
Arab. J. Math. (2018) 7:113–145
https://doi.org/10.1007/s40065-017-0190-4 Arabian Journal of Mathematics

Salim A. Messaoudi · Ala A. Talahmeh

On wave equation: review and recent results

Received: 10 October 2017 / Accepted: 1 November 2017 / Published online: 27 November 2017
© The Author(s) 2017. This article is an open access publication

Abstract The aim of this paper is to give an overview of results related to nonlinear wave equations during
the last half century. In this regard, we present results concerning existence, decay and blow up for classical
nonlinear equations. After that, we discuss briefly some important results of the variable-exponent Lebesgue
and Sobolev spaces. Results related to nonexistence and blow up for wave equations with non-standard nonlin-
earities (nonlinearities involving variable exponents) are given in more detail. Finally, we present some recent
decay and blow up results together with their proofs.
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1 Literature review

A considerable and great effort has been devoted to the study of linear and nonlinear wave equations in the case
of constant and variable-exponent nonlinearities. Our aim here is to give an overview of the existing results
and introduce some other ones.

1.1 Decay in the case of constant exponents

There is an extensive literature on the stabilization of the wave equation by internal or boundary feedbacks.
Zuazua [95] proved the exponential stability of the energy for thewave equation by a locally distributed internal
feedback depending linearly on the velocity. Komornik [37] and Nakoa [72] extended the result of Zuazua
[95] by considering the case of a nonlinear damping term with a polynomial growth near the origin. Martinez
[53,54] studied a damped wave equation and used the piecewise multiplier technique combined with some
nonlinear integral inequalities to establish explicit decay rate estimates. These decay estimates are not optimal
for some cases including the case of the polynomial growth. The following initial-boundary value problem of
the Kirchhoff equation with a general dissipation of the form

⎧
⎪⎨

⎪⎩

utt − φ
( ∫

�
|∇u|2

)
�u + σ(t)g(ut ) = 0, in � × [0,+∞)

u(x, t) = 0, on ∂� × [0,+∞)

u(x, 0) = u0(x), ut (x, 0) = u1(x), in �,

(1.1)

where� is a bounded domainRn (n ≥ 1),with a smooth boundary ∂� and φ, σ and g are given functions and
the functions (u0, u1) are the given initial data, was considered by many authors in the literature. For instance,
in the case when g = σ = 0, the one-dimensional equation of (1.1) was first introduced by Kirchhoff [35] in
1876, and then was called the Kirchhoff string after his name.When σ = 1, φ(r) = rα (α ≥ 1) and g(x) = τ x
(τ > 0), problem (1.1) was treated by Nishihara and Yamada [73]. They proved the existence and uniqueness
of a global solution and the polynomial decay for small data (u0, u1) ∈ (H1

0 (�) ∩ H2(�)) × H1
0 (�) with

u0 �= 0 . In [76], Ono extended the work of [73] to the case where φ(r) = r and σ(t) ≡ (1 + t)−δ, δ < 1
3

using the decay lemma of Nakao [69]. Benaissa and Guesmia [18] extended the results obtained by Ono [76]
and proved an existence and uniqueness theorem of a global solution in Sobolev spaces to the problem (1.1)
when φ(r) = r, g(v) = v and general functions σ. Also, they obtained an explicit and general decay rate,
depending on σ, g and φ, for the energy of solutions of (1.1) without any growth assumption on g and φ at the
origin, and on σ at infinity. Also, the following problem

⎧
⎪⎨

⎪⎩

utt − �u + g(ut ) + f (u) = 0, in � × (0,+∞)

u(x, t) = 0, on ∂� × [0,+∞)

u(x, 0) = u0(x), ut (x, 0) = u1(x), in �,

(1.2)

where � is a bounded region in R
n (n ≥ 1), with a smooth boundary ∂�, was considered by many authors.

For instance, in the case when f (u) = |u|p−2u, g(ut ) = |ut |m−2ut , m, p > 2, Nakao [70] showed that (1.2)
has a unique global weak solution if 0 ≤ p − 2 ≤ 2/(n − 2), n ≥ 3 and a global unique strong solution if
p−2 > 2/(n−2), n ≥ 3. In addition to global existence, the issue of the decay rate was also addressed. In both
cases it has been shown that the energy of the solution decays algebraically if m > 2 and decays exponentially
if m = 2. This improved an earlier result in [68], where Nakao studied the problem in an abstract setting and
established a theorem concerning decay of the solution energy only for the case m − 2 ≤ 2/(n − 2), n ≥ 3.
Also in a joint work, Nakao and Ono [71] extended this result to the Cauchy problem

{
utt − �u + λ2(x)u + ρ(ut ) + f (u) = 0, in R

n × (0, +∞)

u(x, 0) = u0(x), ut (x, 0) = u1(x), in R
n,

(1.3)
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where ρ(ut ) behaves like |ut |βut and f (u) behaves like −bu|u|α. In this case the authors required that the
initial data be small enough in the H1 × L2 norm and with compact supports. In [56] Messaoudi considered
problem (1.2) in the case f (u) = bu|u|p−2, g(ut ) = a(1 + |ut |m−2)ut , a, b > 0, p, m > 2, and showed
that, for any initial data (u0, u1) ∈ H1

0 (�) × L2(�), the problem has a unique global solution with energy
decaying exponentially. Benaissa and Messaoudi [16] studied (1.2), for f (u) = −bu|u|p−2, and g(ut ) =
a(1 + |ut |m−2)ut , and showed that, for suitably chosen initial data, the problem possesses a global weak
solution which decays exponentially even if m ≥ 2. In [28], Guesmia looked into the following problem

⎧
⎪⎨

⎪⎩

utt − �u + h(∇u) + g(ut ) + f (u) = 0, in � × (0,+∞)

u(x, t) = 0, on ∂� × [0,+∞)

u(x, 0) = u0(x), ut (x, 0) = u1(x), in �,

(1.4)

where � is a bounded open domain in R
n (n ≥ 1), with a smooth boundary ∂� and f, g : R → R and

h : R
n → R are continuous nonlinear functions satisfying some general properties. He obtained uniform

decay of strong and weak solutions under weak growth assumptions on the feedback function and without
any control of the sign of the derivative of the energy related to the above equation. Guesmia and Messaoudi
[29], considered (1.4) with h(∇u) = −∇φ · ∇u, where φ ∈ W 1,∞(�), and proved local and global existence
results and showed that weak solutions decay either algebraically or exponentially depending on the rate of
growth of g. Pucci and Serrin [78] discussed the stability of the following problem

⎧
⎪⎨

⎪⎩

utt − �u + Q(x, t, u, ut ) + f (x, u) = 0, in � × (0, +∞)

u(x, t) = 0, on ∂� × [0, +∞)

u(x, 0) = u0(x), ut (x, 0) = u1(x), in �,

(1.5)

and proved that the energy of the solution is a Lyapunov function. Although they did not discuss the issue of the
decay rate, they did show that in general the energy goes to zero as t approaches infinity. They also considered
an important special case of (1.5), when Q(x, t, u, ut ) = a(t)tαut and f (x, u) = V (x)u, and showed that the
behavior of the solution depends crucially on the parameter α. Precisely, they showed if |α| ≤ 1 then the rest
field is asymptotically stable. On the other hand, when |α| > 1 there are solutions that do not approach zero
or approach nonzero function φ(x) as t → ∞. In [27], Guesmia studied the following elasticity system

⎧
⎪⎨

⎪⎩

∂t t ui − σi j, j + i (x, ∂t ui ) = 0, in � × (0,+∞)

u(x, t) = 0, on ∂� × [0,+∞)

ui (0) = u0
i , ∂t ui (0) = u1

i , in �,

(1.6)

where i (x, ∂t ui ) = bi (x)gi (∂t ui ), bi ’s ∈ L∞(�), are bounded nonnegative functions and gi ’s are non-
decreasing continuous real-valued functions satisfying certain conditions. He proved precise decay estimates
of the energy for the system (1.6) with some localized dissipations. Zuazua [96] considered the following
damped semilinear wave equation

utt − �u + αu + f (u) + a(x)ut = 0 in R
n × (0,∞),

with α > 0. He proved the exponential decay of the energy of the solution under suitable conditions on the
functions f and a. In [17], Benaissa and Mokeddem looked into the following equation

utt − div
(|∇u|p−2∇u

)− σ(t)div
(|∇ut |m−2∇ut

) = 0,

where σ is a positive function, p, m ≥ 2 and � is a bounded domain in R
n (n ≥ 1) with a regular boundary.

They gave an energy-decay estimate for the solutions and extended the results of Yang [92] and Messaoudi
[59]. Cavalcanti and Guesmia [19] looked into the following problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

utt − �u + F(x, t, u, ∇u) = 0, in � × (0, +∞)

u(x, t) = 0, on ∂�0 × (0, +∞)

u + ∫ t
0 g(t − s) ∂u

∂ν
(s)ds = 0, on ∂�1 × (0, +∞)

u(x, 0) = u0(x), ut (x, 0) = u1(x), in �,

(1.7)
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where � is a bounded region in Rn whose boundary is partitioned into disjoint sets �0, �1, g is the relaxation
functionwhich satisfies some assumptions. They proved that the dissipation given by thememory term is strong
enough to assure exponential (or polynomial) decay provided the relaxation function also decays exponentially
(or polynomially). In both cases the solution decays with the same rate of the relaxation function. This result
was later generalized by Messaoudi and Soufyane [60], where relaxation functions of general decay type
were considered. Alabau-Boussouira [1] used some weighted integral inequalities and convexity arguments
and proved a semi-explicit formula which leads to decay rates of the energy in terms of the behavior of the
nonlinear feedback near the origin, for which the optimal exponential and polynomial decay rate estimates are
only special cases. The following problem has been widely studied in the literature:

{
utt − �u + α(t)g(ut ) = 0, in � × (0,+∞)

u(x, t) = 0, on ∂� × (0,+∞),
(1.8)

where � is a bounded domain of Rn with a smooth boundary ∂� and g, α are specific functions. For instance,
when α ≡ 1 and g satisfies

c1 min{|s|, |s|q} ≤ |g(s)| ≤ c2 max{|s|, |s|1/q},
where c1, c2 > 0 are constants and q > 1, it was proved that

E(t) ≤ C
(
E(0)

)
t−2/(q−1), ∀t > 0,

and for q = 1, the decay rate is exponential (see [36,43]). In the presence of a weak frictional damping,
Benaissa and Messaoudi [15] treated problem (1.8) for g having a polynomial growth near the origin, and
established energy decay results depending on α and h. Decay results for arbitrary growth of the damping term
have been considered for the first time in the work of Lasiecka and Tataru [44]. They showed that the energy
decays as fast as the solution of an associated differential equation whose coefficients depend on the damping
term. Mustafa and Messaoudi [65] considered (1.8) and established an explicit and general decay rate result,
using some properties of convex functions. Their result was obtained without imposing any restrictive growth
assumption on the frictional damping term. Wu and Xue [91] studied the following quasilinear hyperbolic
equation

utt − ψ(t) div(|∇ut |p−2∇ut ) −
n∑

i=1

∂

∂xi
σi (uxi ) + μ|ut |αut = 0,

where μ, α ≥ 0, and p ≥ 2 are constants, the functions σi (i = 1, 2, . . . , n) and ψ are nonlinear, the domain
� is bounded in R

n (n ≥ 1), with a regular boundary. They investigated, using the multiplier methods, the
stability of weak solutions and obtained an explicit estimation for the rate of the decay. In 2015, Mokeddem
and Mansour [64] revisited the problem considered in [17] with some modifications. Precisely they treated the
equation

utt − div(|∇u|p−2∇u) − σ(t)(ut − div(|∇ut |m−2∇ut )) = 0,

and gave the same decay result. Recently, Cavalcanti et al. [20] treated the following damped wave problem
⎧
⎪⎨

⎪⎩

utt − �u + a(x)ut − div(b(x)∇ut ) = 0, in � × (0,+∞)

u(x, t) = 0, on ∂� × (0,+∞)

u(x, 0) = u0(x), ut (x, 0) = u1(x), in �,

(1.9)

where � is a bounded open domain in R
n (n ≥ 1), with a smooth boundary ∂� and a, b : � → R

+ are
nonnegative functions satisfying specific conditions. Under appropriate assumptions on the coefficients and the
initial data (u0, u1), they proved stabilization results for problem (1.9). Taniguchi [83] studied the following
problem with nonlinear boundary condition:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

utt (t) − ρ(t)�u(t) + b(x)ut (t) = f (u(t)), on � × (0, T ),

u(t) = 0, on �0 × (0, T ),
∂u(t)
∂ν

+ γ (ut (t)) = 0, on �1 × (0, T )

u(0) = u0, ut (0) = u1, in �,

(1.10)
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where � is a bounded domain of Rn with a smooth boundary ∂� = �0 ∪ �1 and �0 ∩ �1 = φ. Under some
conditions on ‖u0‖ and E(0), the global existence and exponential decay of the energy E(t) of weak solution
to (1.10) were established.

1.2 Blowup in the case of constant exponents

The first study of finite-time blowup of solutions of hyperbolic PDEs of the form

utt − �u = f (u)

goes back to early 70s in the work of Levine [46] and Ball [10]. The interaction between the damping and the
source terms was considered by Levine for an equation of the form

utt − �u + aut = f (u).

He introduced the concavity method and showed that solutions with negative initial energy blow up at finite
time. This method was later improved by Kalantarov and Ladyzhenskaya [34] to accommodate more general
cases. After 20years, Georgiev and Todorova [26] extended Levine’s result to the nonlinearly damped equation

utt − �u + a|ut |mut = b|u|pu, in � × (0, ∞),

for a, b, m, p > 0. In their work, Georgiev and Todorova introduced a different method and determined
appropriate relations between the nonlinearities in the damping and the source, for which there is either global
existence or alternatively finite-time blowup. Precisely, they showed that solutions with negative energy exist
globally ’in time’ if m ≥ p and blow up in finite time if p > m and initial energy is ’sufficiently’ negative.
This result was later generalized to an abstract setting and to unbounded domains by Levine et al. [47], Levine
and Serrin [48], Levine and Park [49], and Messaoudi [55,57]. In all these papers, the authors showed that no
solution with negative or sufficiently negative energy can be extended on [0,∞), if the nonlinearity dominates
the damping effect (p > m). Vitillaro [87] combined the arguments in [45] and [26] to extend these results
to situations where the damping is nonlinear and the solution has positive initial energy. For more results
concerning blowup and nonexistence, we mention here the work of Vitillaro [88], Todorova [84], Todorova
and Vitillaro [85],Wang [89], Liu [51],Wu [90], and the very recent book of Al’shin et al. [2]. For the nonlinear
Kirchhoff-type problem of the form

⎧
⎪⎨

⎪⎩

utt − (
∫

�
|Dmu|2dx)q�u + ut |ut |r = |u|pu, in � × (0,+∞)

u(x, t) = 0, on ∂� × (0,+∞),

u(x, 0) = u0(x), ut (x, 0) = u1(x), in �,

(1.11)

where p, q, r ≥ 0, � is a bounded domain of Rn, with a smooth boundary ∂� and a unit outer normal ν,
several results concerning global existence and blowup have been established; see in this regard [11–13,74,75],
and the references therein. Messaoudi and Said-Houari [58] considered the nonlinear wave equation

utt − �ut − div
(|∇u|α−2∇u

)− div
(|∇ut |β−2∇ut

)+ a|ut |m−2ut = b|u|p−2u,

where a, b > 0, α, β, m, p > 2 and � is a bounded domain in R
n (n ≥ 1), with a regular boundary. They

proved, under appropriate conditions on α, β, p, m > 2, a global nonexistence result for solutions associated
with negative initial energy. Chen et al. [21] considered the following nonlinear p-Laplacian-wave equation

utt − div(|∇u|p−2∇u) − �ut + q(x, u) = f (x)

in a bounded domain� ⊂ R
n,where 2 ≤ p < n and f, q are given functions. They established global existence

and uniqueness under appropriate conditions on the initial data and the functions f, q. They also discussed the
long-time behavior of the solution. Ibrahim and Lyaghfouri [32] considered the following equation

utt − div(|∇u|p−2∇u) = |u|p∗−2u

in Rn, n ≥ 3, and 2 < p < n, p∗ = pn
n−p is the critical Sobolev exponent. Under appropriate assumptions on

the initial data, they proved the finite-time blow up of solutions and, hence, extended a result by Galaktionov
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and Pohozaev [23]. Ye [93] investigated the blowup property of solutions of a quasilinear hyperbolic system of
equations and proved that certain solutions with positive initial energy explode in finite time and he also gave
estimation for the solution lifespan. Recently, Kafini and Messaoudi [33] studied a nonlinear wave equation
with damping and delay terms and showed, under suitable hypotheses on the initial data, that the solution
energy explodes in a finite time. For more results, we refer the reader to [14,24,31,81].

1.3 Blowup in the case of variable-exponent nonlinearities

In recent years, a great deal of attention has been given to the investigation of nonlinear models of hyper-
bolic, parabolic and elliptic equations with variable exponents of nonlinearity. For instance, some models from
physical phenomena like flows of electro-rheological fluids or fluids with temperature-dependent viscosity, fil-
tration processes in a porousmedia, nonlinear viscoelasticity, and image processing, give rise to such problems.
More details on the subject can be found in [3] and [4]. Regarding hyperbolic problems with nonlinearities of
variable-exponent type, only few works have appeared. For instance, Antontsev [6] considered the equation

utt − div(a(x, t)|∇u|p(x,t)−2∇u) − α�ut = b(x, t)u|u|σ(x,t)−2

in a bounded domain � ⊂ R
n, where α > 0 is a constant and a, b, p, σ are given functions. For specific

conditions on a, b, p, σ, he proved some blowup results, for certain solutions with non-positive initial energy.
He also discussed the case when α = 0 and established a blowup result. Subsequently, Antontsev [5] discussed
the same equation and proved a local and a global existence of some weak solutions under certain hypotheses
on the functions a, b, p, σ. He also established some blowup results for certain solutions having non-positive
initial energy. Guo and Gao [30] looked into the same problem of [6] and established several blowup results
for certain solutions associated with negative initial energy. Precisely, they took σ(x, t) = σ > 2, a constant,
and established a result of blowup in finite time. For the case σ(x, t) = σ(x), they claimed the same blowup
result but no proof has been given. This work is considered to be an improvement for that of [6]. In [82], Sun
et al. looked into the following equation

utt − div(a(x, t)∇u) + c(x, t)ut |ut |q(x,t)−1 = b(x, t)u|u|p(x,t)−1

in a bounded domain, with Dirichlet-boundary conditions, and established a blowup result for solutions with
positive initial energy. They also gave lower and upper bounds for the blowup time and provided a numerical
illustrations for their result. Recently, Messaoudi and Talahmeh [61] studied

utt − div(|∇u|m(x)−2∇u) + μut = |u|p(x)−2u, (1.12)

with Dirichlet-boundary conditions and for μ ≥ 0. They proved a blowup result for certain solutions with
arbitrary positive initial energy. This result generalized that of Korpusov [39] established for (1.12), with m
and p constants. This latter result was later extended by the same authors in [62] to an equation of the form

utt − div(|∇u|r(·)−2∇u) + a|ut |m(·)−2ut = b|u|p(·)−2u,

where a, b > 0 are constants and the exponents of nonlinearity m, p and r are given functions. They proved
a finite-time blowup result for the solutions with negative initial energy and for certain solutions with positive
energy. Very recently, Messaoudi et al. [63] studied

utt − �u + aut |ut |m(·)−2 = bu|u|p(·)−2, (1.13)

where a, b are positive constants. They established the existence of a unique weak solution using the Faedo–
Galerkin method under suitable assumptions on the variable exponents m and p and they also proved the
finite-time blow up of solutions and gave a two-dimension numerical example to illustrate the blowup result.
Yunzhu Gao andWenjie Gao [25] studied a nonlinear viscoelastic equation with variable exponents and proved
the existence of weak solutions using the Faedo–Galerkin method under suitable assumptions. Autuori et al.
[9] looked into a nonlinear Kirchhoff system in the presence of the −→p (x, t)-Laplace operator, a nonlinear
force f (t, x, u) and a nonlinear damping term Q = Q(t, x, u, ut ). They established a global nonexistence
result under suitable conditions on f, Q, p. For more results concerning the blowup of hyperbolic problems,
we refer the reader to Antontsev and Ferreira [7] and the book by Antontsev and Shmarev [8].
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2 Preliminaries

2.1 History of variable-exponent Lebesgue spaces

Variable Lebesgue spaces were first introduced by Orlicz in 1931 in his article [77]. He started by looking for
necessary and sufficient conditions on a real sequence (yi ) under which

∑
xi yi converges, for any other real

sequence (xi ) such that
∑

x pi
i converges, where (pi ) is a sequence of real numbers with pi > 1. Furthermore,

he also considered the variable-exponent function space L p(·) on the real line. Orlicz later concentrated much
on the theory of the function spaces that were named after him. In the theory of Orlicz spaces, the space Lϕ is
defined as follows:

Lϕ :=
{

u : � → R such that �(λu) =
∫

�

ϕ(λ|u(x)|)dx < +∞
}

,

for some λ > 0, where ϕ is a real-valued function which may depend on x and satisfies some additional
conditions. Putting certain properties of � in an abstract setting, a more general class of function spaces,
called modular spaces, was first studied by Nakano [66,67]. Following the work of Nakano, modular spaces
were investigated by several people, most importantly by groups at Sapporo (Japan), Voronezh (U.S.S.R.),
and Leiden (the Netherlands). An explicit version of modular function spaces was investigated by Polish
Mathematicians, like Hudzik and Kaminska.

The variable-exponent Lebesgue space L p(·)(�) is defined as the Orlicz space Lϕp(·) (�), where

ϕp(·)(t) = t p(·) or ϕp(·)(t) = t p(·)

p(·) ,

with p(·) : � → [1, ∞] as a measurable function.
Variable-exponent Lebesgue spaces on the real line have been independently developed by Russian

researchers. Their results originated in 1961 in a paper by Tsenov [86]. The Luxemburg norm was intro-
duced by Sharapudinov for the Lebesgue space. He showed that this space is Banach if the exponent p(·)
satisfies 1 < essinf p ≤ esssup p < +∞. In the mid-80s, Zhikov [94] started a new line of investigation of
variable-exponent spaces, by considering variational integrals with non-standard growth conditions. The next
major step in the study of variable-exponent spaces was by Kovacik and Rakosnik [40] in the early 90s. In
their paper, they established many of the basic properties of Lebesgue and Sobolev spaces in R

n .

2.2 Variable-exponent Lebesgue Spaces

In this section, we present some preliminary facts about the Lebesgue spaces with variable exponents.

Definition 2.1 Let X be a K−vector space. A function � : X −→ [0,∞] is said to be left-continuous if the
mapping λ �−→ �(λx) is left-continuous on [0, ∞), for every x ∈ X ; that is,

lim
λ→1− �(λx) = �(x), ∀ x ∈ X.

Definition 2.2 Let X be aK−vector space. A function � : X −→ [0, ∞] is called a semimodular on X if the
following properties hold:

(a) �(0) = 0.
(b) �(λx) = �(x), for all x ∈ X and λ ∈ K, with |λ| = 1.
(c) � is convex.
(d) � is left-continuous.
(e) �(λx) = 0, for all λ > 0 implies x = 0.

A semimodular is called modular if

(f) �(x) = 0 implies x = 0

A semimodular is called continuous if

(g) the mapping λ �−→ �(λx) is continuous on [0,∞) for all x ∈ X
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Examples 2.3 Let L0(�) be the set of all Lebesgue-measurable functions defined on �. If 1 ≤ p < +∞,
then

�p( f ) :=
∫

�

| f (x)|pdx

defines a continuous modular on L0(�).

Theorem 2.4 Let � be a semimodular on X. Then, the mapping λ → �(λx) is non-decreasing on [0,∞) for
every x ∈ X. Moreover,

�(λx) = �(|λ|x) ≤ |λ|�(x) for all |λ| ≤ 1,

�(λx) = �(|λ|x) ≥ |λ|�(x) for all |λ| ≥ 1. (2.1)

Proof • Assume that 0 ≤ λ < μ, then 0 ≤ λ
μ

< 1. So for a fixed x ∈ X we have, by convexity and
non-negativeness of � and the fact that �(0) = 0,

�(λx) = �

(
λ

μ
(μx) +

(

1 − λ

μ

)

· 0
)

≤ λ

μ
�(μx) +

(

1 − λ

μ

)

�(0) = λ

μ
�(μx) ≤ �(μx).

Hence, for any fixed x ∈ X , we have

�(λx) ≤ �(μx), for 0 ≤ λ < μ.

• For λ �= 0 we have

�(λx) = �

(
λ

|λ| |λ|x
)

= �(|λ|x)

(

since

∣
∣
∣
∣

λ

|λ|
∣
∣
∣
∣ = 1

)

.

• For |λ| ≤ 1, we have

�(|λ|x) = �(|λ|x + (1 − |λ|)0) ≤ |λ|�(x) + (1 − |λ|)�(0) = |λ|�(x).

Therefore,

�(λx) = �(|λ|x) ≤ |λ|�(x), ∀x ∈ X.

• For |λ| ≥ 1, we have

�(x) = �

(
1

|λ| |λ|x
)

≤ 1

|λ|�(|λ|x) +
(

1 − 1

|λ|
)

�(0) = 1

|λ|�(|λ|x).

Thus,

�(λx) = �(|λx |) ≥ |λ|�(x), ∀x ∈ X.

��
Definition 2.5 Let (A, �, μ) be a σ -finite, complete measure space. We define P(A, μ) to be the set of all
μ-measurable functions p : � → [1,∞]. The functions p ∈ P(A, μ) are called variable exponents on A. We
set

p1 := essinfy∈A p(y) and p2 := esssupy∈A p(y).

If p2 < +∞, then we call p a bounded variable exponent. If p ∈ P(A, μ), then we define p′ ∈ P(A, μ) by

1

p(y)
+ 1

p′(y)
= 1, where

1

∞ := 0.

The function p′ is called the dual variable exponent of p. In the special case when μ is the n-dimensional
Lebesgue measure and � is an open subset of Rn, we abbreviate P(�) := P(�, μ).
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Definition 2.6 We define the Lebesgue space with a variable-exponent p(·) by
L p(·)(�) := {u : � → R; measurable in � : �p(·)(λu) < ∞, for some λ > 0},

where

�p(·)(u) =
∫

�

|u(x)|p(x)dx

is a modular. We equip L p(·)(�) with the following Luxembourg-type norm

‖u‖p(·) := inf

{

λ > 0 :
∫

�

∣
∣
∣
∣

u(x)

λ

∣
∣
∣

p(x)dx ≤ 1
}

.

Examples 2.7 Let p(x) = x on � = (1, 2). Then ‖1‖p(·) = 1. Indeed,

�p(·)(1/λ) =
∫ 2

1
λ−xdx = λ − 1

λ2 ln λ
.

Since �p(·)(1) = 1, then, by definition of ‖1‖p(·), we have ‖1‖p(·) ≤ 1. On the other hand, it is easy to
check that �p(·)(1/λ) > 1, for 0 < λ < 1. This gives ‖1‖p(·) ≥ 1. Hence, we conclude that ‖1‖p(·) = 1.

Lemma 2.8 If p(x) ≡ p, where p is constant. Then,

‖u‖p(·) = λ0 =
(∫

�

|u|p
) 1

p

. (2.2)

Proof Since �p(·)(u/λ0) = 1, then

‖u‖p(·) ≤ λ0. (2.3)

Next, using property of Inf, there exists a sequence {λk}∞k=1 such that λk ≥ ‖u‖p(·), with

�p(·)(u/λk) ≤ 1 and λk → ‖u‖p(·).

Since, �p(·)(u/λk) = 1
(λk )

p

∫

�
|u|p ≤ 1, then we have

λ0 ≤ ‖u‖p(·). (2.4)

Combining (2.3) and (2.4) gives (2.2). ��
Definition 2.9 We say that a function q : � → R is log-Hölder continuous on �, if there exist A > 0 and
0 < δ < 1 such that

|q(x) − q(y)| ≤ − A

log |x − y| , for all x, y ∈ �, with |x − y| < δ. (2.5)

Examples 2.10 Let p(x) = x2 + 1 be defined on � = B(0, 1). Then p : � → R is log-Hölder continuous on
�. Indeed, Let (x, y), (x0, y0) ∈ �, with |(x, y) − (x0, y0)| < δ and 0 < δ < 1. Then,

|p(x, y) − p(x0, y0)| = |x2 − x20 |
= |x − x0||x + x0|
≤ 4 log δ

log δ

≤ − A

log |(x, y) − (x0, y0)| ,

where A = 4 log(1/δ). Hence, p is log-Hölder continuous.

Lemma 2.11 (Unit ball property) Let p ∈ P(A, μ) and f ∈ L p(·)(A, μ). Then

(i) ‖ f ‖p(·) ≤ 1 if and only if �p(·)( f ) ≤ 1
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(ii) If ‖ f ‖p(·) ≤ 1, then �p(·)( f ) ≤ ‖ f ‖p(·)
(iii) If ‖ f ‖p(·) ≥ 1, then ‖ f ‖p(·) ≤ �p(·)( f )
(iv) ‖ f ‖p(·) ≤ 1 + �p(·)( f )

Proof (i) If �p(·)( f ) ≤ 1, then ‖ f ‖p(·) ≤ 1 by definition of ‖ · ‖p(·). On the other hand, if ‖ f ‖p(·) ≤ 1, then

�p(·)
(

f
λ

)
≤ 1 for all λ > 1. Since �p(·) is left-continuous it follows that �p(·)( f ) ≤ 1.

(ii) The claim is obvious for f = 0, so assume that 0 < ‖ f ‖p(·) ≤ 1. By (i) and
∥
∥ f/‖ f ‖p(·)

∥
∥ = 1, it follows

that �p(·)
(

f/‖ f ‖p(·)
) ≤ 1. Since ‖ f ‖p(·) ≤ 1, it follows from (2.1) that �p(·)( f )/‖ f ‖p(·) ≤ 1. This

implies �p(·)( f ) ≤ ‖ f ‖p(·).
(iii) Assume that ‖ f ‖p(·) > 1.Then�p(·)

( f
λ

)
> 1 for 1 < λ < ‖ f ‖p(·) and by (2.1) it follows that 1 <

�p(·)( f )

λ
.

which implies λ < �p(·)( f ), for 1 < λ < ‖ f ‖p(·). Since λ is arbitrary, we have ‖ f ‖p(·) ≤ �p(·)( f ).
(iv) This follows immediately from (ii) and (iii).

��
We also state, without proof, some useful results from [41].

Lemma 2.12 If 1 < p1 ≤ p(x) ≤ p2 < +∞ holds, then

min{‖u‖p1
p(·), ‖u‖p2

p(·)} ≤ �p(·)(u) ≤ max{‖u‖p1
p(·), ‖u‖p2

p(·)},

for any u ∈ L p(·)(�).

Theorem 2.13 If p ∈ P(A, μ), then L p(·)(A, μ) is a Banach space.

Lemma 2.14 If p : � → [1,∞) is a measurable function with p2 < +∞, then C∞
0 (�) is dense in L p(·)(�).

Lemma 2.15 (Young’s inequality) Let p, q, s ∈ P(�) such that

1

s(y)
= 1

p(y)
+ 1

q(y)
, for a.e y ∈ �.

Then for all a, b ≥ 0,

(ab)s(·)

s(·) ≤ (a)p(·)

p(·) + (b)q(·)

q(·) . (2.6)

By taking s = 1, and 1 < p, q < +∞, then we have for any ε > 0,

ab ≤ εa p + Cεbq , ∀a, b ≥ 0,

where Cε = 1

q(εp)
q
p
. For p = q = 2, we have

ab ≤ εa2 + b2

4ε
.

Lemma 2.16 (Hölder’s Inequality) Let p, q, s ∈ P(�) such that

1

s(y)
= 1

p(y)
+ 1

q(y)
, for a.e y ∈ �.

If f ∈ L p(·)(�) and g ∈ Lq(·)(�), then f g ∈ Ls(·)(�) and

‖ f g‖s(·) ≤ 2 ‖ f ‖p(·)‖g‖q(·).

By taking p = q = 2, we have the Cauchy–Schwarz inequality.
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2.3 Variable-exponent Sobolev spaces

In this section we study some functional analysis-type properties of Sobolev spaces with variable exponents.
We start by recalling the definition of weak derivative.

Definition 2.17 (Weak derivative) Let � ⊂ R
n be a domain. Assume that u ∈ L1

loc(�). Let α :=
(α1, . . . , αn) ∈ N

n be a multi-index and let |α| = α1 + · · · + αn . If there exists g ∈ L1
loc(�) such that

∫

�

u
∂ |α|ψ

∂α1x1 · · · ∂αn xn
dx = (−1)|α|

∫

�

ψg dx,

for all ψ ∈ C∞
0 (�), then g is called a weak partial derivative of u of order α. The function g is denoted by

∂αu or ∂ |α|u
∂α1 x1···∂αn xn

.

Definition 2.18 Let k ∈ N. We define the space W k,p(·)(�) by

W k,p(·)(�) := {u ∈ L p(·)(�) such that ∂αu ∈ L p(·)(�), ∀ |α| ≤ k}.
We define a semimodular on W k,p(·)(�) by

�W k,p(·)(�)(u) =
∑

0≤|α|≤k

�L p(·)(�)(∂αu).

This induces a norm given by

‖u‖W k,p(·)(�) := inf
{
λ > 0 : �W k,p(·)(�)

(u

λ

)
≤ 1

}
:=

∑

0≤|α|≤k

‖∂αu‖p(·).

For k ∈ N, the space W k,p(·)(�) is called Sobolev space and its elements are called Sobolev functions. Clearly
W 0,p(·)(�) = L p(·)(�) and

W 1,p(·)(�) = {u ∈ L p(·)(�) such that ∇u exists and |∇u| ∈ L p(·)(�)},
equipped with the norm

‖u‖W 1,p(·)(�) = ‖u‖p(·) + ‖∇u‖p(·).

Theorem 2.19 Let p ∈ P(�). The space W k,p(·)(�) is a Banach space, which is separable if p is bounded,
and reflexive if 1 < p1 ≤ p2 < +∞.

Definition 2.20 Let p ∈ P(�) and k ∈ N. The Sobolev space W k,p(·)
0 (�) “with zero boundary trace” is the

closure in W k,p(·)(�) of the set of W k,p(·)(�)−functions with compact support, i.e.,

W k,p(·)
0 (�) = {u ∈ W k,p(·)(�) : u = uχK for a compact K ⊂ �}.

Remark 2.21 [41] Let p ∈ P(�) and k ∈ N. Then

(i) The space Hk,p(·)
0 (�) is defined as the closure of C∞

0 (�) in W k,p(·)(�).

(ii) Hk,p(·)
0 (�) ⊂ W k,p(·)

0 (�).

(iii) If p is log-Hölder continuous on �, then W k,p(·)
0 (�) = Hk,p(·)

0 (�).

(iv) The dual of W 1,p(·)
0 (�) is defined as W −1,p′(·)(�), in the same way as the usual Sobolev spaces, where

1
p(·) + 1

p′(·) = 1.

Theorem 2.22 Let p ∈ P(�). The space W k,p(·)
0 (�) is a Banach space, which is separable if p is bounded,

and reflexive if 1 < p1 ≤ p2 < +∞.
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Theorem 2.23 (Poincaré’s inequality) Let � be a bounded domain of Rn and p(·) satisfies the Log-Hölder
continuity property, then

‖u‖p(·) ≤ C‖∇u‖p(·), for all u ∈ W 1,p(·)
0 (�),

where the positive constant C depends on p(·) and � only. In particular, the space W 1,p(·)
0 (�) has an equivalent

norm given by ‖u‖
W 1,p(·)

0 (�)
= ‖∇u‖p(·).

If p = 2, then we set H1
0 (�) = W 1,2

0 (�).

Remark 2.24 Contrary to the constant-exponent case, there is no Poincaré inequality version for modular. The
following example shows that the Poincaré inequality does not, in general, hold in a modular form.

Examples 2.25 [41] Let p : (−2, 2) −→ [2, 3] be a Lipschitz continuous exponent defined by

p(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3, if x ∈ (−2,−1) ∪ (1, 2)
2, if x ∈ (− 1

2 ,
1
2

)

−2x + 1, if x ∈ [− 1,− 1
2

]

2x + 1, if x ∈ [ 1
2 , 1

]
.

Let uμ be a Lipschitz function defined by

uμ(x) =

⎧
⎪⎨

⎪⎩

μx + 2μ, if x ∈ (−2,−1]
μ, if x ∈ (−1, 1)
−μx + 2μ, if x ∈ [1, 2).

Then

�(uμ)

�(u′
μ)

=
∫ 2
−2 |uμ|p(x) dx
∫ 2
−2 |u′

μ|p(x) dx
≥

∫ 1
2

− 1
2
μ2 dx

2
∫ −1
−2 μ3 dx

= 1

2μ
→ ∞

as μ → 0+.

We end this section with some essential embedding results. See [41].

Lemma 2.26 Let � be a bounded domain in R
n with a smooth boundary ∂�. Assume that p : � → (1,∞)

is a measurable function such that

1 < p1 ≤ p(x) ≤ p2 < +∞, for a.e. x ∈ �.

If p(x), q(x) ∈ C(�) and q(x) < p∗(x) in � with p∗(x) =
{

np(x)
n−p(x)

, if p2 < n

∞, if p2 ≥ n.

Then the embedding W 1,p(·)(�) ↪→ Lq(·)(�) is continuous and compact.

As a special case we have

Corollary 2.27 Let � be a bounded domain in R
n with a smooth boundary ∂�. Assume that p : � → (1,∞)

is a continuous function such that

2 ≤ p1 ≤ p(x) ≤ p2 <
2n

n − 2
, n ≥ 3. (2.7)

Then the embedding H1(�) ↪→ L p(·)(�) is continuous and compact.
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3 Existence

In this section we discuss a wave problem in the presence of a nonlinear damping, where the nonlinearity is
of variable-exponent type. We establish the well posedness, using the Galerkin method and adopting the steps
of the book [50] used for standard linearities.

Let� be a bounded domain inRn with a smooth boundary ∂�.We consider the following initial-boundary
value problem: ⎧

⎪⎨

⎪⎩

utt − �u + |ut |m(·)−2ut = 0, in � × (0, T )

u(x, t) = 0, on ∂� × (0, T )

u(x, 0) = u0(x), ut (x, 0) = u1(x), in �,

(P)

where m(·) is a given continuous function on � satisfying

2 ≤ m1 ≤ m(x) ≤ m2 <
2n

n − 2
, n ≥ 3, (3.1)

with

m1 := ess infx∈�m(x), m2 := ess supx∈�m(x),

and the log-Hölder continuity condition:

|m(x) − m(y)| ≤ − A

log |x − y| , for a.e. x, y ∈ �, with |x − y| < δ, (3.2)

with A > 0, 0 < δ < 1.

Theorem 3.1 Let u0 ∈ H1
0 (�), u1 ∈ L2(�). Assume that the exponent m(·) satisfies conditions (3.1) and

(3.2). Then problem (P) has a unique weak solution such that

u ∈ L∞((0, T ), H1
0 (�)), ut ∈ L∞((0, T ), L2(�)) ∩ Lm(·)(� × (0, T )),

utt ∈ L2((0, T ), H−1(�)), ∀ T > 0.

Proof Uniqueness
Suppose that (P) has two solutions u and v. Then, w = u − v satisfies

⎧
⎪⎨

⎪⎩

wt t − �w + ut |ut |m(·)−2 − vt |vt |m(·)−2 = 0, in � × (0, T )

w(x, t) = 0, on ∂� × (0, T )

w(x, 0) = wt (x, 0) = 0, in �.

Multiply the equation by wt and integrate over �, to obtain

1

2

d

dt

[∫

�

w2
t +

∫

�

|∇w|2
]

+
∫

�

(ut |ut |m(x)−2 − vt |vt |m(x)−2)(ut − vt )dx = 0.

Integrate over (0, t), to get
∫

�

(w2
t + |∇w|2) + 2

∫ t

0

∫

�

(ut |ut |m(x)−2 − vt |vt |m(x)−2)(ut − vt )dxds = 0.

Using the inequality

(|a|m(x)−2a − |b|m(x)−2b)(a − b) ≥ 0,

for all a,b ∈ R and a.e. x ∈ �, we have
∫

�

(
w2

t + |∇w|2) = 0;

which implies that w = C = 0, since w = 0 on ∂�. Hence, the uniqueness.

123



126 Arab. J. Math. (2018) 7:113–145

Existence

Let {v j }∞j=1 be an orthonormal basis of H1
0 (�), with

−�v j = λ jv j , in �, v j = 0, on ∂�.

We define the finite-dimensional subspace Vk = span{v1, . . . , vk}. By normalization, we have ‖v j‖2 = 1. We
look for functions

uk(x, t) =
k∑

j=1

a j (t)v j

which satisfy the following approximate problems
⎧
⎪⎨

⎪⎩

∫

�
uk

tt (x, t)v j (x)dx + ∫

�
∇uk(x, t)∇v j (x)dx + ∫

�
|uk

t (x, t)|m(x)−2uk
t (x, t)v j (x)dx = 0,

uk(x, 0) = uk
0, uk

t (x, 0) = uk
1, ∀ j = 1, 2, . . . , k,

(3.3)

where uk
0 = ∑k

i=1(u0, vi )vi and uk
1 = ∑k

i=1(u1, vi )vi are two sequences in H1
0 (�) and L2(�), respectively,

such that

uk
0 → u0 in H1

0 (�) and uk
1 → u1 in L2(�).

This generates the system of k ordinary differential equations
{

a′′
j (t) + λ j a j (t) = G j (a′

1(t), . . . , a′
k(t)),

a j (0) = (u0, v j ), a′
j (0) = (u1, v j ), ∀ j = 1, 2, . . . , k,

(3.4)

where

G j (a
′
1(t), . . . , a′

k(t)) = −
∫

�

|
k∑

i=1

a′
i (t)vi (x)|m(x)−2

k∑

i=1

a′
i (t)vi (x)v j (x)dx .

This system can be solved by standard ODE theory. Hence, we obtain functions

a j : [0, tk) → R, 0 < tk < T .

Next, we have to show that tk = T, ∀k ≥ 1. We multiply the equation in (3.3) by a′
j (t) and sum over j to get

1

2

d

dt

[∫

�

(|uk
t (x, t)|2dx + |∇uk(x, t)|2)dx

]

+
∫

�

|uk
t (x, t)|m(x)dx = 0.

Integration over (0, t) gives

1

2

∫

�

(|uk
t (x, t)|2dx + |∇uk(x, t)|2)dx +

∫ t

0

∫

�

|uk
t (x, s)|m(x)dxds

= 1

2

∫

�

(|uk
1|2 + |∇uk

0|2)dx

≤ 1

2

∫

�

(u2
1 + |∇u0|2)dx = C. (3.5)

So, we have

sup(0,tk )
∫

�
|uk

t (x, t)|2dx + sup(0,tk )
∫

�
|∇uk(x, t)|2dx + ∫ tk

0

∫

�
|uk

t (x, s)|m(x)dxds ≤ C̃ . (3.6)

Thus, the solution can be extended to [0, T ) and, in addition, we have

(uk) is a bounded sequence in L∞((0, T ), H1
0 (�))

(uk
t ) is a bounded sequence in L∞((0, T ), L2(�)) ∩ Lm(·)(� × (0, T )).
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Therefore, we can extract a subsequence (u) such that

u → u weakly ∗ in L∞((0, T ), H1
0 (�))

u
t → ut weakly ∗ in L∞((0, T ), L2(�)) and weakly in Lm(·)(� × (0, T )).

We can conclude by Lion’s Lemma [50] that u ∈ C
([0, T ], L2(�)

)
so that u(x, 0) has a meaning. Since

(u
t ) is bounded in Lm(·)(� × (0, T )) then (|u

t |m(x)−2u
t ) is bounded in L

m(·)
m(·)−1 (� × (0, T )); hence, up to a

subsequence,

|u
t |m(·)−2u

t → ψ weakly in L
m(·)

m(·)−1
(
� × (0, T )

)
.

We have to show that ψ = |ut |m(·)−2ut . In (3.3), we use u instead of uk and integrate over (0, t) to obtain
∫

�

u
t v j −

∫

�

u
1v j +

∫ t

0

∫

�

∇u · ∇v j +
∫ t

0

∫

�

|u
t |m(x)−2u

t v j = 0, ∀ j < .

As  goes to +∞, we easily check that
∫

�

utv j −
∫

�

u1v j +
∫ t

0

∫

�

∇u · ∇v j +
∫ t

0

∫

�

ψv j = 0, ∀ j ≥ 1.

Consequently,
∫

�

utv −
∫

�

u1v +
∫ t

0

∫

�

∇u · ∇v +
∫ t

0

∫

�

ψv = 0, ∀v ∈ H1
0 (�).

All terms define absolute continuous functions; so we get, for a.e t ∈ [0, T ],
d

dt

∫

�

utv +
∫

�

(∇u · ∇v + ψv
) = 0, ∀v ∈ H1

0 (�). (3.7)

This implies that

utt − �u + ψ = 0, in D′(� × (0, T )
)
. (3.8)

For simplicity, let A(v) = |v|m(x)−2v and define

X =
∫ T

0

∫

�

(A(u
t ) − A(v))(u

t − v)dt ≥ 0, ∀v ∈ Lm(·)((0, T )H1
0 (�)).

So, using (3.5) and replacing uk by u, we get

X = 1

2

∫

�

(|u
1|2 + |∇u

0|2) − 1

2

∫

�

|u
t (x, T )|2

− 1

2

∫

�

|∇u(x, T )|2 −
∫ T

0

∫

�

A(u
t )v −

∫ T

0

∫

�

A(v)(u
t − v). (3.9)

Taking  → ∞, we obtain

0 ≤ lim sup


X ≤ 1

2

∫

�

(
u2
1 + |∇u0|2

)− 1

2

∫

�

|ut (x, T )|2

− 1

2

∫

�

|∇u(x, T )|2 −
∫ T

0

∫

�

ψv −
∫ T

0

∫

�

A(v)(ut − v). (3.10)

Since H1
0 (�) is dense in L2(�), replacing v by ut in (3.7) and integrating over (0, T ), we arrive at

1

2

∫

�

|ut (x, T )|2 − 1

2

∫

�

u2
1 + 1

2

∫

�

|∇u(x, T )|2 − 1

2

∫

�

|∇u0|2 +
∫ T

0

∫

�

ψut = 0. (3.11)
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Addition of (3.10) and (3.11) yields

0 ≤ lim sup


X ≤
∫ T

0

∫

�

ψut −
∫ T

0

∫

�

ψv −
∫ T

0

∫

�

A(v)(ut − v).

That is,
∫ T

0

∫

�

(ψ − A(v))(ut − v)dt ≥ 0, ∀v ∈ Lm(·)((0, T )H1
0 (�)).

Hence,
∫ T

0

∫

�

(
ψ − A(v)

)
(ut − v)dt ≥ 0, ∀v ∈ Lm(·)(� × (0, T )

)
,

by density of H1
0 (�) in Lm(·)(�) (Lemma 2.14).

Let v = λw + ut , for w ∈ Lm(·)(� × (0, T )
)
. So, we get

−λ

∫ T

0

∫

�

(
ψ − A(λw + ut )

)
w ≥ 0, ∀λ �= 0, ∀w ∈ Lm(·)(� × (0, T )

)
.

For λ > 0, we have
∫ T

0

∫

�

(ψ − A(λw + ut ))w ≤ 0, ∀w ∈ Lm(·)(� × (0, T )).

As λ → 0 and using the continuity of A with respect to λ, we get
∫ T

0

∫

�

(ψ − A(ut ))w ≤ 0, ∀w ∈ Lm(·)(� × (0, T )).

Similarly, for λ < 0, we get
∫ T

0

∫

�

(ψ − A(ut ))w ≥ 0, ∀w ∈ Lm(·)(� × (0, T )).

This implies that ψ = A(ut ). Hence, (3.7) becomes
∫

�

(uttv + ∇u · ∇v + |ut |m(x)−2utv) = 0, ∀v ∈ Lm(·)((0, T ) × H1
0 (�)),

which gives

utt − �u + |ut |m(x)−2ut = 0, in D′(� × (0, T )).

To handle the initial conditions, we note that

ul ⇀ u weakly ∗ in L∞((0, T ), H1
0 (�))

ul
t ⇀ ut weakly ∗ in L∞((0, T ), L2(�)). (3.12)

Thus, using Lions’ Lemma [50], we obtain, up to a subsequence,

ul → u in C([0, T ], L2(�)). (3.13)

Therefore, ul(x, 0) makes sense and ul(x, 0) → u(x, 0) in L2(�). Also we have that

ul(x, 0) = ul
0(x) → u0(x) in H1

0 (�).

Hence,

u(x, 0) = u0(x). (3.14)

123



Arab. J. Math. (2018) 7:113–145 129

As in [52], let φ ∈ C∞
0 (0, T ) and replacing (uk) by (ul), we obtain, from (3.3) and for any j ≤ l,

−
∫ T

0

∫

�

ul
t (x, t)v j (x)φ′(t)dxdt

= −
∫ T

0

∫

�

∇u(x, t)∇v j (x)φ(t)dxdt −
∫ T

0

∫

�

|u
t (x, t)|m(x)−2u

t (x, t)v j (x)φ(t)dxdt. (3.15)

As l → +∞, we obtain that

−
∫ T

0

∫

�

ut (x, t)v j (x)φ′(t)dxdt

= −
∫ T

0

∫

�

∇u(x, t)∇v j (x)φ(t)dxdt −
∫ T

0

∫

�

|ut (x, t)|m(x)−2ut (x, t)v j (x)φ(t)dxdt, (3.16)

for all j ≥ 1. This implies

−
∫ T

0

∫

�

ut (x, t)v(x)φ′(t)dxdt

=
∫ T

0

∫

�

[
�u − |ut (x, t)|m(x)−2ut (x, t)

]
v(x)φ(t)dxdt, (3.17)

for all v ∈ H1
0 (�). This means utt ∈ L

m(·)
m(·)−1 ([0, T ), H−1(�)) and u solves the equation

utt − �u + |ut |m(·)−2ut = 0. (3.18)

Thus, ut ∈ L∞([0, T ), L2(�)), utt ∈ L
m(·)

m(·)−1 ([0, T ), H−1(�)). Consequently,

ut ∈ C([0, T ), H−1(�)). (3.19)

So, ul
t (x, 0) makes sense (see [52, p.116]). It follows that

ul
t (x, 0) → ut (x, 0) in H−1(�).

But

ul
t (x, 0) = ul

1(x) → u1(x) in L2(�).

Hence,

ut (x, 0) = u1(x). (3.20)

This ends the proof of Theorem (3.1). ��

4 Decay

For the best of our knowledge, there are not many stability results for hyperbolic problem involving non-
standard nonlinearities. The only works, we are aware of, are that by Ferreira and Messaoudi [22], where
they studied a nonlinear viscoelastic plate equation with a lower order perturbation of a −→p (x, t)−Laplacian
operator of the form

utt + �2u − �−→p (x,t)u +
∫ t

0
h(t − s)�u(s)ds − �ut + f (u) = 0,

where

�−→p (x,t)u =
n∑

i=1

∂

∂xi

(∣
∣
∣
∣
∂u

∂xi

∣
∣
∣
∣

pi (x,t)−2
∂u

∂xi

)

,
−→p = (p1, p2, . . . , pn)

T
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and h ≥ 0 is a memory kernel that decays at a general rate and f is a nonlinear function. They proved a
general decay result under appropriate assumptions on h, f, and the variable-exponent −→p (x, t)−Laplacian
operator. Also, the work of Yunzhu Gao and Wenjie Gao [25], where they considered the following nonlinear
viscoelastic hyperbolic problem:

⎧
⎪⎨

⎪⎩

utt − �u − �utt + ∫ t
0 g(t − τ)�u(τ )dτ + |ut |m(x)−2ut = |u|p(x)−2u, in � × (0, T ),

u(x, t) = 0, on ∂� × [0, T )

u(x, 0) = u0(x), ut (x, 0) = u1(x), in �,

(4.1)

where m(x), p(x) are continuous functions in � such that

1 < inf
x∈�

m(x) ≤ m(x) ≤ sup
x∈�

m(x) < +∞, 1 < inf
x∈�

p(x) ≤ p(x) ≤ sup
x∈�

p(x) < +∞

and

∀z, ξ ∈ �, |z − ξ | < 1, |m(z) − m(ξ)| + |p(z) − p(ξ)| ≤ ω
(|z − ξ |),

where

lim sup
t→0+

ω(τ) ln

(
1

τ

)

= C < +∞.

They also assumed that

(i) g : R+ → R
+ is a C1 function satisfying

g(0) > 0, 1 −
∫ +∞

0
g(s)ds =  > 0;

(ii) There exists η > 0 such that

g′(t) ≤ −ηg(t), t ≥ 0

and proved the existence of the weak solution to problem (4.1).
To establish our decay result, we need the following well-known lemma.

Lemma 4.1 [38] Let E : R+ → R
+ be a nonincreasing function. Assume that there exist σ > 0, ω > 0 such

that
∫ ∞

s
E1+σ (t)dt ≤ 1

ω
Eσ (0)E(s) = c̃E(s), ∀s > 0.

Then, for all t ≥ 0,

E(t) ≤

⎧
⎪⎨

⎪⎩

cE(0)
(1+t)1/σ

, if σ > 0.

cE(0)e−ωt , if σ = 0.

We define the energy of the solution by

E(t) = 1

2

∫

�

(u2
t + |∇u|2)dx,

which satisfies

E ′(t) = −
∫

�

|ut |m(x)dx ≤ 0.

This means that E(t) is a nonincreasing function.
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Theorem 4.2 Suppose the conditions of Theorem 3.1 hold. Then there exist two constants c, α > 0 such that
the energy satisfies, ∀t ≥ 0,

E(t) ≤

⎧
⎪⎨

⎪⎩

cE(0)
(1+t)2/(m2−2) , if m2 > 2.

ce−αt , if m(x) = 2,

where

m2 := ess supx∈�m(x).

Proof Multiplying (P) by uEq(t), for q > 0 to be specified later, and integrating over � × (s, T ), T > s, we
obtain that

∫ T

s
Eq(t)

∫

�

(uutt − u�u + |ut |m(x)−2ut u) = 0,

which implies that

∫ T

s
Eq(t)

∫

�

[
(ut u)t − u2

t + |∇u|2 + |ut |m(x)−2ut u
]

= 0.

It follows that

∫ T

s
Eq(t)

d

dt

∫

�

uutdx +
∫ T

s
Eq(t)

∫

�

(
u2

t + |∇u|2)dx − 2
∫ T

s
Eq(t)

∫

�

u2
t

+
∫ T

s
Eq(t)

∫

�

|ut |m(x)−2ut u = 0. (4.2)

Using the definition of E(t) and the relation

d

dt

(

Eq(t)
∫

�

uutdx

)

= q Eq−1(t)E ′(t)
∫

�

uutdx + Eq(t)
d

dt

∫

�

uutdx,

Equation (4.2) becomes

2
∫ T

s
Eq+1(t)dt = −

∫ T

s

d

dt

(

Eq(t)
∫

�

uutdx

)

+ q
∫ T

s
Eq−1(t)E ′(t)

∫

�

uutdx

+ 2
∫ T

s
Eq(t)

∫

�

u2
t −

∫ T

s
Eq(t)

∫

�

|ut |m(x)−2ut u. (4.3)

Estimates

·
∣
∣
∣
∣−

∫ T

s

d

dt

(

Eq(t)
∫

�

uutdx

)∣
∣
∣
∣ =

∣
∣
∣
∣E

q(s)
∫

�

uut (x, s)dx − Eq(T )

∫

�

uut (x, T )dx

∣
∣
∣
∣

≤ Eq(s)

[
1

2

∫

�

u2(x, s)dx + 1

2

∫

�

u2
t (x, s)dx

]

+ Eq(T )

[
1

2

∫

�

u2(x, T )dx + 1

2

∫

�

u2
t (x, T )dx

]

≤ Eq(s)

[
1

2
c∗
∫

�

|∇u|2(x, s)dx + 1

2

∫

�

u2
t (x, s)dx

]

+ Eq(T )

[
1

2
c∗
∫

�

|∇u|2(x, T )dx + 1

2

∫

�

u2
t (x, T )dx

]

,
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where c∗ is the embedding constant. Since E(t) is nonincreasing, then we have

∣
∣
∣
∣−

∫ T

s

d

dt

(

Eq(t)
∫

�

uutdx

)∣
∣
∣
∣ ≤ cEq+1(s) + cEq+1(T )

≤ cEq+1(s)

≤ cEq(0)E(s) = c̃E(s). (4.4)

·
∣
∣
∣q
∫ T

s
Eq−1(t)E ′(t)

∫

�

uutdx
∣
∣
∣ ≤ c

∫ T

s
Eq−1(t)

(− E ′(t)
)
E(t)dt

= cEq+1(s) − cEq+1(T )

≤ cEq+1(s) ≤ c̃E(s). (4.5)

For the third term of the right-hand side of (4.3), we set, as in [38],

�+ = {x ∈ � / |ut (x, t)| ≥ 1} and �− = {x ∈ � / |ut (x, t)| < 1}
and exploit Hölder’s and Young’s inequalities and (3.1) as follows

∣
∣
∣
∣2
∫ T

s
Eq(t)

∫

�

u2
t

∣
∣
∣
∣ =

∣
∣
∣
∣2
∫ T

s
Eq(t)

[∫

�+
u2

t +
∫

�−
u2

t

]∣
∣
∣
∣

≤ c
∫ T

s
Eq(t)

[(∫

�+
|ut |m1

)2/m1

+
(∫

�−
|ut |m2

)2/m2
]

≤ c
∫ T

s
Eq(t)

[(∫

�

|ut |m(x)

)2/m1

+
(∫

�

|ut |m(x)

)2/m2
]

≤ c
∫ T

s
Eq(t)

[(−E ′(t)
)2/m1 + (−E ′(t)

)2/m2
]

≤ c
∫ T

s
Eq(t)

(−E ′(t)
)2/m2 dt + c

∫ T

s
Eq(t)

(−E ′(t)
)2/m1 dt

≤ cε
∫ T

s
Eq+1(t)dt + cε

∫ T

s
(−E ′(t))2(q+1)/m2dt

+ cε
∫ T

s
(E(t))qm1/(m1−2)dt + cε

∫ T

s
(−E ′(t))dt.

We choose q such that q = m2
2 − 1 and notice that qm1

m1−2 = q + 1 + m2−m1
m1−2 , if m1 > 2. Hence, we arrive

at
∣
∣
∣
∣2
∫ T

s
Eq(t)

∫

�

u2
t

∣
∣
∣
∣ ≤ cε

∫ T

s
Eq+1(t)dt + cε(E(0))(m2−m1)/(m1−2)

∫ T

s
Eq+1(t)dt + cε E(s)

≤ c̃ε
∫ T

s
Eq+1(t)dt + cε E(s). (4.6)

The case m1 = 2 is similar.
For the last term of (4.3), we use Young’s inequality with p(x) = m(x)

m(x)−1 , p′(x) = m(x); so for a.e.
x ∈ �, we have

|ut |m(x)−1|u| ≤ ε|u|m(x) + cε(x)|ut |m(x),

where

cε(x) = ε1−m(x)(m(x))−m(x)(m(x) − 1)m(x)−1.
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Therefore,
∣
∣
∣
∣

∫ T

s
Eq(t)

∫

�

|ut |m(x)−2ut u

∣
∣
∣
∣ ≤ ε

∫ T

s
Eq(t)

∫

�

|u|m(x)dx +
∫ T

s
Eq(t)

∫

�

cε(x)|ut |m(x)dx

≤ ε

∫ T

s
Eq(t)

[∫

�

|u|m1dx +
∫

�

|u|m2dx

]

+
∫ T

s
Eq(t)

∫

�

cε(x)|ut |m(x)dx

≤ ε

∫ T

s
Eq(t)

[
c1‖∇u‖m1

2 + c2‖∇u‖m2
2

]

+
∫ T

s
Eq(t)

∫

�

cε(x)|ut |m(x)dx .

Using the definition of E(t), we get
∣
∣
∣
∣

∫ T

s
Eq(t)

∫

�

|ut |m(x)−2ut u

∣
∣
∣
∣ ≤ εc′

1

∫ T

s
Eq+1(t)(E(t))

m1
2 −1 + εc′

2

∫ T

s
Eq+1(t)(E(t))

m2
2 −1

+
∫ T

s
Eq(t)

∫

�

cε(x)|ut |m(x)dx

≤ c′ε((E(0))
m1
2 −1 + (E(0))

m2
2 −1)

∫ T

s
Eq+1(t)dt

+
∫ T

s
Eq(t)

∫

�

cε(x)|ut |m(x)dx . (4.7)

Therefore, a combination of (4.3)–(4.7) leads to

2
∫ T

s
Eq+1(t)dt ≤ cε(1 +

(
(E(0))

m1
2 −1 + (E(0))

m2
2 −1

) ∫ T

s
Eq+1(t)dt

+ cε E(s) +
∫ T

s
Eq(t)

∫

�

cε(x)|ut |m(x)dx . (4.8)

We then pick ε > 0 so small that

cε
(
1 + (

(
E(0)

)m1
2 −1 + (

E(0)
)m2

2 −1
)

< 1.

Once ε is fixed, then cε(x) ≤ M, where M is constant since m(x) is bounded.
Thus, we arrive at

∫ T

s
Eq+1(t)dt ≤ cE(s) + M

∫ T

s
Eq(t)

∫

�

|ut |m(x)dx

≤ cE(s) − M
∫ T

s
Eq(t)E ′(t)dt

≤ cE(s) + M

q + 1

(
Eq+1(s) − Eq+1(T )

)

≤ c
(
E(s) + Eq+1(s)

)

≤ c
(
1 + Eq(0)

)
E(s) = c̃E(s), ∀ T > s > 0.

By taking T → ∞, we get
∫ ∞

s
E

m2
2 (t)dt ≤ c̃E(s).

Hence, Komornik’s Lemma (with σ = m2
2 − 1) implies the desired result. ��
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5 Numerical study

In this section, we present two numerical applications to illustrate the decay results in Theorem4.2.We consider
the initial-boundary value problem (P) on the domain B(0, 1) × (0, T ), where B(0, 1) is the unit disk in R2.
We take the initial data u0(x1, x2) = 1− x21 − x22 and u1(x1, x2) = 0. We consider the following applications:

1. Polynomial decay Here we take the variable-exponent m(x1, x2) = �x1�2 + 4, where m2 = 5, and
numerically verify that

E(t) ≤ c E(0)(1 + t)−2/3, ∀t ≥ 0,

for some c > 0.
2. Exponential decay We take m(x1, x2) = 2 and we numerically verify that

E(t) ≤ ce−αt , ∀t ≥ 0,

for some c > 0 and α > 0.

In the above applications, the exponent function m(·) satisfies conditions (3.1) and (3.2). Below we intro-
duce a numerical scheme of (P) using finite-element and finite-difference methods for the space and time
discretization, respectively. Extensive details about these methods can be found in [42,79,80].

5.1 Numerical method

We discretize the wave equation

utt − �u + |ut |m(·)−2ut = 0, in B(0, 1) × (0, T ), (5.1)

using finite differences for the time variable and a finite-element method for the space variable x = (x1, x2) ∈
B(0, 1).

We first discretize the wave equation in time. The time interval [0, T ] is divided into N equal subintervals
[t j , t j+1], j = 0, 1, . . . , N − 1, where t j = jτ and τ = T/N is the time step. Denoting

U ( j) := u(x, y, t j ),

we approximate the time derivatives of u(x, t) at t = t j , for j = 1, 2, . . . , N − 1, using the following
finite-difference formulas:

U ( j)
t = U ( j) − U ( j−1)

τ
,

U ( j)
t t = U ( j+1) − 2U ( j) + U ( j−1)

τ 2
.

Then, a semi-discrete formulation of (5.1) at t = t j+1 reads

U ( j+1)
t t − �U ( j+1) + |U ( j)

t |m−2U ( j+1)
t = 0, (5.2)

for j = 1, 2, ..., N − 1. Note that we have used the history data U ( j) and U ( j)
t to make the formulation linear

in U ( j+1), which will be essential for the space discretization. The above formulation is defined for j = 0 by
taking U (0) = u0(0) and U (0)

t = u1(0).
Now, we discretize the space variable. Let Bh be a triangulation of B(0, 1), with a maximal diameter size

h. Let Ph := P1(Bh) ∩ H0(Bh), where H0(Bh) denotes the linear Lagrangian finite-dimensional space.
Multiplying (5.2) by a test function wh ∈ Ph , integrating by parts and using the boundary condition

U ( j+1)
h = 0 on ∂ Bh , we obtain the full discrete, weak formulation problem: given initial data U (0)

h := uh(0)

and U (0)
h,t := u1,h(0), find U ( j+1)

h ∈ Ph that satisfies

(U ( j+1)
h,t t + |U ( j)

h,t |m−2U ( j+1)
h,t , wh) + (∇U ( j+1)

h , ∇wh) = 0, j = 0, 1, . . . , N − 1, (5.3)

for all wh ∈ Ph . Here, (·, ·) denotes the L2 inner product.
The above numerical problem is advanced, and at this stage we assume that the discrete solution of (5.3)

is unique and converges to the exact solution of (P), in the H1-norm, as (h, τ ) → (0, 0).
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Fig. 1 �h

Fig. 2 Initial data: u(0)
h

5.2 Numerical results

In this section, we present the decay results of the full discrete model (5.3). The numerical results are obtained
using Matlab.

Figure 1 shows the triangulation �h , which consists of 7808 degrees of freedom and 3024 elements. We
take a small enough time step τ = 0.01, large enough time span T = 100 and α = 0.1.

Figure 2 shows the initial data u(0)
h = 1 − x21 − x22 projected in the finite-element space Ph .

Now, we present the numerical results corresponding to the polynomial and exponential decay applications.

1. Polynomial decay Figure 3 lists the solutions u(n)
h corresponding to tn = 5, 20, 50, 100.

Figure 4 shows that energy function satisfies

E(tn)(1 + tn)
2/3 ≤ 4 for tn ∈ {0, 1, . . . , 100}.

This implies that the numerical solution u(n)
h has a polynomial decay, which agrees with Theorem 4.2.

123



136 Arab. J. Math. (2018) 7:113–145

Fig. 3 Numerical solutions u(n)
h for the polynomial decay application. a u(5)

h . b u(20)
h . c u(50)

h . d u(100)
h

Fig. 4 Polynomial decay: y = E(t)(1 + t)2/3

2. Exponential decay In this case, the numerical solutions u(n)
h make the energy function E(tn) satisfy

E(tn)e0.1t ≤ 4 for tn ∈ {0, 1, . . . , 100}.

This implies that the numerical solution u(n)
h has an exponential decay, which verifies Theorem 4.2.

In Figs. 4 and 5, the corresponding curves are plotted using τ = 0.1 (the dashed curve) and using τ = 0.01
(the solid curve). In both applications the two curves are coinciding, which indicates that the corresponding
numerical solutions are promising.
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Fig. 5 Exponential decay: y = E(t)e0.1t

In conclusion, the numerical findings of the above applications verify the conclusion of the polynomial
and exponential decay results of Theorem 4.2.

6 Blowup

Let � be a bounded domain in R
n with a smooth boundary ∂�. We consider the following initial-boundary

value problem: ⎧
⎪⎨

⎪⎩

utt − �u = a|u|p(·)−2u, in � × (0, T )

u(x, t) = 0, on ∂� × (0, T )

u(x, 0) = u0(x), ut (x, 0) = u1(x), in �,

(Q)

where a > 0 and p is a given continuous function on � satisfying

2 ≤ p1 ≤ p(x) ≤ p2 < 2
n − 1

n − 2
, n ≥ 3, (6.1)

with

p1 := ess infx∈� p(x), p2 := ess supx∈� p(x),

and the log-Hölder continuity condition:

|p(x) − p(y)| ≤ − A

log |x − y| , for a.e. x, y ∈ �, with |x − y| < δ, (6.2)

A > 0, 0 < δ < 1.
Using a semigroup method, we let υ = ut and denote by

� = (u, v)T , �(0) = �0 = (u0, u1)
T and J (�) = (

0, a|u|p(·)−2u
)T

.

Therefore, (Q) can be rewritten as an initial-value problem:
{

�t + A� = J (�)

�(0) = �0,
(Q1)

where the linear operator A : D(A) → H is defined by

A� = (−υ,−�u)T .

The state space of � is the Hilbert space

H = H1
0 (�) × L2(�),

equipped with the inner product

〈�, �̃〉H =
∫

�

(∇u · ∇ũ + υυ̃)dx,

for all � = (u, v)T and �̃ = (̃u, ṽ)T in H. The domain of A is

D(A) = {� ∈ H : u ∈ H2(�) ∩ H1
0 (�), υ ∈ H1

0 (�)}.
Then, we have the following local existence result.
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Theorem 6.1 Assume that the exponent p satisfies conditions (6.1) and (6.2). Then for any �0 ∈ H, problem
(Q) has a unique local weak solution � ∈ C(�;H). That is,

u ∈ L∞((0, T ), H1
0 (�)), ut ∈ L∞((0, T ), L2(�)), utt ∈ L2((0, T ), H−1(�)). (6.3)

Proof First, for all � ∈ D(A), we have

〈A�,�〉H = −
∫

�

∇υ · ∇u dx −
∫

�

υ�u = −
∫

�

∇υ · ∇u dx +
∫

�

∇υ · ∇u dx = 0. (6.4)

Therefore, A is a monotone operator.
To show that A is maximal, we prove that for each

F = ( f, g)T ∈ H,

there exists V = (u, υ)T ∈ D(A) such that (I + A)V = F. That is,
{

u − υ = f
υ − �u = g.

(6.5)

We deduce from (6.5) that

u − �u = G, (6.6)

where

G = f + g ∈ L2(�). (6.7)

Now we define, over H1
0 (�), the bilinear and linear forms

B(u, w) =
∫

�

uw +
∫

�

∇u · ∇w, L(w) =
∫

�

Gw.

It is easy to verify that B is continuous and coercive and L is continuous on H1
0 (�). Then, Lax–Milgram

theorem implies that the equation

B(u, w) = L(w), ∀w ∈ H1
0 (�), (6.8)

has a unique solution u ∈ H1
0 (�). Hence, υ = u − f ∈ H1

0 (�). Thus, V ∈ H.

Using (6.6), we get
∫

�

uw +
∫

�

∇u · ∇w =
∫

�

Gw, ∀ w ∈ H1
0 (�).

The elliptic regularity theory, then, implies that u ∈ H2(�). Therefore,

V = (u, υ)T ∈ D(A).

Consequently, I + A is surjective and then A is maximal.
Finally, we show that J : H → H is locally Lipchitz. So, if we set

f (s) = a|s|p(x)−2s then | f ′(s)| = a|p(x) − 1| |s|p(x)−2.

Hence,

‖J (�) − J (�̃)‖2H = ‖(0, a|u|p(·)−2u − a |̃u|p(·)−2ũ)‖2H
= ‖a|u|p(·)−2u − a |̃u|p(·)−2ũ)‖2L2

= ‖ f (u) − f (̃u)‖2L2 .
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As a consequence of the mean value theorem, we have, for 0 ≤ θ ≤ 1,

‖J (�) − J (�̃)‖2H = ‖ f ′(θu + (1 − θ )̃u)(u − ũ)‖2L2

= a‖|p(x) − 1||θu + (1 − θ )̃u|p(x)−2(u − ũ)‖2L2

≤ C‖|θu + (1 − θ )̃u|p(x)−2(u − ũ)‖2L2

≤ C
∫

�

|θu + (1 − θ )̃u|2(p(x)−2)|u − ũ|2dx .

As u, ũ ∈ H1
0 (�), we then use the Sobolev embedding H1

0 (�) ↪→ L
2n

n−2 (�), Hölder’s inequality and (6.1),
to obtain

∫

�

|θu + (1 − θ )̃u|2(p(x)−2)|u − ũ|2dx ≤
(∫

�

|u − ũ| 2n
n−2 dx

) n−2
n
[(∫

�

|θu + (1 − θ )̃u|n(p2−2)dx

) 2
n

+
(∫

�

|θu + (1 − θ )̃u|n(p1−2)dx

) 2
n
]

≤ ‖u − ũ‖2
L

2n
n−2

[

‖θu + (1 − θ )̃u‖2(p2−2)
Ln(p2−2)

+ ‖θu + (1 − θ )̃u‖2(p1−2)
Ln(p1−2)

]

≤ C‖u − ũ‖2
H1
0 (�)

[(

‖u‖Ln(p2−2) + ‖ũ‖Ln(p2−2)

)2(p2−2)

+
(

‖u‖Ln(p1−2) + ‖ũ‖Ln(p1−2)

)2(p1−2)]

≤ C‖u − ũ‖2
H1
0 (�)

[(

‖u‖H1
0 (�) + ‖ũ‖H1

0 (�)

)2(p2−2)

+
(

‖u‖H1
0 (�) + ‖ũ‖H1

0 (�)

)2(p1−2)]

.

Thus,

∥
∥
∥J (�) − J (�̃)

∥
∥
∥
2

H
≤ C(u, ũ)

∥
∥
∥� − �̃

∥
∥
∥
2

H
.

Therefore, J is locally Lipchitz. The proof of Theorem 6.1 is completed. See [38]. ��
Next, we show that the solution (6.3) blows up in finite time if (6.1) holds and E(0) < 0, where

E(t) := 1

2

∫

�

[
u2

t + |∇u|2]dx − a
∫

�

|u|p(x)

p(x)
dx . (6.9)

We also denote by �(u) = ∫

�
|u(x)|p(x)dx . First, we establish several lemmas needed for the proof of our

blowup result.

Lemma 6.2 Suppose the conditions of Corollary 2.27 hold. Then there exists a positive C > 1, depending on
� only, such that

�
s

p1 (u) ≤ C
(‖∇u‖22 + �(u)

)
, (6.10)

for any u ∈ H1
0 (�) and 2 ≤ s ≤ p1.
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Proof If �(u) > 1, then �
s

p1 (u) ≤ �(u) ≤ C
(‖∇u‖22 + �(u)

)
, where C > 1.

If �(u) ≤ 1 then, by Lemma 2.11, ‖u‖p(·) ≤ 1. Then, Corollary 2.27 and Lemma 2.12 imply

�
s

p1 (u) ≤ �
2
p1 (u) ≤ [max{‖u‖p1

p(·), ‖u‖p2
p(·)}]

2
p1 = ‖u‖2p(·) ≤ C‖∇u‖22.

Therefore, (6.10) follows. ��
As a special case, we have

Corollary 6.3 Let the assumptions of Lemma 6.2 hold. Then we have

‖u‖s
p1 ≤ C

(‖∇u‖22 + ‖u‖p1
p1

)
, (6.11)

for any u ∈ H1
0 (�) and 2 ≤ s ≤ p1.

We set

H(t) := −E(t)

and use C to denote a generic positive constant depending on � only. As a result of (6.9) and (6.10), we have

Corollary 6.4 Let the assumptions of Lemma 6.2 hold. Then we have

�
s

p1 (u) ≤ C
(|H(t)| + ‖ut‖22 + �(u)

)
, (6.12)

for any u ∈ H1
0 (�) and 2 ≤ s ≤ p1.

As a special case, we have

Corollary 6.5 Let the assumptions of Lemma 6.2 hold. Then we have

‖u‖s
p1 ≤ C

(|H(t)| + ‖ut‖22 + ‖u‖p1
p1

)
, (6.13)

for any u ∈ H1
0 (�) and 2 ≤ s ≤ p1.

Lemma 6.6 Let the assumptions of Lemma 6.2 hold and let u be the solution of problem (Q), with E(0) < 0.
Then,

�(u) ≥ C‖u‖p1
p1 . (6.14)

Proof We have

�(u) =
∫

�

|u|p(x)dx =
∫

�+
|u|p(x)dx +

∫

�−
|u|p(x)dx,

where

�+ = {x ∈ � / |u(x, t)| ≥ 1} and �− = {x ∈ � / |u(x, t)| < 1}.
so we get

�(u) ≥
∫

�+
|u|p1 +

∫

�−
|u|p2 ≥

∫

�+
|u|p1 + c1

(∫

�−
|u|p1

) p2
p1

.

This implies that

c2
(
�(u)

) p1
p2 ≥

∫

�−
|u|p1 and �(u) ≥

∫

�+
|u|p1 .

This yields

c2
(
�(u)

) p1
p2 + �(u) ≥ ‖u‖p1

p1 . (6.15)
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Since

0 < H(0) ≤ H(t) ≤ a

p1
�(u),

then (6.15) leads to

�(u)

[

1 + c2
( p1

a
H(0)

) p1
p2

−1
]

≥ ‖u‖p1
p1 .

Hence, (6.14) follows. ��
Our main blowup result reads as follows:

Theorem 6.7 Let the conditions of Theorem 6.1 be fulfilled. Assume further that (6.1) holds and

E(0) < 0. (6.16)

Then the solution (6.3) blows up in finite time.

Proof We multiply Eq. (Q) by ut and integrate over � to get

E ′(t) = 0, (6.17)

hence H ′(t) = 0 and

0 < H(0) = H(t) ≤ a

p1
�(u), (6.18)

for every t in [0, T ), by virtue of (6.16). We then define

L(t) := H1−α(t) + ε

∫

�

uut (x, t)dx, (6.19)

for ε small to be chosen later and

0 < α ≤ min

{

1,
p1 − 2

2p1

}

. (6.20)

By taking the derivative of (6.19) and using equation (Q), we obtain

L ′(t) = (1 − α)H−α(t)H ′(t) + ε

∫

�

[
u2

t − |∇u|2]+ εa
∫

�

|u|p(x). (6.21)

Add and subtract ε(1 − η)p1H(t), for 0 < η < 1, from the right-hand side of (6.21), to arrive at

L ′(t) ≥ ε(1 − η)p1H(t) + εaη

∫

�

|u|p(x) + ε
( (1 − η)p1

2
+ 1

)
‖ut‖22

+ ε
( (1 − η)p1

2
− 1

)
‖∇u‖22. (6.22)

For η small enough, we see that

L ′(t) ≥ εβ
[
H(t) + ‖ut‖22 + ‖∇u‖22 + �(u)

]
, (6.23)

where

β = min

{

(1 − η)p1, aη,
(1 − η)p1

2
+ 1,

(1 − η)p1
2

− 1

}

> 0.

Therefore, using (6.14), we arrive at

L ′(t) ≥ γ ε
[
H(t) + ‖ut‖22 + �(u)

] ≥ γ ε
[
H(t) + ‖ut‖22 + ‖u‖p1

p1

]
, (6.24)
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Consequently, we have

L(t) ≥ L(0) > 0, for all t ≥ 0.

Next, we would like to show that

L ′(t) ≥ �L
1

1−α (t), for all t ≥ 0, (6.25)

where� is a positive constant depending on εγ andC (the constant of Corollary 6.3). Once (6.25) is established,
we obtain in a standard way the finite-time blowup of L(t). To prove (6.25), we first note that

∣
∣
∣
∣

∫

�

uut (x, t)dx

∣
∣
∣
∣ ≤ ‖u‖2‖ut‖2 ≤ C‖u‖p1‖ut‖2,

which implies
∣
∣
∣
∣

∫

�

uut (x, t)dx

∣
∣
∣
∣

1
1−α ≤ C‖u‖

1
1−α
p1 ‖ut‖

1
1−α

2 .

Again Young’s inequality gives
∣
∣
∣
∣

∫

�

uut (x, t)dx

∣
∣
∣
∣

1/(1−α)

≤ C[‖u‖μ/(1−α)
p1 + ‖ut‖θ/(1−α)

2 ], (6.26)

for 1
μ

+ 1
θ

= 1. We take θ = 2(1 − α), to get μ/(1 − α) = 2/(1 − 2α) ≤ p1 by (6.20).
Therefore, (6.26) becomes

∣
∣
∣
∣

∫

�

uut (x, t)dx

∣
∣
∣
∣

1/(1−α)

≤ C[‖u‖s
p1 + ‖ut‖22],

where s = 2/(1 − 2α) ≤ p1. Using Corollary 6.5, we obtain
∣
∣
∣
∣

∫

�

uut (x, t)dx

∣
∣
∣
∣

1/(1−α)

≤ C[H(t) + ‖u‖p1
p1 + ‖ut‖22], for all t ≥ 0. (6.27)

Finally, by noting that

L1/(1−α)(t) =
[

H (1−α)(t) + ε

∫

�

uut (x, t)dx

]1/(1−α)

≤ 21/(1−α)

[

H(t) +
∣
∣
∣
∣

∫

�

uut

∣
∣
∣
∣

1/(1−α)
]

and combining it with (6.24) and (6.27), the inequality (6.25) is established. A simple integration of (6.25)
over (0, t) then yields

Lα/(1−α)(t) ≥ 1

L−α/(1−α)(0) − �tα/(1 − α)
. (6.28)

Therefore, (6.28) shows that L(t) blows up in finite time

T ∗ ≤ 1 − α

�α[L(0)]α/(1−α)
, (6.29)

where � and α are positive constant with α < 1 and L is given by (6.19) above. This completes the proof. ��
Remark 6.8 The estimate (6.29) shows that the larger L(0) is, the quicker the blow up takes place.
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