

Abdullah Mir

A Zygmund-type integral inequality for polynomials

Received: 28 October 2018 / Accepted: 5 March 2019 / Published online: 13 March 2019 \circledcirc The Author(s) 2019

Abstract Let P(z) be a polynomial of degree *n* which does not vanish in |z| < 1. Then it was proved by Hans and Lal (Anal Math 40:105–115, 2014) that

$$\left|z^{s}P^{(s)} + \beta \frac{n_{s}}{2^{s}}P(z)\right| \leq \frac{n_{s}}{2} \left(\left|1 + \frac{\beta}{2^{s}}\right| + \left|\frac{\beta}{2^{s}}\right|\right) \max_{|z|=1} |P(z)|,$$

for every $\beta \in \mathbb{C}$ with $|\beta| \le 1, 1 \le s \le n$ and |z| = 1.

The L^{γ} analog of the above inequality was recently given by Gulzar (Anal Math 42:339–352, 2016) who under the same hypothesis proved

$$\begin{split} \left\{ \int_{0}^{2\pi} \left| e^{is\theta} P^{(s)}(e^{i\theta}) + \beta \frac{n_s}{2^s} P(e^{i\theta}) \right|^{\gamma} \mathrm{d}\theta \right\}^{\frac{1}{\gamma}} \\ & \leq n_s \left\{ \int_{0}^{2\pi} \left| \left(1 + \frac{\beta}{2^s}\right) e^{i\alpha} + \frac{\beta}{2^s} \right|^{\gamma} \mathrm{d}\alpha \right\}^{\frac{1}{\gamma}} \frac{\left\{ \int_{0}^{2\pi} \left| P(e^{i\theta}) \right|^{\gamma} \mathrm{d}\theta \right\}^{\frac{1}{\gamma}}}{\left\{ \int_{0}^{2\pi} \left| 1 + e^{i\alpha} \right|^{\gamma} \mathrm{d}\alpha \right\}^{\frac{1}{\gamma}}}, \end{split}$$

where $n_s = n(n-1) \dots (n-s+1)$ and $0 \le \gamma < \infty$. In this paper, we generalize this and some other related results.

Mathematics Subject Classification 30A10 · 30C10 · 30C15

1 Introduction

Let \mathbb{P}_n be the class of polynomials $P(z) = \sum_{v=0}^n a_v z^v$ of degree *n* and $P^{(s)}(z)$ be its *s*th derivative. For $P \in \mathbb{P}_n$, we have

$$\max_{|z|=1} |P'(z)| \le n \max_{|z|=1} |P(z)|$$
(1.1)

and for every $\gamma \geq 1$,

A. Mir (🖂)

Department of Mathematics, University of Kashmir, Srinagar 190006, India

E-mail: mabdullah_mir@yahoo.co.in

$$\left\{\int_{0}^{2\pi} \left|P'(e^{i\theta})\right|^{\gamma} \mathrm{d}\theta\right\}^{\frac{1}{\gamma}} \leq n \left\{\int_{0}^{2\pi} \left|P(e^{i\theta})\right|^{\gamma} \mathrm{d}\theta\right\}^{\frac{1}{\gamma}}.$$
(1.2)

The inequality (1.1) is a classical result of Bernstein [10], whereas the inequality (1.2) is due to Zygmund [13] who proved it for all trigonometric polynomials of degree *n* and not only for those of the form $P(e^{i\theta})$. Arestov [1] proved that (1.2) remains true for $0 < \gamma < 1$ as well. If we let $\gamma \to \infty$ in (1.2), we get (1.1).

The above two inequalities (1.1) and (1.2) can be sharpened, if we restrict ourselves to the class of polynomials having no zeros in |z| < 1. In fact, if $P \in \mathbb{P}_n$ and $P(z) \neq 0$ in |z| < 1, then (1.1) and (1.2) can be, respectively, replaced by

$$\max_{|z|=1} |P'(z)| \le \frac{n}{2} \max_{|z|=1} |P(z)|$$
(1.3)

and

$$\left\{\int_{0}^{2\pi} \left|P'(e^{i\theta})\right|^{\gamma} \mathrm{d}\theta\right\}^{\frac{1}{\gamma}} \leq nC_{\gamma} \left\{\int_{0}^{2\pi} \left|P(e^{i\theta})\right|^{\gamma} \mathrm{d}\theta\right\}^{\frac{1}{\gamma}},\tag{1.4}$$

where

$$C_{\gamma} = \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} \left| 1 + e^{i\alpha} \right|^{\gamma} \mathrm{d}\alpha \right\}^{\frac{-1}{\gamma}}.$$
(1.5)

The inequality (1.3) was conjectured by Erdös and later proved by Lax [9], whereas (1.4) was proved by De-Bruijn [4] for $\gamma \ge 1$. Further, Rahman and Schmeisser [11] have shown that (1.4) holds for $0 < \gamma < 1$ as well. If we let $\gamma \to \infty$ in inequality (1.4), we get (1.3).

As an extension of (1.3), Jain [7] proved that if $P \in \mathbb{P}_n$ and $P(z) \neq 0$ in |z| < 1, then

$$\left|zP'(z) + \frac{n\beta}{2}P(z)\right| \le \frac{n}{2}\left(\left|1 + \frac{\beta}{2}\right| + \left|\frac{\beta}{2}\right|\right)\max_{|z|=1}|P(z)|,\tag{1.6}$$

for |z| = 1 and for every $\beta \in \mathbb{C}$ with $|\beta| \le 1$.

In 2000, Jain [8] further improved (1.6) by obtaining under the same hypothesis that

$$\left|zP'(z) + \frac{n\beta}{2}P(z)\right| \leq \frac{n}{2} \left\{ \left(\left|1 + \frac{\beta}{2}\right| + \left|\frac{\beta}{2}\right| \right)_{|z|=1} |P(z)| - \left(\left|1 + \frac{\beta}{2}\right| - \left|\frac{\beta}{2}\right| \right)_{|z|=1} |P(z)| \right\},$$

$$(1.7)$$

for |z| = 1 and for every $\beta \in \mathbb{C}$ with $|\beta| \leq 1$.

Recently, Hans and Lal [6] generalized (1.6) and (1.7) for the *s*th derivative of polynomials and proved the following results.

Theorem A If $P \in \mathbb{P}_n$ and $P(z) \neq 0$ in |z| < 1, then for every $\beta \in \mathbb{C}$ with $|\beta| \le 1, 1 \le s \le n$ and |z| = 1,

$$\left| z^{s} P^{(s)}(z) + \beta \frac{n_{s}}{2} P(z) \right| \le \frac{n_{s}}{2} \left(\left| 1 + \frac{\beta}{2^{s}} \right| + \left| \frac{\beta}{2^{s}} \right| \right)_{|z|=1} |P(z)|.$$
(1.8)

Theorem B If $P \in \mathbb{P}_n$ and $P(z) \neq 0$ in |z| < 1, then for every $\beta \in \mathbb{C}$ with $|\beta| \le 1, 1 \le s \le n$ and |z| = 1,

$$\left| z^{s} P^{(s)}(z) + \beta \frac{n_{s}}{2} P(z) \right| \leq \frac{n_{s}}{2} \left\{ \left(\left| 1 + \frac{\beta}{2^{s}} \right| + \left| \frac{\beta}{2^{s}} \right| \right) \max_{|z|=1} |P(z)| - \left(\left| 1 + \frac{\beta}{2^{s}} \right| - \left| \frac{\beta}{2^{s}} \right| \right) \min_{|z|=1} |P(z)| \right\}.$$
(1.9)

The above inequalities (1.8) and (1.9) were further improved and generalized by Zireh [12]. More recently, Gulzar [5] obtained an L^{γ} analogue of Theorem A by proving the following result.

Theorem C If $P \in \mathbb{P}_n$ and $P(z) \neq 0$ in |z| < 1, then for every $\beta \in \mathbb{C}$ with $|\beta| \leq 1, 1 \leq s \leq n$ and $0 \leq \gamma < \infty$,

$$\left\{ \int_{0}^{2\pi} \left| e^{is\theta} P^{(s)}(e^{i\theta}) + \beta \frac{n_s}{2^s} P(e^{i\theta}) \right|^{\gamma} d\theta \right\}^{\frac{1}{\gamma}} \\
\leq n_s E_{\gamma} \left\{ \int_{0}^{2\pi} \left| \left(1 + \frac{\beta}{2^s} \right) e^{i\alpha} + \frac{\beta}{2^s} \right|^{\gamma} d\alpha \right\}^{\frac{1}{\gamma}} \left\{ \int_{0}^{2\pi} \left| P(e^{i\theta}) \right|^{\gamma} d\theta \right\}^{\frac{1}{\gamma}},$$
(1.10)

where

$$E_{\gamma} = \left\{ \int_{0}^{2\pi} \left| 1 + e^{i\alpha} \right|^{\gamma} \mathrm{d}\alpha \right\}^{\frac{-1}{\gamma}}.$$
(1.11)

1

The result is best possible and equality in (1.10) holds for $P(z) = az^n + b$ with |a| = |b| = 1.

2 Main results

The main aim of this paper is to prove an L^{γ} analog of Theorem B and thereby to obtain a generalization of Theorem C. More precisely, we prove

Theorem 2.1 If $P \in \mathbb{P}_n$ and $P(z) \neq 0$ in |z| < 1, then for any $\beta, \delta \in \mathbb{C}$ with $|\beta| \le 1, |\delta| \le 1, 1 \le s \le n$ and $0 \le \gamma < \infty$,

$$\begin{cases} \int_{0}^{2\pi} \left| e^{is\theta} P^{(s)}(e^{i\theta}) + \beta \frac{n_s}{2^s} P(e^{i\theta}) + \delta m \frac{n_s}{2} \left(\left| 1 + \frac{\beta}{2^s} \right| - \left| \frac{\beta}{2^s} \right| \right) \right|^{\gamma} \mathrm{d}\theta \end{cases}^{\frac{1}{\gamma}} \\ \leq n_s E_{\gamma} \begin{cases} \int_{0}^{2\pi} \left| \left(1 + \frac{\beta}{2^s} \right) e^{i\alpha} + \frac{\beta}{2^s} \right|^{\gamma} \mathrm{d}\alpha \end{cases}^{\frac{1}{\gamma}} \begin{cases} \int_{0}^{2\pi} \left| P(e^{i\theta}) \right|^{\gamma} \mathrm{d}\theta \end{cases}^{\frac{1}{\gamma}}, \tag{2.1}$$

where here and throughout $m = \min_{|z|=1} |P(z)|$ and E_{γ} is defined by (1.11).

The result is best possible and equality in (2.1) holds for $P(z) = az^n + b$ with |a| = |b| = 1.

Now, we present and discuss some consequences of this result. First, we point out that inequalities involving polynomials in the Chebyshev norm on the unit circle in the complex plane are a special case of the polynomial inequalities involving the integral norm. For example, if we let $\gamma \to \infty$ in (2.1) and choose the argument of δ suitably with $|\delta| = 1$, we get (1.9).

Remark 2.2 For $\delta = 0$, Theorem 2.1 reduces to Theorem C. If we take s = 1 in (2.1), we get the following result which provides an L^{γ} analogue of (1.7).

Corollary 2.3 If $P \in \mathbb{P}_n$ and $P(z) \neq 0$ in |z| < 1, then for every $\beta, \delta \in \mathbb{C}$ with $|\beta| \leq 1, |\delta| \leq 1$ and $0 \leq \gamma < \infty$,

$$\begin{cases} \int_{0}^{2\pi} \left| e^{i\theta} P'(e^{i\theta}) + \frac{\beta n}{2} P(e^{i\theta}) + \frac{\delta mn}{2} \left(\left| 1 + \frac{\beta}{2} \right| - \left| \frac{\beta}{2} \right| \right) \right|^{\gamma} d\theta \end{cases}^{\frac{1}{\gamma}} \\ \leq n E_{\gamma} \begin{cases} \int_{0}^{2\pi} \left| \left(1 + \frac{\beta}{2} \right) e^{i\alpha} + \frac{\beta}{2} \right|^{\gamma} d\alpha \end{cases}^{\frac{1}{\gamma}} \begin{cases} \int_{0}^{2\pi} |P(e^{i\theta})|^{\gamma} d\theta \end{cases}^{\frac{1}{\gamma}}, \tag{2.2}$$

where E_{γ} is defined by (1.11).

Remark 2.4 Inequality (1.7) can be obtained by letting $\gamma \to \infty$ and by choosing the argument of δ suitably with $|\delta| = 1$ in (2.2).

Several other interesting results easily follow from Theorem 2.1. Here, we mention a few of these. Taking $\beta = 0$ in (2.1), we immediately get the following result.

Corollary 2.5 If $P \in \mathbb{P}_n$ and $P(z) \neq 0$ in |z| < 1, then for every $\beta \in \mathbb{C}$ with $|\delta| \le 1$, $1 \le s \le n$, and $0 \le \gamma < \infty$,

$$\left\{\int_{0}^{2\pi} \left| e^{is\theta} P^{(s)}(e^{i\theta}) + \frac{\delta m n_s}{2} \right|^{\gamma} \mathrm{d}\theta \right\}^{\frac{1}{\gamma}} \le n_s C_{\gamma} \left\{\int_{0}^{2\pi} \left| P(e^{i\theta}) \right|^{\gamma} \mathrm{d}\theta \right\}^{\frac{1}{\gamma}},$$
(2.3)

where C_{γ} is defined in (1.5).

For s = 1 and $\delta = 0$, inequality (2.3) reduces to inequality (1.4). The following corollary which is a refinement as well as a generalization of (1.3) is obtained by letting $\gamma \to \infty$ and by choosing the argument of δ with $|\delta| = 1$ suitably in (2.3).

Corollary 2.6 If $P \in \mathbb{P}_n$ and $P(z) \neq 0$ in |z| < 1, then for $1 \leq s \leq n$, we have

$$\max_{|z|=1} |P^{(s)}(z)| \le \frac{n_s}{2} \left\{ \max_{|z|=1} |P(z)| - \min_{|z|=1} |P(z)| \right\}.$$

Remark 2.7 For s = 1, Corollary 2.6 reduces to a result of Aziz and Dawood [2].

For the proof of Theorem 2.1, we need the following lemmas.

3 Lemmas

Lemma 3.1 Let $F \in \mathbb{P}_n$ and F(z) has all its zeros in $|z| \le 1$. If P(z) is a polynomial of degree at most n such that

$$|P(z)| \le |F(z)|$$
 for $|z| = 1$,

then for any $\beta \in \mathbb{C}$ with $|\beta| \leq 1$ and $1 \leq s \leq n$,

$$\left| z^{s} P^{(s)}(z) + \frac{\beta n_{s}}{2^{s}} P(z) \right| \leq \left| z^{s} F^{(s)}(z) + \frac{\beta n_{s}}{2^{s}} F(z) \right|, \text{ for } |z| \geq 1.$$

The above lemma is due to Hans and Lal [6].

By applying Lemma 3.1 to polynomials P(z) and $z^n \min_{|z|=1} |P(z)|$, we get the following result.

Lemma 3.2 If $P \in \mathbb{P}_n$ and P(z) has all its zeros in $|z| \le 1$, then for every $\beta \in \mathbb{C}$ with $|\beta| \le 1, 1 \le s \le n$,

$$\left| z^{s} P^{(s)}(z) + \frac{\beta n_{s}}{2^{s}} P(z) \right| \ge n_{s} |z|^{n} \left| 1 + \frac{\beta}{2^{s}} \right| \min_{|z|=1} |P(z)|, \quad for \ |z| \ge 1.$$

Lemma 3.3 If $P \in \mathbb{P}_n$ and $P(z) \neq 0$ in |z| < 1, then for every $\beta \in \mathbb{C}$ with $|\beta| \le 1, 1 \le s \le n$ and |z| = 1,

$$\left|z^{s}P^{(s)}(z) + \frac{\beta n_{s}}{2^{s}}P(z)\right| \leq \left|z^{s}Q^{(s)}(z) + \frac{\beta n_{s}}{2^{s}}Q(z)\right| - n_{s}\left\{\left|1 + \frac{\beta}{2^{s}}\right| - \left|\frac{\beta}{2^{s}}\right|\right\}m,$$

where $Q(z) = z^n \overline{P(\frac{1}{\overline{z}})}$.

Proof of Lemma 3.3. If P(z) has a zero on |z| = 1, then m = 0 and the result follows by Lemma 3.1. Henceforth, we suppose that all the zeros of P(z) lie in |z| > 1 and so m > 0, we have $|\lambda m| < |P(z)|$ on |z| = 1 for any λ with $|\lambda| < 1$. It follows by Rouche's theorem that the polynomial $G(z) = P(z) - \lambda m$ has no zeros in |z| < 1. Therefore, the polynomial $H(z) = z^n \overline{G(\frac{1}{z})} = Q(z) - m\overline{\lambda}z^n$ will have all its zeros in $|z| \le 1$. Also |G(z)| = |H(z)| for |z| = 1. On applying Lemma 3.1, we get for every $\beta \in \mathbb{C}$ with $|\beta| \le 1$, $1 \le s \le n$ and $|z| \ge 1$,

$$\left|z^s G^{(s)}(z) + \frac{\beta n_s}{2^s} G(z)\right| \leq \left|z^s H^{(s)}(z) + \frac{\beta n_s}{2^s} H(z)\right|.$$

Springer

Equivalently

$$\left| z^{s} P^{(s)}(z) + \frac{\beta n_{s}}{2^{s}} \left(P(z) - \lambda m \right) \right|$$

$$\leq \left| \left(z^{s} Q^{(s)}(z) - \bar{\lambda} m n_{s} z^{n} \right) + \frac{\beta n_{s}}{2^{s}} \left(Q(z) - \bar{\lambda} m z^{n} \right) \right|$$

This implies that

$$\left| \left(z^{s} P^{(s)}(z) + \frac{\beta n_{s}}{2^{s}} P(z) \right) - \frac{\beta n_{s}}{2^{s}} \lambda m \right|$$

$$\leq \left| \left(z^{s} Q^{(s)}(z) + \frac{\beta n_{s}}{2^{s}} Q(z) \right) - \bar{\lambda} m n_{s} z^{n} \left(1 + \frac{\beta}{2^{s}} \right) \right|.$$
(3.1)

Since Q(z) has all its zeros in $|z| \le 1$, therefore, by Lemma 3.2 we have for every $\beta \in \mathbb{C}$ with $|\beta| \le 1$ and $|z| \ge 1$,

$$\left| z^{s} Q^{(s)}(z) + \frac{\beta n_{s}}{2^{s}} Q(z) \right| \ge n_{s} |z|^{n} \left| 1 + \frac{\beta}{2^{s}} \left| \min_{|z|=1} |Q(z)| \right|$$
$$= n_{s} |z|^{n} \left| 1 + \frac{\beta}{2^{s}} \right| m.$$
(3.2)

Now choosing a suitable argument of λ in the right-hand side of (3.1), in view of (3.2), we get for |z| = 1,

$$\left| z^{s} P^{(s)}(z) + \frac{\beta n_{s}}{2^{s}} P(z) \right| - |\lambda| n_{s} \left| \frac{\beta}{2^{s}} \right| m$$
$$\leq \left| z^{s} Q^{(s)}(z) + \frac{\beta n_{s}}{2^{s}} Q(z) \right| - n_{s} \left| 1 + \frac{\beta}{2^{s}} \right| |\lambda| m$$

Equivalently

$$\left| z^{s} P^{(s)}(z) + \frac{\beta n_{s}}{2^{s}} P(z) \right|$$

$$\leq \left| z^{s} Q^{(s)}(z) + \frac{\beta n_{s}}{2^{s}} Q(z) \right| - n_{s} \left(\left| 1 + \frac{\beta}{2^{s}} \right| - \left| \frac{\beta}{2^{s}} \right| \right) |\lambda| m.$$

Letting $|\lambda| \to 1$, we get for every $\beta \in \mathbb{C}$ with $|\beta| \le 1$ and |z| = 1,

$$\begin{aligned} \left| z^{s} P^{(s)}(z) + \frac{\beta n_{s}}{2^{s}} P(z) \right| \\ &\leq \left| z^{s} Q^{(s)}(z) + \frac{\beta n_{s}}{2^{s}} Q(z) \right| - n_{s} \left(\left| 1 + \frac{\beta}{2^{s}} \right| - \left| \frac{\beta}{2^{s}} \right| \right) m, \end{aligned}$$

which completes the proof of the lemma.

The following lemma is due to Aziz and Shah [3].

Lemma 3.4 If A, B, C are non-negative real numbers such that $B + C \le A$, then for every real number α ,

$$|(A-C) + e^{i\alpha}(B+C)| \le |A+e^{i\alpha}B|.$$

Lemma 3.5 If $P \in \mathbb{P}_n$ and $P(z) \neq 0$ in |z| < 1 and $Q(z) = z^n \overline{P\left(\frac{1}{\overline{z}}\right)}$ then, for every $\beta \in \mathbb{C}$ with $|\beta| \le 1, \alpha$ real, $1 \le s \le n$ and $\gamma > 0$,

$$\begin{split} &\int_{0}^{2\pi} \left| \left(e^{is\theta} P^{(s)}(e^{i\theta}) + \beta \frac{n_s}{2^s} P(e^{i\theta}) \right) e^{i\alpha} + e^{in\theta} \overline{\left(e^{is\theta} Q^{(s)}(e^{i\theta}) + \beta \frac{n_s}{2^s} Q(e^{i\theta}) \right)} \right| \mathrm{d}\theta \\ &\leq n_s^{\gamma} \left| \left(1 + \frac{\beta}{2^s} \right) e^{i\alpha} + \frac{\overline{\beta}}{2^s} \right|^{\gamma} \int_{0}^{2\pi} |P(e^{i\theta})|^{\gamma} \mathrm{d}\theta. \end{split}$$

The above lemma is due to Gulzar [5].

Lemma 3.6 Let $a, b \in \mathbb{C}$ with $|b| \ge |a|$. Then for r > 0 and γ real, we have

$$\int_{0}^{2\pi} \left| a + e^{i\gamma} b \right|^{r} \mathrm{d}\gamma \ge |a|^{r} \int_{0}^{2\pi} \left| 1 + e^{i\gamma} \right|^{r} \mathrm{d}\gamma.$$
(3.3)

Proof of Lemma 3.6. If a = 0, then (3.3) is obvious. Henceforth, we assume that $a \neq 0$. Now for every real γ and $t \ge 1$, it can be easily verified that

$$|t + e^{i\gamma}| \ge |1 + e^{i\gamma}|. \tag{3.4}$$

Hence, using (3.4), we get

$$\begin{split} \int_{0}^{2\pi} \left| 1 + e^{i\gamma} \frac{b}{a} \right|^{r} \mathrm{d}\gamma &= \int_{0}^{2\pi} \left| 1 + e^{i\gamma} \left| \frac{b}{a} \right| \right|^{r} \mathrm{d}\gamma \\ &= \int_{0}^{2\pi} \left| \left| \frac{b}{a} \right| + e^{i\gamma} \right|^{r} \mathrm{d}\gamma \\ &\geq \int_{0}^{2\pi} \left| 1 + e^{i\gamma} \right|^{r} \mathrm{d}\gamma, \end{split}$$

which is equivalent to (3.3) and this completes the proof of the lemma.

4 Proof of the Theorem

Proof of Theorem 2.1. Since $P(z) \neq 0$ in |z| < 1, therefore, by Lemma 3.3, for each θ , $0 \le \theta < 2\pi$, $\beta \in \mathbb{C}$ with $|\beta| \le 1$ and $1 \le s \le n$,

$$\left| e^{is\theta} P^{(s)}(e^{i\theta}) + \frac{\beta n_s}{2^s} P(e^{i\theta}) \right| + \frac{mn_s}{2} \left(\left| 1 + \frac{\beta}{2^s} \right| - \left| \frac{\beta}{2^s} \right| \right)$$

$$\leq \left| e^{is\theta} Q^{(s)}(e^{i\theta}) + \frac{\beta n_s}{2^s} Q(e^{i\theta}) \right| - \frac{mn_s}{2} \left(\left| 1 + \frac{\beta}{2^s} \right| - \left| \frac{\beta}{2^s} \right| \right). \tag{4.1}$$

Taking

$$A = \left| e^{is\theta} Q^{(s)}(e^{i\theta}) + \frac{\beta n_s}{2^s} Q(e^{i\theta}) \right|,$$
$$B = \left| e^{is\theta} P^{(s)}(e^{i\theta}) + \frac{\beta n_s}{2^s} P(e^{i\theta}) \right|$$

and

$$C = \frac{mn_s}{2} \left(\left| 1 + \frac{\beta}{2^s} \right| - \left| \frac{\beta}{2^s} \right| \right)$$

in Lemma 3.4, so that by (4.1),

$$B+C \le A-C \le A,$$

🛈 🖉 Springer

we get for every real α ,

$$\begin{aligned} \left\{ \left| e^{is\theta} P^{(s)}(e^{i\theta}) + \frac{\beta n_s}{2^s} P(e^{i\theta}) \right| + \frac{mn_s}{2} \left(\left| 1 + \frac{\beta}{2^s} \right| - \left| \frac{\beta}{2^s} \right| \right) \right\} e^{i\alpha} \\ + \left\{ \left| e^{is\theta} Q^{(s)}(e^{i\theta}) + \frac{\beta n_s}{2^s} Q(e^{i\theta}) \right| - \frac{mn_s}{2} \left(\left| 1 + \frac{\beta}{2^s} \right| - \left| \frac{\beta}{2^s} \right| \right) \right\} \right| \\ \leq \left| \left| e^{is\theta} P^{(s)}(e^{i\theta}) + \frac{\beta n_s}{2^s} P(e^{i\theta}) \right| e^{i\alpha} + \left| e^{is\theta} Q^{(s)}(e^{i\theta}) + \frac{\beta n_s}{2^s} Q(e^{i\theta}) \right| \right| \end{aligned}$$

This implies for each $\gamma > 0$,

$$\int_{0}^{2\pi} \left| F(\theta) + e^{i\alpha} G(\theta) \right|^{\gamma} d\theta \leq \int_{0}^{2\pi} \left| \left| e^{is\theta} P^{(s)}(e^{i\theta}) + \frac{\beta n_s}{2^s} P(e^{i\theta}) \right| e^{i\alpha} + \left| e^{is\theta} Q^{(s)}(e^{i\theta}) + \frac{\beta n_s}{2^s} Q(e^{i\theta}) \right| \right|^{\gamma} d\theta,$$

$$(4.2)$$

where

$$G(\theta) = \left| e^{is\theta} P^{(s)}(e^{i\theta}) + \frac{\beta n_s}{2^s} P(e^{i\theta}) \right| + \frac{mn_s}{2} \left(\left| 1 + \frac{\beta}{2^s} \right| - \left| \frac{\beta}{2^s} \right| \right)$$

and

$$F(\theta) = \left| e^{is\theta} Q^{(s)}(e^{i\theta}) + \frac{\beta n_s}{2^s} Q(e^{i\theta}) \right| - \frac{mn_s}{2} \left(\left| 1 + \frac{\beta}{2^s} \right| - \left| \frac{\beta}{2^s} \right| \right).$$

Integrating both sides of (4.2) with respect to α from 0 to 2π , we get with the help of Lemma 3.5, for each $\gamma > 0$,

$$\begin{split} &\int_{0}^{2\pi} \int_{0}^{2\pi} \left| F(\theta) + e^{i\alpha} G(\theta) \right|^{\gamma} d\theta d\alpha \leq \int_{0}^{2\pi} \left\{ \int_{0}^{2\pi} \left| \left| e^{is\theta} P^{(s)}(e^{i\theta}) + \frac{\beta n_s}{2^s} P(e^{i\theta}) \right| e^{i\alpha} \right. \\ &+ \left| e^{is\theta} Q^{(s)}(e^{i\theta}) + \frac{\beta n_s}{2^s} Q(e^{i\theta}) \right| \right|^{\gamma} d\alpha \right\} d\theta \\ &= \int_{0}^{2\pi} \left\{ \int_{0}^{2\pi} \left| \left| e^{is\theta} P^{(s)}(e^{i\theta}) + \frac{\beta n_s}{2^s} P(e^{i\theta}) \right| e^{i\alpha} \right. \\ &+ \left| e^{in\theta} \overline{\left(e^{is\theta} Q^{(s)}(e^{i\theta}) + \beta \frac{n_s}{2^s} Q(e^{i\theta}) \right)} \right| \right|^{\gamma} d\alpha \right\} d\theta \\ &= \int_{0}^{2\pi} \left\{ \int_{0}^{2\pi} \left| \left(e^{is\theta} P^{(s)}(e^{i\theta}) + \frac{\beta n_s}{2^s} Q(e^{i\theta}) \right) \right|^{\gamma} d\theta \right\} d\alpha \\ &+ \left. e^{in\theta} \overline{\left(e^{is\theta} Q^{(s)}(e^{i\theta}) + \beta \frac{n_s}{2^s} Q(e^{i\theta}) \right)} \right|^{\gamma} d\theta \right\} d\alpha \\ &\leq n_s^{\gamma} \int_{0}^{2\pi} \left| \left(1 + \frac{\beta}{2^s} \right) e^{i\alpha} + \frac{\overline{\beta}}{2^s} \right|^{\gamma} d\alpha \int_{0}^{2\pi} \left| P(e^{i\theta}) \right|^{\gamma} d\theta. \end{split}$$

$$\tag{4.3}$$

Since

$$\int_{0}^{2\pi} \left| \left(1 + \frac{\beta}{2^s} \right) e^{i\alpha} + \frac{\overline{\beta}}{2^s} \right|^{\gamma} d\alpha = \int_{0}^{2\pi} \left| \left| 1 + \frac{\beta}{2^s} \right| e^{i\alpha} + \left| \frac{\overline{\beta}}{2^s} \right| \right|^{\gamma} d\alpha$$

$$= \int_{0}^{2\pi} \left| \left| 1 + \frac{\beta}{2^{s}} \right| e^{i\alpha} + \left| \frac{\beta}{2^{s}} \right| \right|^{\gamma} d\alpha$$
$$= \int_{0}^{2\pi} \left| \left(1 + \frac{\beta}{2^{s}} \right) e^{i\alpha} + \frac{\beta}{2^{s}} \right|^{\gamma} d\alpha.$$

Using this in (4.3), we get for each $\gamma > 0$,

$$\int_{0}^{2\pi} \int_{0}^{2\pi} \left| F(\theta) + e^{i\alpha} G(\theta) \right|^{\gamma} \mathrm{d}\theta \mathrm{d}\alpha \le n_s^{\gamma} \int_{0}^{2\pi} \left| \left(1 + \frac{\beta}{2^s} \right) e^{i\alpha} + \frac{\beta}{2^s} \right|^{\gamma} \mathrm{d}\alpha \int_{0}^{2\pi} \left| P(e^{i\theta}) \right|^{\gamma} \mathrm{d}\theta.$$
(4.4)

If we take

$$a = G(\theta),$$

$$b = F(\theta),$$

because $|b| \ge |a|$ from (4.1), we get from Lemma 3.6, that for each $\gamma > 0$

$$\int_{0}^{2\pi} \left| F(\theta) + e^{i\alpha} G(\theta) \right|^{\gamma} d\alpha \ge |G(\theta)|^{\gamma} \int_{0}^{2\pi} |1 + e^{i\alpha}|^{\gamma} d\alpha.$$
(4.5)

Integrating both sides of (4.5) with respect to θ from 0 to 2π , we get from (4.4), that for each $\gamma > 0$,

$$\begin{cases} \int_{0}^{2\pi} |1+e^{i\alpha}|^{\gamma} d\alpha \int_{0}^{2\pi} \left(\left| e^{is\theta} P^{(s)}(e^{i\theta}) + \frac{\beta n_{s}}{2^{s}} P(e^{i\theta}) \right| \right. \\ \left. + \frac{mn_{s}}{2} \left(\left| 1+\frac{\beta}{2^{s}} \right| - \left| \frac{\beta}{2^{s}} \right| \right) \right)^{\gamma} d\theta \end{cases}^{\frac{1}{\gamma}} \\ \leq n_{s} \left\{ \int_{0}^{2\pi} \left| \left(1+\frac{\beta}{2^{s}} \right) e^{i\alpha} + \frac{\beta}{2^{s}} \right|^{\gamma} d\alpha \right\}^{\frac{1}{\gamma}} \left\{ \int_{0}^{2\pi} |P(e^{i\theta})|^{\gamma} d\theta \right\}^{\frac{1}{\gamma}}. \tag{4.6}$$

Now using the fact that for every $\delta \in \mathbb{C}$ with $|\delta| \leq 1$,

$$\left| e^{is\theta} P^{(s)}(e^{i\theta}) + \frac{\beta n_s}{2^s} P(e^{i\theta}) + \frac{\delta m n_s}{2} \left(\left| 1 + \frac{\beta}{2^s} \right| - \left| \frac{\beta}{2^s} \right| \right) \right|$$

$$\leq \left| e^{is\theta} P^{(s)}(e^{i\theta}) + \frac{\beta n_s}{2^s} P(e^{i\theta}) \right| + \frac{m n_s}{2} \left(\left| 1 + \frac{\beta}{2^s} \right| - \left| \frac{\beta}{2^s} \right| \right),$$

we get from (4.6) that for every $\gamma > 0$,

$$\begin{split} \left\{ \int_{0}^{2\pi} \left| e^{is\theta} P^{(s)}(e^{i\theta}) + \frac{\beta n_s}{2^s} P(e^{i\theta}) + \frac{\delta m n_s}{2} \left(\left| 1 + \frac{\beta}{2^s} \right| - \left| \frac{\beta}{2^s} \right| \right) \right|^{\gamma} \mathrm{d}\theta \right\}^{\frac{1}{\gamma}} \\ & \leq n_s \left\{ \int_{0}^{2\pi} \left| \left(1 + \frac{\beta}{2^s} \right) e^{i\alpha} + \frac{\beta}{2^s} \right|^{\gamma} \mathrm{d}\alpha \right\}^{\frac{1}{\gamma}} \frac{\left\{ \int_{0}^{2\pi} \left| P(e^{i\theta}) \right|^{\gamma} \mathrm{d}\theta \right\}^{\frac{1}{\gamma}}}{\left\{ \int_{0}^{2\pi} \left| 1 + e^{i\alpha} \right|^{\gamma} \mathrm{d}\alpha \right\}^{\frac{1}{\gamma}}} \;, \end{split}$$

which proves Theorem 2.1 for $\gamma > 0$. To establish this result for $\gamma = 0$, we simply make $\gamma \to 0_+$.

🖄 Springer

Acknowledgements The author is extremely grateful to the anonymous referees for many valuable suggestions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- Arestov, V.V.: On integral inequalities for trigonometric polynomials and their derivatives. Izv. Akad. Nauk. SSSR. Ser. Mat. 45, 3–22 (1981)
- 2. Aziz, A.; Dawood, Q.M.: Inequalities for a polynomial and its derivative. J. Approx. Theory 54, 306–313 (1988)
- 3. Aziz, A.; Shah, W.M.: L^p inequalities for polynomials with restricted zeros. Glasn. Math. **32**, 247–258 (1997)
- 4. De-Bruijn, N.G.: Inequalities concerning polynomials in the complex domain. Ned. Akad. Wetnesch Proc. **50**, 1265–1272 (1947)
- 5. Gulzar, S.: Some Zygmund type inequalities for the sth derivative of polynomials. Anal. Math. 42, 339–352 (2016)
- 6. Hans, S.; Lal, R.: Generalization of some polynomial inequalities not vanishing in a disk. Anal. Math. 40, 105–115 (2014)
- 7. Jain, V.K.: Generalization of certain well known inequalities for polynomials. Glas. Math. **32**, 45–51 (1997)
- 8. Jain, V.K.: Inequalities for a polynomial and its derivative. Proc. Indian Acad. Sci. (Math. Sci.) **110**, 137–146 (2000)
- 9. Lax, P.D.: Proof of a conjecture of P. Erdös on the derivative of a polynomial. Bull. Am. Math. Soc. 50, 509–513 (1944)
- 10. Milovanović, G.V.; Mitrinović, D.S.; Rassias, ThM: Topics in Polynomials, Extremal Problems, Inequalities, Zeros. World Scientific, Singapore (1994)
- 11. Rahman, Q.I.; Schmeisser, G.: L^p inequalities for polynomials. J. Approx. Theory 53, 26-32 (1988)
- 12. Zireh, A.: Generalization of certain well-known inequalities for the derivative of polynomials. Anal. Math. **41**, 117–132 (2015)
- 13. Zygmund, A.: A remark on conjugate series. Proc. Lond. Math. Soc. 34, 392-400 (1932)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

