solutions of proposed method at time T = 0.005 with different α1 β1 and grids points M for example 1

M α1 = 0.25,
β1 = 0.50

α1 = 0.50,
β1 = 0.25

α1 = 0.25,
β1 = 0.25

α1 = 0.50,
β1 = 0.50

α1 = 0.75,
β1 = 0.75

α1 = 1.00,
β1 = 1.00

L2 L2 L2 L2 L2 L2

Z1
16 3.607e−03 1.746e−03 2.397e−03 4.618e−03 5.783e−04 3.566e−04
32 1.746e−03 4.009e−03 5.503e−04 1.060e−04 1.163e−04 1.737e−05
64 2.397e−04 5.503e−04 7.554e−04 1.455e−05 1.339e−05 2.384e−06
128 4.618e−05 1.060e−04 1.455e−05 2.803e−05 9.116e−06 4.593e−07
256 7.566e−05 1.737e−05 2.384e−06 4.593e−06 4.413e−07 7.524e−08

Z2
16 2.657e−03 3.919e−03 5.465e−03 3.199e−03 4.386e−04 6.014e−04
32 1.069e−03 1.576e−03 2.198e−04 1.287e−04 8.823e−05 2.419e−05
64 4.906e−04 7.238e−04 1.009e−04 5.909e−05 1.024e−05 1.111e−05
128 3.367e−05 4.967e−04 6.926e−05 4.055e−05 6.984e−06 7.622e−07
256 6.486e−05 9.569e−05 1.334e−05 7.812e−06 3.344e−07 1.468e−08
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Fig. 1 Numerical solutions of Z1(x, t) and Z2(x, t) for example 1 when different α1 = 050, β1 = 0.25 and time T = 0.005

with initial condition:

Z1(x, 0) = x2, Z2(x, 0) = x3, (x) ∈ �,

the exact solution for the problem is given as: [8,30]

Z1(x, t) = x2 +
(
2 − 5x4 + f1x

(4−α2)
)
t

+ t2

2

(
f2x

(6−2α2) + f3x
(6−α2) + f4x

(2−α2) + f5x
(7−β2) + 20x6 + 10x5 − 72x2

)
,

Z2(x, t) = x3 +
(
6x − 5x4 + g1x

(6−β2)
)
t

+ t2

2

(
g2x

(9−2β2) + g3x
(7−β2) + g4x

(4−β2) + g5x
(6−α2) + 20x6 + 10x5 − 72x2

)
,
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Fig. 2 Numerical and exact solutions of Z1(x, t) and Z2(x, t) for example 1 with different α1 and β1 and time T = 0.005

Table 2 Numerical solutions of proposed method at time T = 1.00 with different α2 β2 and grid points M for example 2

M α2 = 0.25,
β2 = 0.50

α2 = 0.50,
β2 = 0.25

α2 = 0.25,
β2 = 0.25

α2 = 0.50,
β2 = 0.50

α2 = 0.75,
β2 = 0.75

α2 = 1.00,
β2 = 1.00

L2 L2 L2 L2 L2 L2

Z1
16 8.134e−04 5.421e−04 3.891e−04 2.415e−04 8.532e−04 6.612e−05
32 1.635e−04 1.902e−04 7.849e−05 4.856e−04 1.715e−05 1.327e−06
64 1.876e−05 1.254e−05 8.918e−06 5.574e−05 1.969e−06 1.523e−07
128 1.286e−06 8.581e−06 6.142e−06 3.825e−06 1.351e−07 1.475e−08
256 6.261e−06 4.131e−06 2.987e−06 1.842e−07 6.512e−08 5.048e−09

Z2
16 4.392e−04 7.812e−04 5.243e−04 3.376e−04 2.736e−04 7.237e−05
32 8.832e−04 1.571e−04 1.054e−04 6.789e−04 5.502e−05 1.454e−06
64 1.013e−04 1.803e−04 1.210e−04 7.793e−05 6.315e−05 1.675e−07
128 6.958e−05 1.237e−05 8.306e−05 5.348e−06 4.334e−07 1.465e−08
256 3.351e−06 5.960e−06 4.002e−06 2.575e−07 2.087e−08 5.517e−09

where

f (x) = x2, f1(x) = 4

�(3 − α2)
, f2(x) =

[
4

�(3 − α2)
+ 2�(5 − α2)

�(5 − 2α2)

]

f1,

f3(x) = (α2 − 4) f1 − 20

�(3 − α2)
− 240

�(5 − α2)
, f4(x) = (4 − α2)(3 − α2) f1 + 8

�(3 − α2)
,

f5(x) = −2g1(x).

g(x) = x3, g1(x) = 12

�(4 − β2)
, g2(x) =

[
12

�(4 − β2)
+ 2�(7 − β2)

�(7 − 2β2)

]

g1,

g3(x) = −2g1 − 60

�(4 − β2)
− 240

�(5 − β2)
, g4(x) = (5 − β2)(6 − β2)g1 + 12

�(2 − β2)
+ 72

�(4 − β2)
,

g5(x) = (α2 − 4) f1(x).
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Fig. 3 Numerical solutions of Z1(x, t) and Z2(x, t) for example 2 when a α1 = 0.25, β1 = 0.50, b α1 = 0.75, β1 = 0.75, and
c α1 = 1.00, β1 = 1.00 at time T = 1
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In this example, numerical solutions of the proposed method have obtained over the domain � =
[0, 10], t ∈ [0, 1] and fractional-order derivative 0 < α2, β2 ≤ 1. The error norms for different grid points
and different fractional order derivatives are presented in Table 2. In Table 2 , it can be seen that the accuracy
of the numerical results is increased along with the number of grid points. In Fig. 3, we are also depicted the of
numerical solutions Z1 and Z2 in the form of 3D graph for (a)α1 = 0.5, β1 = 0.5, (b) α1 = 0.75, β1 = 0.75
and (c) α1 = 1.00, β1 = 1.00 at time T = 1. Authors have discussed the numerical solutions of the equation
with the different set of data; for comparison purpose, we refer to [8,28,30]. Furthermore, it is found that
the results obtained by the proposed method show very good agreement with published results. Moreover,
proposed method has obtained the ninth order of accuracy.

7 Conclusion

In this paper, time–space Chebyshev pseudospectral method has been successfully employed to time- and
space-fractional coupled Burgers’ equation. The fractional-order differentiation matrix has been established
using Caputo–Riemann–Liouville derivative formula at CGL points for fractional-order derivative. It has
shown that the numerical results of the proposed method are more close to exact solution. For the equation,
convergence analysis of the proposedmethod has been presented. To demonstrate the performance, the method
has been employed two test problems, first for time-fractional and other for space-fractional coupled Burgers’
equation. Reported numerical results are highly accurate which shows the efficiency of the proposed method.
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