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Abstract Let P(z) be a polynomial of degree n which does not vanish in |z| < 1. Then it was proved by Hans
and Lal (Anal Math 40:105-115, 2014) that
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lzl=
forevery 8 e Cwith |B] < 1,1 <s <nand|z] =1.

The LY analog of the above inequality was recently given by Gulzar (Anal Math 42:339-352, 2016) who under
the same hypothesis proved

s
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whereng =n(n—1)...(n —s+1)and 0 < y < oo.
In this paper, we generalize this and some other related results.
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1 Introduction

Let P, be the class of polynomials P(z) = Y . _ay,z’ of degree n and P®)(z) be its sth derivative. For
P € P, we have

lrr}aﬁlP’(Z)l Snlrr}aﬁlP(Z)l (1.1)
7= zl=

and for every y > 1,
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The inequality (1.1) is a classical result of Bernstein [10], whereas the inequality (1.2) is due to Zygmund [13]
who proved it for all trigonometric polynomials of degree n and not only for those of the form P (¢'?). Arestov
[1] proved that (1.2) remains true for 0 < y < 1 as well. If we let y — oo in (1.2), we get (1.1).

The above two inequalities (1.1) and (1.2) can be sharpened, if we restrict ourselves to the class of poly-
nomials having no zeros in |z| < 1. In fact, if P € P, and P(z) # Oin |z| < 1, then (1.1) and (1.2) can be,
respectively, replaced by

N4 };
P(e )‘ gl (12)

n
Imlax |P'(2)| < §|m|aX|P(Z)| (1.3)
and
2w ) v % 2w ) y %
{/ P/(e’e)’ de} Sncy{/ P(e’g)‘ de} , (1.4)
0 0
where
c L) 4 eie]”q v 15
y = {E./o +e a} . (1.5)

The inequality (1.3) was conjectured by Erdos and later proved by Lax [9], whereas (1.4) was proved by
De-Bruijn [4] for y > 1. Further, Rahman and Schmeisser [11] have shown that (1.4) holds for0 < y < 1 as
well. If we let y — oo in inequality (1.4), we get (1.3).

As an extension of (1.3), Jain [7] proved that if P € P, and P(z) # Oin |z| < 1, then

zl=1

‘ZP (z)—i——P(z)‘ (‘ ﬁ‘+‘ﬁ‘>maX|P(Z)| (1.6)

for |z] = 1 and for every B € C with 8| < 1.
In 2000, Jain [8] further improved (1.6) by obtaining under the same hypothesis that

[2P'@) + %P(z)] < g{(b + ’3\ +\2(>max|P(z)|

- 1+ 41 Bl :
(\ +3 2){?‘:“1' (z)|} (1.7)
for |z] = 1 and for every 8 € C with 8| < 1.

Recently, Hans and Lal [6] generalized (1.6) and (1.7) for the sth derivative of polynomials and proved the
following results.

Theorem A If P € P,, and P(z) #0in |z| < 1, then for every B € Cwith || < 1,1 <s <nand|z| = 1,

_|_

2P+ 2P| < 2 (14 2
2 -2 25

g )max|P(z)| (1.8)

Theorem B If P € P, and P(z) #0in |z| < 1, then forevery B € Cwith |B| < 1,1 <s <nand |z] = 1,

s pls) s ng B B
FPO@) + BT PE)| < 5 {(‘1+2A +| 2 )glgx|P(z>|
Bl B
<]1 + 5|5 )IIanlP(z)I} (1.9)

The above inequalities (1.8) and (1.9) were further improved and generalized by Zireh [12]. More recently,
Gulzar [5] obtained an LY analogue of Theorem A by proving the following result.
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Theorem C If P € P, and P(z) # 0in |z| < 1, then for every B € Cwith |B] < 1,1 < s < n and

0<y < oo,
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The result is best possible and equality in (1.10) holds for P(z) = az" + b with |a| = |b| = 1.

2 Main results

The main aim of this paper is to prove an LY analog of Theorem B and thereby to obtain a generalization of
Theorem C. More precisely, we prove

Theorem 2.1 If P € P, and P(z) # 0in |z| < 1, then for any 8,6 € Cwith || < 1,18 < 1,1 <s <n
and () <y < o0,

1
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‘ ' ng i ng Y
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2 . v 2w . v
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0 0

where here and throughout m = |n‘linllP(z)l and E,, is defined by (1.11).
Z|=
The result is best possible and equality in (2.1) holds for P(z) = az" 4+ b with |a| = |b| = 1.

Now, we present and discuss some consequences of this result. First, we point out that inequalities involving
polynomials in the Chebyshev norm on the unit circle in the complex plane are a special case of the polynomial
inequalities involving the integral norm. For example, if we let y — oo in (2.1) and choose the argument of §
suitably with |§] = 1, we get (1.9).

Remark 2.2 For § = 0, Theorem 2.1 reduces to Theorem C. If we take s = 1 in (2.1), we get the following
result which provides an LY analogue of (1.7).

Corollary 2.3 If P € P, and P(z) # 0in |z| < 1, then for every 8,8 € C with || < 1,|8| < 1 and
0<y < oo,

2 1
i0p' ioy , B g, Smn B B\ v
0
27 v % 2 1
any{/‘<1+§)ei“+§ da} {/|P(ei0)|”d9}y, 2.2)
0 0

where E\, is defined by (1.11).

Remark 2.4 Inequality (1.7) can be obtained by letting y — oo and by choosing the argument of § suitably
with |§] = 11in (2.2).

Several other interesting results easily follow from Theorem 2.1. Here, we mention a few of these. Taking
B =0in (2.1), we immediately get the following result.
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Corollary 2.5 If P € P, and P(z) # 0in |z| < 1, then for every B € Cwith |§| < 1,1 <s < n, and

0<y <oo
|/
0

where C,, is defined in (1.5).

1

1 2
de}y < nscy{/|P(e"9)|Vd9}y, 2.3)
0

dmn
1s9P(s)(ezB) 4 —= S

Fors = 1and § = 0, inequality (2.3) reduces to inequality (1.4). The following corollary which is a refinement
as well as a generalization of (1.3) is obtained by letting y — oo and by choosing the argument of § with
|6] = 1 suitably in (2.3).

Corollary 2.6 If P € P, and P(z) #0in|z| < 1, then for 1 <s <n, we have

‘mlax|P(S)(Z)| < n—;{nlla)§|P(z)| - Imm|P(z)|}

Remark 2.7 For s = 1, Corollary 2.6 reduces to a result of Aziz and Dawood [2].
For the proof of Theorem 2.1, we need the following lemmas.

3 Lemmas

Lemma 3.1 Let F € P, and F (z) has all its zeros in |z| < 1. If P(z) is a polynomial of degree at most n such
that

[P (2)] = |F(2)| forlz| =1,
then forany B € Cwith || <land1 <s <n,

,35 ,35

ZFPO)+ 2P| < |FFW@) + Z2F(2)|, forlzl = 1.

The above lemma is due to Hans and Lal [6].
By applying Lemma 3.1 to polynomials P(z) and z"" minj;— | P(z)|, we get the following result.
Lemma 3.2 If P € P, and P(z) has all its zeros in |z| < 1, then for every B € Cwith |B] < 1,1 <s <n,

zﬂWm+ﬂst

> ng

1+ —‘ nnn |P(2)|, forl|z| > 1.

Lemma 3.3 IfP € P, and P(z) #0in |z| < 1, then forevery B € Cwith |B| < 1,1 <s <nand |z] = 1,

/33 /33 B

B }m

PO+ =P <092+ =20(@)

25‘

nfli 2]

where Q(z2) = z”P(%) .

Proof of Lemma 3.3. If P(z) has a zero on |z] = 1, then m = 0 and the result follows by Lemma 3.1.
Henceforth, we suppose that all the zeros of P(z) liein |z| > 1 and so m > 0, we have |Am| < |P(z)| on
|z| = 1 for any A with [A| < 1. It follows by Rouche’s theorem that the polynomial G(z) = P(z) — Am has no

zeros in |z| < 1. Therefore, the polynomial H (z) = z”G(%) = Q(z) — mAz" will have all its zeros in lz| < 1.
Also |G(z)| = |H(z)| for |z| = 1. On applying Lemma 3.1, we get forevery § € Cwith |B| < 1,1 <s <n
and |z|] > 1,

ﬂs ﬂ;

2GY(2) + <|Z2H92) +"2H(©2)|.

~G(z)| <
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Equivalently
Bns
" (P - )‘
< (zSQ(”(z)—)_»mnsz") pn A(Q(z) amz")|.
This implies that
( P(S)(Z)-i- /3 AP( )> ﬂnskm‘
< (ZSQ(”(Z)Jrﬁ = 0@) = Amnyz" (1+ ﬂ)‘ 3.1)
= S 2“ .

Since Q(z) has all its zeros in |z| < 1, therefore, by Lemma 3.2 we have for every 8 € C with |8]| < 1 and
lz] = 1,

/3 ns LB

+ 2| minl Q)|

lz|=

Q@)

> ng

|
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Now choosing a suitable argument of X in the right-hand side of (3.1), in view of (3.2), we get for |z] = 1,

2P+ 0P )‘ s 2|
200 + 0@ 1+ 3 d ‘I/\Im
Equivalently
#PO) + P b )'
zSQ“)(z)Jr’3 = 0(2) —ns(1+fs ’i )mm

Letting |A| — 1, we get for every 8 € C with || < 1 and |z| = 1,

< eV + 2 Q()‘—n 2= 15)m,
which completes the proof of the lemma. O

The following lemma is due to Aziz and Shah [3].

Lemma 3.4 If A, B, C are non-negative real numbers such that B + C < A, then for every real number o,

[(A=C)+e“(B+C)| < |A+eB|.

1
Lemma 3.5 I[fP € P, and P(z) #0in|z| < land Q(z) = 7" P (:) then, for every B € Cwith |B] < 1, «
z

real, 1 <s <nandy > 0,
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2

[

(el'SQ P(S)(eie) + IB%P(eiQ))eiOl + ein9 (eisg Q(S)(ele) + ﬂ%Q(619)> ‘d@

B iw B
(1-{—?)6 +2_s

The above lemma is due to Gulzar [5].

<n)

y 2
/|P(e"9)|yd9.
0

Lemma 3.6 Leta, b € C with |b| > |a|. Then for r > 0 and y real, we have

2 r 2
/ dy = Ial’/
0 0

Proof of Lemma 3.6. If a = 0, then (3.3) is obvious. Henceforth, we assume that a # 0. Now for every real
y and t > 1, it can be easily verified that

r

a-+eéevb 1+ €| dy. (3.3)

It + e > |14 ¢7]. (3.4)

Hence, using (3.4), we get

bl" 2 )
dy:/ 1+¢7
0

147 =
a
2
-,

2 )
2/ 1+e7
0

which is equivalent to (3.3) and this completes the proof of the lemma. O

2
V/O

4 Proof of the Theorem

Proof of Theorem 2.1. Since P(z) # 01in |z| < 1, therefore, by Lemma 3.3, foreach 6,0 <0 < 27,8 € C
with [B] < land 1 <s <n,

s
2S

eisQP(s)(eiO) + %P(eie)

2

mng B
+ (‘1+5

< e"saQ(‘T)(em)—l-%Q(em) —~ %(‘1 +§ - 2’%) .1
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A =[e50 00 4 215 o)
7
B = | PW (%) + %P(eie)‘
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B

2 25

mng B

)

in Lemma 3.4, so that by (4.1),
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we get for every real «,
e o] - )]
2 25
< ||ef? PO (¢ + %P( i0)| g 4 |10 0@ (i) 4 E15 /3 s 0(e'®)
< |le e X e’)le e e .
This implies for each y > 0,
2 2
; ¥
/(F<e)+e’°‘c<9)\ do < [ |7 PO + TP
0
,3 ¥
e 00 + S 0 de, 4.2)
where
G(®) = ’SeP“)(’@Hﬁ SP@e)| + 2 ()1+ ﬁ)
and
- - pn mn B B
F©O) =" 00 (") + =70 RIS ’1+§ lasl)

Integrating both sides of(4.2) with respect to @ from O to 277, we get with the help of Lemma 3.5, for each

y >0,
21 27 27 2w
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Using this in (4.3), we get for each y > 0
2 21w

2 2
io Y Y BN iw B i0\ |V
F©O)+¢“GO)| doda = n} [ |(14 ) + 2| da [ [P ao. (4.4)
00 0 0
If we take
a=G(),
b= F(0),
because |b| > |a| from (4.1), we get from Lemma 3.6, that for each y > 0

27 2

/|F(9)+e"“G(9)|Vda > |G(9)|V/|1 + |7 da. (4.5)
0

Integrating both sides of (4.5) with respect to 8 from 0 to 27, we get from (4.4), that for each y > 0
2 2

{ 114 ¢|7d ( S0P (e 16)+ﬂ s
oo

+%(‘1+§ - ))yde}
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Now using the fact that for every § € C with [§] < 1

P

X|—=

B

2S

1

1
}” { / \P(e’9)|yd9} (4.6)

is0 p(s) 0 :3 s o gy OMmns ‘ p p
P P 1
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PO (@) + L (el + 2 (‘1 Tl lzl)
we get from (4.6) that for every y > 0
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which proves Theorem 2.1 for y > 0. To establish this result for y = 0, we simply make y — 04
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