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Abstract Let P(z) be a polynomial of degree n which does not vanish in |z| < 1. Then it was proved by Hans
and Lal (Anal Math 40:105–115, 2014) that
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for every β ∈ C with |β| ≤ 1, 1 ≤ s ≤ n and |z| = 1.
The Lγ analog of the above inequality was recently given by Gulzar (AnalMath 42:339–352, 2016) who under
the same hypothesis proved
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where ns = n(n − 1) . . . (n − s + 1) and 0 ≤ γ < ∞.
In this paper, we generalize this and some other related results.

Mathematics Subject Classification 30A10 · 30C10 · 30C15

1 Introduction

Let Pn be the class of polynomials P(z) = ∑n
v=0 avzv of degree n and P(s)(z) be its sth derivative. For

P ∈ Pn , we have

max|z|=1
|P ′(z)| ≤ nmax|z|=1

|P(z)| (1.1)

and for every γ ≥ 1,
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The inequality (1.1) is a classical result of Bernstein [10], whereas the inequality (1.2) is due to Zygmund [13]
who proved it for all trigonometric polynomials of degree n and not only for those of the form P(eiθ ). Arestov
[1] proved that (1.2) remains true for 0 < γ < 1 as well. If we let γ → ∞ in (1.2), we get (1.1).

The above two inequalities (1.1) and (1.2) can be sharpened, if we restrict ourselves to the class of poly-
nomials having no zeros in |z| < 1. In fact, if P ∈ Pn and P(z) �= 0 in |z| < 1, then (1.1) and (1.2) can be,
respectively, replaced by
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The inequality (1.3) was conjectured by Erdös and later proved by Lax [9], whereas (1.4) was proved by
De-Bruijn [4] for γ ≥ 1. Further, Rahman and Schmeisser [11] have shown that (1.4) holds for 0 < γ < 1 as
well. If we let γ → ∞ in inequality (1.4), we get (1.3).

As an extension of (1.3), Jain [7] proved that if P ∈ Pn and P(z) �= 0 in |z| < 1, then
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for |z| = 1 and for every β ∈ C with |β| ≤ 1.
In 2000, Jain [8] further improved (1.6) by obtaining under the same hypothesis that
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for |z| = 1 and for every β ∈ C with |β| ≤ 1.
Recently, Hans and Lal [6] generalized (1.6) and (1.7) for the sth derivative of polynomials and proved the

following results.

Theorem A If P ∈ Pn and P(z) �= 0 in |z| < 1, then for every β ∈ C with |β| ≤ 1, 1 ≤ s ≤ n and |z| = 1,
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Theorem B If P ∈ Pn and P(z) �= 0 in |z| < 1, then for every β ∈ C with |β| ≤ 1, 1 ≤ s ≤ n and |z| = 1,
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The above inequalities (1.8) and (1.9) were further improved and generalized by Zireh [12]. More recently,
Gulzar [5] obtained an Lγ analogue of Theorem A by proving the following result.
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Theorem C If P ∈ Pn and P(z) �= 0 in |z| < 1, then for every β ∈ C with |β| ≤ 1, 1 ≤ s ≤ n and
0 ≤ γ < ∞,
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The result is best possible and equality in (1.10) holds for P(z) = azn + b with |a| = |b| = 1.

2 Main results

The main aim of this paper is to prove an Lγ analog of Theorem B and thereby to obtain a generalization of
Theorem C. More precisely, we prove

Theorem 2.1 If P ∈ Pn and P(z) �= 0 in |z| < 1, then for any β, δ ∈ C with |β| ≤ 1, |δ| ≤ 1, 1 ≤ s ≤ n
and 0 ≤ γ < ∞,
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where here and throughout m = min|z|=1
|P(z)| and Eγ is defined by (1.11).

The result is best possible and equality in (2.1) holds for P(z) = azn + b with |a| = |b| = 1.
Now,we present and discuss some consequences of this result. First, we point out that inequalities involving

polynomials in the Chebyshev norm on the unit circle in the complex plane are a special case of the polynomial
inequalities involving the integral norm. For example, if we let γ → ∞ in (2.1) and choose the argument of δ
suitably with |δ| = 1, we get (1.9).

Remark 2.2 For δ = 0, Theorem 2.1 reduces to Theorem C. If we take s = 1 in (2.1), we get the following
result which provides an Lγ analogue of (1.7).

Corollary 2.3 If P ∈ Pn and P(z) �= 0 in |z| < 1, then for every β, δ ∈ C with |β| ≤ 1, |δ| ≤ 1 and
0 ≤ γ < ∞,
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where Eγ is defined by (1.11).

Remark 2.4 Inequality (1.7) can be obtained by letting γ → ∞ and by choosing the argument of δ suitably
with |δ| = 1 in (2.2).

Several other interesting results easily follow from Theorem 2.1. Here, we mention a few of these. Taking
β = 0 in (2.1), we immediately get the following result.
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Corollary 2.5 If P ∈ Pn and P(z) �= 0 in |z| < 1, then for every β ∈ C with |δ| ≤ 1 , 1 ≤ s ≤ n, and
0 ≤ γ < ∞,
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where Cγ is defined in (1.5).

For s = 1 and δ = 0, inequality (2.3) reduces to inequality (1.4). The following corollary which is a refinement
as well as a generalization of (1.3) is obtained by letting γ → ∞ and by choosing the argument of δ with
|δ| = 1 suitably in (2.3).

Corollary 2.6 If P ∈ Pn and P(z) �= 0 in |z| < 1, then for 1 ≤ s ≤ n , we have

max|z|=1
|P(s)(z)| ≤ ns

2

{

max|z|=1
|P(z)| − min|z|=1

|P(z)|
}

.

Remark 2.7 For s = 1, Corollary 2.6 reduces to a result of Aziz and Dawood [2].
For the proof of Theorem 2.1, we need the following lemmas.

3 Lemmas

Lemma 3.1 Let F ∈ Pn and F(z) has all its zeros in |z| ≤ 1. If P(z) is a polynomial of degree at most n such
that

|P(z)| ≤ |F(z)| for |z| = 1,

then for any β ∈ C with |β| ≤ 1 and 1 ≤ s ≤ n,

∣
∣
∣
∣
zs P(s)(z) + βns

2s
P(z)

∣
∣
∣
∣
≤

∣
∣
∣
∣
zs F (s)(z) + βns

2s
F(z)

∣
∣
∣
∣
, for |z| ≥ 1.

The above lemma is due to Hans and Lal [6].

By applying Lemma 3.1 to polynomials P(z) and zn min|z|=1 |P(z)|, we get the following result.
Lemma 3.2 If P ∈ Pn and P(z) has all its zeros in |z| ≤ 1, then for every β ∈ C with |β| ≤ 1, 1 ≤ s ≤ n,
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Lemma 3.3 If P ∈ Pn and P(z) �= 0 in |z| < 1, then for every β ∈ C with |β| ≤ 1, 1 ≤ s ≤ n and |z| = 1,
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where Q(z) = zn P( 1z̄ ) .

Proof of Lemma 3.3. If P(z) has a zero on |z| = 1, then m = 0 and the result follows by Lemma 3.1.
Henceforth, we suppose that all the zeros of P(z) lie in |z| > 1 and so m > 0, we have |λm| < |P(z)| on
|z| = 1 for any λ with |λ| < 1. It follows by Rouche’s theorem that the polynomial G(z) = P(z)− λm has no

zeros in |z| < 1. Therefore, the polynomial H(z) = znG( 1z̄ ) = Q(z) −mλ̄zn will have all its zeros in |z| ≤ 1.
Also |G(z)| = |H(z)| for |z| = 1. On applying Lemma 3.1, we get for every β ∈ C with |β| ≤ 1, 1 ≤ s ≤ n
and |z| ≥ 1,
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which completes the proof of the lemma. 	

The following lemma is due to Aziz and Shah [3].

Lemma 3.4 If A, B,C are non-negative real numbers such that B + C ≤ A, then for every real number α,
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The above lemma is due to Gulzar [5].

Lemma 3.6 Let a, b ∈ C with |b| ≥ |a|. Then for r > 0 and γ real, we have
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which is equivalent to (3.3) and this completes the proof of the lemma. 	


4 Proof of the Theorem
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we get for every real α,
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dθ ≤
2π∫

0

∣
∣
∣
∣

∣
∣
∣eisθ P(s)(eiθ ) + βns

2s
P(eiθ )

∣
∣
∣eiα

+
∣
∣
∣eisθ Q(s)(eiθ ) + βns

2s
Q(eiθ )

∣
∣
∣

∣
∣
∣
∣

γ

dθ, (4.2)

where

G(θ) =
∣
∣
∣eisθ P(s)(eiθ ) + βns

2s
P(eiθ )

∣
∣
∣ + mns

2

(∣
∣
∣1 + β

2s

∣
∣
∣ −

∣
∣
∣
β

2s

∣
∣
∣

)

and

F(θ) =
∣
∣
∣eisθ Q(s)(eiθ ) + βns

2s
Q(eiθ )

∣
∣
∣ − mns

2

(∣
∣
∣1 + β

2s

∣
∣
∣ −

∣
∣
∣
β

2s

∣
∣
∣

)

.

Integrating both sides of(4.2) with respect to α from 0 to 2π, we get with the help of Lemma 3.5, for each
γ > 0,

2π∫

0

2π∫

0

∣
∣
∣F(θ) + eiαG(θ)

∣
∣
∣

γ

dθdα ≤
2π∫

0

{ 2π∫

0

∣
∣
∣
∣

∣
∣
∣eisθ P(s)(eiθ ) + βns

2s
P(eiθ )

∣
∣
∣eiα

+
∣
∣
∣eisθ Q(s)(eiθ ) + βns

2s
Q(eiθ )

∣
∣
∣

∣
∣
∣
∣

γ

dα

}

dθ

=
2π∫

0

{ 2π∫

0

∣
∣
∣
∣

∣
∣
∣eisθ P(s)(eiθ ) + βns

2s
P(eiθ )

∣
∣
∣eiα

+
∣
∣
∣einθ

(

eisθ Q(s)(eiθ ) + β
ns
2s

Q(eiθ )

)∣
∣
∣

∣
∣
∣
∣

γ

dα

}

dθ

=
2π∫

0

{ 2π∫

0

∣
∣
∣
∣

(

eisθ P(s)(eiθ ) + βns
2s

P(eiθ )
)

eiα

+ einθ

(

eisθ Q(s)(eiθ ) + β
ns
2s

Q(eiθ )

)∣
∣
∣
∣

γ

dθ

}

dα

≤ nγ
s

2π∫

0

∣
∣
∣
∣

(

1 + β

2s

)

eiα + β

2s

∣
∣
∣
∣

γ

dα

2π∫

0

∣
∣P(eiθ )

∣
∣γ dθ. (4.3)

Since
2π∫

0

∣
∣
∣
∣

(

1 + β

2s

)

eiα + β

2s

∣
∣
∣
∣

γ

dα =
2π∫

0

∣
∣
∣
∣

∣
∣
∣1 + β

2s

∣
∣
∣eiα +

∣
∣
∣
β

2s

∣
∣
∣

∣
∣
∣
∣

γ

dα
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=
2π∫

0

∣
∣
∣
∣

∣
∣
∣1 + β

2s

∣
∣
∣eiα +

∣
∣
∣
β

2s

∣
∣
∣

∣
∣
∣
∣

γ

dα

=
2π∫

0

∣
∣
∣
∣

(

1 + β

2s

)

eiα + β

2s

∣
∣
∣
∣

γ

dα.

Using this in (4.3), we get for each γ > 0,

2π∫

0

2π∫

0

∣
∣
∣F(θ) + eiαG(θ)

∣
∣
∣

γ

dθdα ≤ nγ
s

2π∫

0

∣
∣
∣
∣

(

1 + β

2s

)

eiα + β

2s

∣
∣
∣
∣

γ

dα

2π∫

0

∣
∣P(eiθ )

∣
∣γ dθ. (4.4)

If we take

a = G(θ),

b = F(θ),

because |b| ≥ |a| from (4.1), we get from Lemma 3.6, that for each γ > 0

2π∫

0

∣
∣F(θ) + eiαG(θ)

∣
∣γ dα ≥ |G(θ)|γ

2π∫

0

|1 + eiα|γ dα. (4.5)

Integrating both sides of (4.5) with respect to θ from 0 to 2π, we get from (4.4), that for each γ > 0,

{ 2π∫

0

|1 + eiα|γ dα
2π∫

0

(∣
∣
∣eisθ P(s)(eiθ ) + βns

2s
P(eiθ )

∣
∣
∣

+ mns
2

(∣
∣
∣1 + β

2s

∣
∣
∣ −

∣
∣
∣
β

2s

∣
∣
∣

))γ

dθ

} 1
γ

≤ ns

{ 2π∫

0

∣
∣
∣
∣

(

1 + β

2s

)

eiα + β

2s

∣
∣
∣
∣

γ

dα

}
1

γ
{ 2π∫

0

∣
∣P(eiθ )

∣
∣γ dθ

}
1

γ
. (4.6)

Now using the fact that for every δ ∈ C with |δ| ≤ 1,
∣
∣
∣
∣
eisθ P(s)(eiθ ) + βns

2s
P(eiθ ) + δmns

2

(∣
∣
∣1 + β

2s

∣
∣
∣ −

∣
∣
∣
β

2s

∣
∣
∣

)∣
∣
∣
∣

≤
∣
∣
∣
∣
eisθ P(s)(eiθ ) + βns

2s
P(eiθ )

∣
∣
∣
∣
+ mns

2

(∣
∣
∣1 + β

2s

∣
∣
∣ −

∣
∣
∣
β

2s

∣
∣
∣

)

,

we get from (4.6) that for every γ > 0,

{ 2π∫

0

∣
∣
∣
∣
eisθ P(s)(eiθ ) + βns

2s
P(eiθ ) + δmns

2

(∣
∣
∣1 + β

2s

∣
∣
∣ −

∣
∣
∣
β

2s

∣
∣
∣

)∣
∣
∣
∣

γ

dθ

} 1
γ

≤ ns

{ 2π∫

0

∣
∣
∣
∣

(

1 + β

2s

)

eiα + β

2s

∣
∣
∣
∣

γ

dα

}
1

γ

{ 2π∫

0

∣
∣P(eiθ )

∣
∣
γ dθ

}
1

γ

{ 2π∫

0

∣
∣1 + eiα

∣
∣
γ dα

}
1

γ

,

which proves Theorem 2.1 for γ > 0. To establish this result for γ = 0, we simply make γ → 0+ . 	
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