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Abstract This work deals with concepts of non-differentiability and a non-integer order differential on
timescales. Through an investigation of a local non-integer order derivative on timescales, a mean value
theorem (a fractional analog of the mean value theorem on timescales) is presented. Then, by illustrating
a vanishing property of this derivative, its objectivity is discussed. As a first-hand result, the potentials and
capability of this fractional derivative connected to nonsmooth analysis, including non-differentiable paths and
a class of self-similar fractals, are stated. It is stated that the non-integer order derivative never vanishes almost
everywhere. It has been shown that with the help of changing the order of differentiability on a q-timescale,
the non-differentiability disappears.
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1 Introduction

Calculus on timescales originallywas proposed in S. Hilger’s Ph.D. thesis, which aimed to unify the differential
and difference calculus [15,16]. Timescales, as closed subsets of the real line, include diverse patterns such as
non-countable self-similar sets, primes and closed intervals as well. Although its fabric is one dimensional, up
to an appropriate transformation, it is potentially capable of including higher dimensional patterns (see Sect.
2.1). Despite the complexity of the diverse scattering patterns in timescales, dynamic equations and inequalities
on timescales are enriched by many fruitful results, and indeed research topics in this area are of great interests
[4,8,9].

Compared to the classical calculuswith some of its nonlocal fractional counterparts with the same antiquity,
a few incomplete efforts aiming to present local fractional calculus [3] or non-local fractional calculus [2,26]
on timescales have been done.

Differentiation and/or integration on fractals are reported in [7,12,20,27]. In conjunction with the main
result of the present work, it is noteworthy that [27] introduces a local non-integer order calculus on Cantor
set, which (in its general topological definition) is a prototype of a famous and mostly observed pattern.
The mentioned theory in [27] is thrived to obtain an almost comprehensive achievement in non-integer order
dynamic equations on Cantor set in the local sense. Surprisingly, this local non-integer order theory studies a
subclass of nondifferentiable functions including Lebesgue–Cantor function.

Based on the idea in [7], a non-integer order derivative is in accordance with the Hausdorff dimension of
a compact fractal. A rigorous mathematical integration theory on fractals can be found in [12], in which the
concept of a generalized Riemann integral based on the staircase function is introduced. Moreover, for a given
compact fractal F and a function f : F → R, it proposes a derivative at t ∈ F by (provided the limit exists)

lim
s→t
s∈F

f (s) − f (t)
∗Sα

F (s) − ∗Sα
F (t)

, (1.1)

where ∗Sα
F is the staircase function corresponding to F , and 0 < α < 1 is the ∗γ -dimension of F [12].

A timescale approach toward the differentiation theory on fractals is suggested in [3]. Indeed, [3] proposes
a non-integer order differentiation on timescales that contains compact fractals as well. In this approach, an
implicit assumption is that all timescales are subject to the local non-integer order differentiation theory. In
other words, for a given function defined on an arbitrary timescale, the differential of that function is not
equivalent to zero necessarily.

As it will be discussed in this paper, in the above-mentioned proposal, all those timescales whose set
of dense points are non-empty must be excluded from the theory since the derivative of a smooth function
vanishes at the dense points. To overcome the lack of applicability in the presence of this vanishing property,
one may take non-differentiable functions into account and this supposition leads us to the main result of the
present work.

This work is organized as follows:
Section 2 is devoted to preliminaries on timescales with � and α-derivative. In Sect. 2.1, a class of self-
similar fractals as compact timescales are studied. Non-integer order mean value on timescales is stated in
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Sect. 2.2. The mentioned theorem is a breakthrough in both integer and non-integer order differentiation and
integration theory on timescales, whereas it is utilized to obtain the main background for integration theory [5].
In Sect. 3, we obtain the vanishing property of α-derivative for smooth functions in the sense that f (α) vanishes
at right-dense points. Then, utilizing the non-integer order mean value theorem, we obtain the main result for
nondifferentiable and α-differentiable functions. Section 4 is devoted to some examples of nondifferentiable
functions.

In accordance with a classical nowhere differentiability and the classical Weierstrass function, a class of
�-nondifferentiable functions on a q-timescale is introduced. Then, the α-differentiability is represented. The
specific series form of those functions is inspired by the trigonometric series form of their classical archetype,
namely theWeierstrass function. Also, the q-version of a non-differentiable function in the above sense appears
as a q-integral, which is a summation consisting of a finite number of terms.

2 Preliminary concepts

For comprehensive discussions on the calculus and dynamic equations on timescales, see [5].
Timescales are closed subsets of the real line. Some of the prevalent examples are Z, hZ (h > 0), Primes,

2Z and R.
Three basic functions denoted by σ , ρ and μ, respectively, are defined by

σ(t) := inf {s | s > t}, ρ(t) := sup {s | s < t}, (2.1)

μ(t) := σ(t) − t. (2.2)

A right-scattered point t ∈ T is a point for which we haveμ(t) > 0, and it is called right-dense whenμ(t) = 0.
T

κ is defined by T\{t0}, where t0 is the left-scattered maximum. A function f : T → R is called regulated
when its left-sided limits exist at left-dense points and its right-sided limits exist at right-dense points. It is
clear that regulated functions are bounded on bounded subsets of T. A function f : T

κ → R is said to be
rd-continuous, if it is continuous at right-dense points, and the left-sided limits on left-dense points exist. The
notation Crd(T) or simply Crd is served as the set of rd-continuous functions.

2.1 Self-similar compact timescales

The notion of timescales and non-integer order dynamic may be supported by fractal geometry. In view of the
prevalence of fractal patterns in nature, some inspiring studies, specially in biology, are reported [1,13,14].
The present subsection is inspired by Fig. 1, [14].

Suppose S ⊂ R
N and X = { (an)n | an ∈ Zp } (p ∈ Primes), X1 ⊂ X be non-voided and assume that there

is a one to one correspondence between S and X1. Making use of p-based expansion of numbers, [−1, 1]/∼
consists of equivalence classes t ∈ R

Z
, with t1 ∼ t2 iff an−bn = 0 mod p, where t1 = ∑

n
an
pn and t2 = ∑

n
bn
pn .

Define T : X → R

Z
by T (an)n = ∑

n
an
pn , then (X, d) is an infinite dimensional vector space over Zp, where

d((an)n, (bn)n) = T (an − bn)n . It is clear that T = T X1 is a timescale provided (X1, d) is closed in (X, d).
For the next statement, members of s ∈ S are denoted by the same notations as their counterparts in X ,

i.e., s = {an}, so d(s1, s2) for s1, s2 ∈ S is defined by d({an}, {bn}), where {an} and {bn} are correspondent X
members for s1 and s2.

Proposition 2.1 Let g : S → S be a function and suppose

d(g(s1), g(s2)) = λdα(s1, s2) (2.3)

for some α ∈ [0, 1] and 0 < λ < 1. If S is correspondent to X1 ⊂ X, then a similar identity holds for
T ◦ g ◦ T−1 : T → T, where T = T (X1) ⊂ R

Z
.

Proof Let t1 = ∑

n∈N0

an
pn and t2 = ∑

n∈N0

bn
pn , then, T

−1(t1) and T−1(t2) are X -correspondent pre-images of t1, t2

in S. Let {ãn} and {b̃n} be correspondent to g(s1) and g(s2), then
∣
∣
∣T ◦ g ◦ T−1(t1) − T ◦ g ◦ T−1(t1)

∣
∣
∣ =

∣
∣
∣T (g(s1) − g(s2))

∣
∣
∣
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=
∣
∣
∣

∑

n∈N0

ãn − b̃n
pn

∣
∣
∣

= d({ãn}, {b̃n})
= λdα({an}, {bn})
= λ

( ∑

n∈N0

an − bn
pn

)α

= λ|t1 − t2|α. (2.4)

�	
Remark 2.2 The result of Proposition 2.1 holds if we substitute the equality sign by ≤.

Let α = 1 and Eq. (2.3) with ≤ holds for {g1, g2, . . . , gn}, with 0 < λi < 1, then there exists a compact
subset S∗ ⊂ S such that S∗ = ⋃n

i=1 gi (S
∗) (see Chapter 9, [11]). According to Proposition 2.1, the same

holds for {T ◦ g1 ◦ T−1, T ◦ g2 ◦ T−1, . . . , T ◦ gn ◦ T−1}, i.e., there exists a compact subset T
∗ ⊂ T, for

which T
∗ = ⋃n

i=1 T ◦ gi ◦ T−1(T∗). Suppose the open set condition holds in the sense that there exists an
open U ⊂ R

2 such that
⋃n

i=1 gi (U ) ⊂ U with disjoint gi (U )s (accordingly,
⋃n

i=1 T ◦ gi ◦ T−1(V ) ⊂ V , for
some open V ⊂ R

Z
with disjoint T ◦ gi ◦ T−1(V )s). If γ = dimH(S∗) denotes the Hausdorff dimension of S∗

(see Chapter 2, [11]), then by Theorem 9.3 [11],
∑n

i=1 λ
γ

i = 1.
Using the scaling property (Sec 2.1, [11]) for 0 < α < 1, we obtain a similar result, while for the

corresponding compact invariant set S∗ when α �= 1, the exponent γ should be substituted by γ
α
and we have

∑n
i=1 λ

γ
α

i = 1.

2.2 �-Calculus and fractional calculus on timescales

Calculus on timescales begins with the following definition:

Definition 2.3 [5] Suppose X is a real Banach space, f : T → X is a function and t ∈ T
κ . We define

f �(t) ∈ X to be a vector—if it exists—with the property that, for any ε > 0, there is a neighborhood
U := (t − δ, t + δ) for some δ > 0 such that

∣
∣
∣ f (σ (t)) − f (s) − (σ (t) − s) f �(t)

∣
∣
∣ ≤ ε|σ(t) − s|. (2.5)

In case μ(t) > 0 and f is continuous, then f is differentiable at t and we have

f �(t) = f (σ (t)) − f (t)

μ(t)
, (2.6)

and when the point t is right-dense, f is differentiable at t iff the limit

f �(t) := lim
s−→t

f (t) − f (s)

t − s
(2.7)

exists.
For D ⊂ T

κ , a continuous function f : T → X is called pre-differentiable with region of differentiation
D, if T\D is countable and contains no right-scattered point and also f �(t) exists for all t ∈ D.

A non-integer order derivative in the local sense has been suggested in [21].

Definition 2.4 Let f be a real-valued function defined on T, t ∈ T
κ and α ∈ (0, 1] ∩ { n

2m+1 | n,m ∈ N}, the
real value f (α)(t) (if it exists) is defined to be a number with the property that, for any positive ε, there exists
a neighborhood U ⊂ T of t of length δ so that

| f (σ (t)) − f (s) − f (α)(t)(σ (t) − s)α| ≤ ε|σ(t) − s|α, (2.8)

for all s ∈ U . We name the number f (α)(t) fractional derivative of order α at t .
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Besides the α-differentiation theory in [3], an indefinite integral together with a number of firsthand properties
are derived. However, some of those properties with their applicability and domain of validity have been
discussed in [21].

Similar to Eqs. (2.6) and (2.7), if f is continuous at t and t is right-scattered, then f is differentiable of
order α at t with [3]

f (α)(t) = f (σ (t)) − f (t)

μα(t)
. (2.9)

Let α ∈ (0, 1]∩ { 1q | q be odd }. If t is right-dense, then f is fractional differentiable of order α at t iff the limit

f (α)(t) := lim
s−→t+

f (t) − f (s)

(t − s)α
(2.10)

exists and then it will be f (α)(x) [3]. Similarly, if α ∈ (0, 1] ∩ { 1q | q is odd } and t is left-dense. then f is
fractional differentiable of order α at t iff the limit

f (α)(t) := lim
s−→t−

f (t) − f (s)

(t − s)α
(2.11)

exists and then it will be f (α)(t) [3].

Remark 2.5 Reminding the notion of measure chain which leads us to the graininess function μ, a fractional
counterpart of it can be thought of as a pre-measure on a bent real line with the deflection parameter α. In this
way, a rough geometric interpretation of fractional derivative of a function at point t ∈ T of order α is a slope
of a bent line tangent to the function at t ∈ T.

Theorem 2.6 [5] Suppose f, g : T → R are pre-differentiable functions with D. Then

| f �(t)| ≤ g�(t), ∀t ∈ D (2.12)

implies
| f (s) − f (r)| ≤ g(s) − g(r), ∀r, s ∈ T, r ≤ s. (2.13)

Corollary 2.7 [5] Suppose U = [r, s] or [s, r ], where r, s ∈ T. If f : T → R is pre-differentiable functions
with D, then the following inequality holds:

| f (s) − f (r)| ≤
{

sup
t∈Uκ∩D

| f �(t)|
}
|s − r |. (2.14)

A non-integer order counterpart of Theorem 2.6 is stated below:

Theorem 2.8 (Fractional Mean Value) Let f, g : T → R be α-pre-differentiable functions with D. If

| f (α)(t)| ≤ g(α)(t), ∀t ∈ D, (2.15)

then
| f (s) − f (r)| ≤ g(s) − g(r), ∀r, s ∈ T, r ≤ s. (2.16)

Proof The proof is based on the induction principle ([5], Theorem 1.7) and here it is given with a modification
to the proof of Theorem 1.67 in [5].

Let r, s ∈ T with r ≤ s. Since T \ D is countable, we denote it by {tn | n ∈ N}. Suppose the following
statement
S(t) : there exists a continuous and bounded function M : T

κ → R such that

| f (t) − f (r)| ≤ g(t) − g(r) + ε
(
M(t)(t − r)α +

∑

tn<t

2−n
)
. (2.17)

The trivial case S(r) is satisfied with any bounded and continuous M . Let t be right-scattered, then t ∈ D and
assume that S(t) holds. We have

| f (σ (t)) − f (r)| = | f (t) + μα(t) f (α)(t) − f (r)|
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≤ μα(t)| f (α)(t)| + | f (t) − f (r)|
≤ μα(t)g(α)(t) + g(t) − g(r) + ε

(
M(t)(t − r)α +

∑

tn<t

2−n
)

≤ g(σ (t)) − g(r) + ε
(
M(t)(t − r)α +

∑

tn<σ(t)

2−n
)
. (2.18)

This shows that S(σ (t)) holds with M(σ (t)) = M(t).
Now, let t be right-dense with t �= s. First, suppose t ∈ D. Since f and g are pre-differentiable, then there

exists a neighborhood U of t with

| f (t) − f (τ ) − (τ − t)α f (α)(t)| ≤ ε

2
|τ − t |α ∀ τ ∈ U

|g(τ ) − g(t) − g(α)(t)(t − τ)α| ≤ ε

2
|τ − t |α ∀ τ ∈ U

This shows that, for τ ∈ U ∩ (t, ∞), we have

| f (τ ) − f (r)| ≤ | f (τ ) − f (t)| + | f (t) − f (r)|
≤ | f (α)(t)|(τ − t)α + ε

2
(τ − t)α + | f (t) − f (r)|

≤ g(α)(t)(τ − t)α + ε

2
(τ − t)α + | f (t) − f (r)|

≤ g(τ ) − g(t) + ε(τ − t)α + g(t) − g(r) + ε
(
M(t)(t − r)α +

∑

tn<t

2−n
)

≤ g(τ ) − g(r) + ε
(
(τ − r)α + M(t)(τ − r)α +

∑

tn<τ

2−n
)
. (2.19)

Therefore, the statement S(τ ) for τ ∈ U ∩ (t, ∞) holds with M(τ ) = 1 + M(t).
Assume the other case, namely t ∈ T \ D or t = tm for some m. Since every pre-differentiable function is
continuous, there exists a neighborhood U of t such that for every τ ∈ U , we have

| f (τ ) − f (t)| ≤ ε

2
2−m, g(τ ) − g(t) ≥ ε

2
2−m . (2.20)

Hence,

| f (τ ) − f (r)| ≤ | f (τ ) − f (t)| + | f (t) − f (r)|
≤ ε

2
2−m + g(t) − g(r) + ε

(
M(t)(t − r)α +

∑

tn<t

2−n
)

≤ g(τ ) − g(r) + ε
(
M(t)(τ − r)α +

∑

tn<t

2−n
)

≤ g(τ ) − g(r) + ε
(
M(t)(τ − r)α +

∑

tn<τ

2−n
)
. (2.21)

The last inequality holds since t = tm < τ . Therefore, S(τ ) holds for all τ ∈ U ∩ (t, ∞) with M(τ ) = M(t).
Now, let t be a left-dense point and suppose S(τ ) holds for τ < t . Thus, we have

lim
τ→t−

| f (τ ) − f (r)| ≤ lim
τ→t−

{
g(τ ) − g(r) + ε

(
M(τ )(τ − r)α +

∑

tn<τ

2−n
)}

≤ lim
τ→t−

{
g(τ ) − g(r) + ε

(
M(τ )(τ − r)α +

∑

tn<t

2−n
)}

, (2.22)

and S(t) follows from continuity of f , g and M with M(t) = lim
τ→t−

M(τ ). We conclude that the above

deductions prove the assertion. �	
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3 Main results

The content of this section evolves around the objectivity of the α-derivative and it aims to show that the class
of α-differentiable functions with nonzero α-derivative is rather small in the sense of smoothness. It is assumed
that T is bounded and functions are continuous. Since the concentration is on the right-dense points, for the
sake of objectivity, assume that the set of right-dense points is non-empty.

Proposition 3.1 Let T = [a, b] and assume that f is analytic on a neighborhood of a point x ∈ [a, b]. Then
f (α) ≡ 0.

Proof By the definition, we have

f (α)(x) = lim
u→0

f (x + u1/α) − f (x)

uα

= lim
u→0

∞∑

n=1

f (n)(x)u
n−α
α = 0, (3.1)

where (y− x)α = u. Here, the uniform convergence of the series and uniform continuity of the family (u
n−α
α )n

give the result. �	
Remark 3.2 The above result fails in the of lack of differentiability: Suppose T = { tn | n ∈ N } ∪ {t} with
tn → t and let f (t) = (tn − t)α , then f (α)(t) = 1 while t is dense.
Evidently, for a function satisfying f (s) = O((s − t)α) when s → t implies f (α)(t) �= 0 up to the dense
points, but such asymptotic condition ruins the differentiability.

Proposition 3.3 Suppose that T
κn �= ∅ where T

κk+1 = (Tκk )κ . Assume that f : T → R is n-times continu-
ously �-differentiable. If x ∈ T

κn is a dense point, then f (α)(x) = 0.

Proof According to [5], Theorem 1.111 (Taylor’s Formula), since g1(y, x)α = (y − x)α , then

f (α)(x) = lim
y→x

f (y) − f (x)

(y − x)α

= lim
y→x

n−1∑

k=1

(−1)kgk(y, x)

g1(y, x)α
f �k

(x)

+ lim
y→x

∫ ρn−1(y)

x

(−1)n−1gn−1(σ (t), y)

g1(y, x)α
f �n

(t)�t = 0. n > 1. (3.2)

Indeed, from the definition of gk , that is g0(y, x) = 1 and gk+1(y, x) = ∫ y
x gk(σ (t), x)�t , for t ∈ {t ∈ T | x ≤

t < y}, by induction we obtain
∫ y
x gk(σ (t), x)�t

g1(y, x)α
≤ (y − x)k+1

g1(y, x)α
= (y − x)k−α+1, k ∈ N, (3.3)

since σ(t) ≤ y and it completes the proof. �	
In favor of Theorem 2.8, one can easily obtain:

Proposition 3.4 Let f be a pre-differentiable function with D and t ∈ D be a (left or right)-dense point. If
f � is bounded on D, then f (α)(t) = 0.

Corollary 3.5 Suppose f ∈ C1(Tκ), then f (α) vanishes at right-dense points.

Proof Assume f (α)(t) �= 0 for some right-dense t . From Proposition 3.3, there exists a sequence (tn)n ⊂ T
κ

with f �(tn) → ∞. Let t0 = lim tn , then f is not �-differentiable on t0. It yields t0 /∈ T
κ and therefore

t0 = maxT and it contradicts the right-dense property. This proves the assertion. �	
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Definition 3.6 Let E denote the set of right-dense points in T. The set of all α-pre-differentiable functions
f : T → R for which f (α) is bounded and non-zero on E ∩ D, is denoted by hα+. Also, hα

0 stands for the set of
all α-pre-differentiable functions with f (α) ≡ 0 on E ∩ D and Li(T) denotes the space of Lipschitz functions.
Clearly, hα+, hα

0 ⊂ Hα(T), in which Hα(T) is the the space of Hölder continuous functions on T, which is a
Banach space with the norm

‖ f ‖Hα(T) = ‖ f ‖ + sup
x,y∈T

∣
∣
∣
f (x) − f (y)

(x − y)α

∣
∣
∣, (3.4)

in which ‖.‖ is the sup norm.

The following statement is immediate.

Proposition 3.7 Li(T) ⊂ hα
0 .

Theorem 3.8 (Rademacher’s Theorem, [24], Corollary 11.7) If� ⊂ R
n is open and f : � → R

m is Lipschitz,
then f is differentiable almost everywhere.

As we already observed, there is no hope of looking inside the class of smooth functions for finding non-
trivial α-differentiable functions. IfND([a, b]) stands for the set of all nowhere-differentiable functions over
[a, b], then almost every function in C[a, b] belongs to ND[a, b] ([25], Theorem 4.8); hence, because of the
prevalence of ND[a, b] in C[a, b], it seems to be reasonable to regard the α-derivative in connection with
non-smooth analysis.

For the purpose of the following statement, let Z( f (α)) be the set of zeros of f (α).

Lemma 3.9 Let α, β ∈ R
+ with α < β. Then

1. Hβ(T) ⊂ Hα(T),
2. Li(T) ∪ hα+ ⊂ Hα(T),
3. Li(T) ∩ hα+ = ∅,

4. Suppose T does not contain left-dense points. Assume that f � is bounded on T \ E and f ∈ hα
0 , then

f ∈ Li(T).

Proof Let x0 ∈ T and assume that f ∈ Hβ(T), then for the function gx0 defined by

gx0(x) = f (x) − f (x0)

(x − x0)α
(3.5)

we have gx0 ∈ Hβ−α(T) ⊂ C(T) and ‖gx0‖Hβ−α(T) ≤ K‖ f ‖Hβ(T), where K does not depend on f e.g.,([22]
section 1.1). Since gx0 is continuous on T, its limit exists at x0 provided x0 ∈ E and one can infer that f is
locally Hölder continuous. Also, by compactness of T and continuity of gt with respect to t , the family {gt }t∈T
is uniform bounded and it proves f ∈ Hα(T).
Parts 2 and 3 are clear.
4) Suppose f ∈ hα

0 and let g(t) =
(
supt∈T\E | f �(t)|

)
t , then we have

g(α)(t) =
{
0 t ∈ E(
supt∈T\E | f �(t)|

)
μ1−α(t) t /∈ E

(3.6)

and therefore | f (α)(t)| ≤ g(α)(t) (t ∈ T
κ ) holds. The result is obvious from Theorem 2.8 since g ∈ Li(T). �	

Theorem 3.10 Suppose f is almost nowhere differentiable, but α-pre-differentiable with D.

1. There exists at least one point t for which f (α)(t) �= 0.
2. If f (α) is continuous, then it does not vanish a.e.

Proof Part 1 is an immediate consequence of Theorem 2.8.
2) Let A = Z( f (α)) (zeros of f (α)), then A ⊂ D is a timescale. By Theorem 2.8, f is constant on A and
therefore A has full measure. �	
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Fig. 1 f (t) and g(t), α = 1
2 , b = 2

4 Non-differentiability vs α-differentiability: examples

Test Example 4.1 It is well known that the Weierstrass function defined by the following trigonometric series

f (x) =
∞∑

n=1

b−nα cos bnx, 0 < α < 1, b > 1 (4.1)

is non-differentiable and belongs toHα . Fractal geometric study of theWeierstrass function (as a mono-fractal)
and its generalization has an interesting literature, both in theory and in applications [6,17,18,28].

Although in the present work, we have studied the local fractional derivative, non-local based fractional
studies of f are reported [23]. Indeed, there is a direct relationship between the order of Grunwald–Letnikov
derivative of f and its Hausdorff dimension [23].

Now, let {εn}n be such that εn → 0, then the function

g(x) =
∞∑

n=1

εnb
−nα cos bnx (4.2)

has the following property:
sup |g(x) − g(y)| = o(|x − y|α), (4.3)

which leads to g(α) ≡ 0 (Chapter 2, Section 3, [29]). Then, we conclude that there exists a non-voided set
upon which g is differentiable (Fig. 1).

Test Example 4.2 (α-Differentiability on q-timescales)

Suppose q ∈]0,
√
5−1
2 [, and define T1 = {0} ∪ qN = {qn | n ∈ N}, T

n
1 = {0} ∪ qNn+1 , T = {1} ∪ T1 ∪

⋃

n∈N
(qn + T

n
1). Let l : R → R be a periodic function defined by l(t) = |t | (t ∈ [−1, 1]) and l(t) = l(t + 1

q ).

We define f : T → R by
f (t) =

∑

n∈N0

qnl(q−nt), (4.4)

which has a q-integral representation of the form (see [10,19] for theory of integration and differentiation on
q-timescales.)

f (t) = q

q − 1

∫

T1∪{1}
l

(
t

τ

)

dqτ, t ∈ T. (4.5)
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Fig. 2 Timescale T̃

It is clear that T1 ⊂ T consists of dense points of T, and f is �-differentiable on T\T1. Let t ∈ T1, then

t = qk for some k ∈ N, and let t j = q j +qk , in which j > k. Obviously, {t j } ⊂]qk, qk−1[ since q ∈]0,
√
5−1
2 [.

Following that, it is easy to obtain

f �(t) = lim
j→∞

f (q j + qk) − f (qk)

q j
= lim

j→∞

(
j + 1 + ( j − k)qk

q j

)
= +∞ (4.6)

(since h(qkq−n) = qk−n when n ≤ k and otherwise h(qkq−n) = 0). The same result holds for

g(t) =
∑

n∈N0

qnαl(q−nt), 0 < α < 1, t ∈ T, (4.7)

while we have

f �(t) = lim
j→∞

∑ j
n=0 q

nα.q j−n + ∑ j
n=0 q

nα.qk−n − ∑k
n=0 q

nα.qk−n

q j

= lim
j→∞

( j∑

n=0

qn(α−1) + qk

q j

j∑

n=k+1

qn(α−1)
)

= +∞. (4.8)

Note that with the help of q̃ = qα , Eq. (4.7) has a q-integral representation below

g(t) = qα

1 − qα

∫

qαN∪{0,1}
l
( t

τ
1
α

)
dqτ, t ∈ T̃, (4.9)

where T̃ = {0, 1} ∪ qαN
⋃

n∈N qαn + qαNn+1 (Fig. 2). It can be verified that g is not fractional differentiable
of order 0 < β < 1 on {0} ∪ qαN0 :

f (α)(t) = lim
j→∞

f (q j + +qk) − f (+qk)

q jβ

= lim
j→∞

qα−1

(qα−1 − 1)q jβ

(
q jα − q j−α+1 + qk− j+ jα − qkα

)
= ∞. (4.10)

For the purpose of fractional differentiability, we need to modify the previous definitions: Let l : R → R

be a differentiable function that vanishes outside [0, 1]. We can define the corresponding function h by

h(t) =
∑

n∈N0

qnαl(q−ntα). 0 < α < 1, t ∈ T. (4.11)

The summation in Eq. (4.11) is finite again, while l vanishes outside of [0, 1], so for t = qk , we have
l(qαk−n) = 0 for �αk� < n, where �.� is the floor function. The function h is fractional differentiable of order
α, since for t = qk we have

h(α)(t) = lim
j→∞

h(q j + qk) − h(qk)

q jα

= lim
j→∞

1

q jα

( �αk�∑

n=0

qnαl(q jα−n + qkα−n) −
k∑

n=0

qnαl(qkα−n)
)
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Fig. 3 h(t) as a function of T̃ with l(t) = t (1 − t) for t ∈ [0, 1], otherwise l(t) = 0, and α = 1
3

=
�αk�∑

n=0

qnα lim
j→∞

l(q jα−n + qkα−n) − l(qkα−n)

q jα

=
�αk�∑

n=0

q(α+1)nl�(qαk−n). (4.12)

Note that one can obtain a similar result by considering T̃ and defining

h(t) =
∑

n∈N0

qnαl(q−nt). 0 < α < 1, t ∈ T̃. (4.13)

Apparently, h(t) in either of the above definitions is not �-differentiable, but α-differentiable on T and
equivalently, h as a function on T̃ is �-differentiable (see Fig. 3).

Remark 4.3 As it has been represented through the examples above, the discussed local non-integer order
derivative and �-derivative are equal up to a change of scale, i.e., changing qN0 with qαN0 in Example 4.2.
Interestingly, the transformation t �−→ tα preserves the scattering property of two discussed timescales, that
is, μ(t) = 1−q

q t for t ∈ T and μ(t) = 1−qα

qα t for t ∈ T̃. The same invariance holds for T = Z under the shift
transformation t �−→ t + α. In general, if a given timescale is invariant under a transformation (a change of
scale as a function of α), then we would be able to use � and α derivative interchangeably in the sense of T

and T̃ and their corresponding function h(t).

5 Conclusion

In this work, an objectivity of the localα-derivative on timescales has been discussed. Using the fractionalmean
value theorem, it is shown that, compared to the smooth functions, which have trivial α-derivative, nowhere
differentiable functions, which satisfy fractional differentiability, possess almost everywhere non-triviality of
the fractional derivative of order α. As it is shown in Example 4.1, the discussed local derivative has some
potentials to study dynamics on self-similar fractals. The concepts of nowhere �-differentiability up to dense
points and α-differentiability on timescales is also studied, and almost everywhere non-vanishing property
of a fractional order derivative is stated. Making use of the series representation of q-integrals, a class of
non-differentiable, but α-differentiable on a q-timescale is introduced.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.
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