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Abstract
Building on our previous work, we show that the category of non-negatively graded
chain complexes of DX -modules – where X is a smooth affine algebraic variety over
an algebraically closed field of characteristic zero – fits into a homotopical algebraic
context in the sense of Toën and Vezzosi.
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Introduction

The classical Batalin-Vilkovisky complex is, roughly, a kind of resolution ofC∞(�)gs.
The functionsC∞(�) of the shell� are obtained by identifying those functions of the
infinite jet bundle J∞E of the field bundle E → X that coincide on-shell (quotient).
We then get the functionsC∞(�)gs by selecting those on-shell functions that are gauge
invariant, i.e., constant along the gauge orbits (intersection). In important particular
cases, when working dually, i.e., with spaces instead of function algebras, we first
mod out the gauge symmetries, i.e., we consider some space C := J∞E/GS, where
GS refers to integrated gauge symmetry vector fields gs – thought of as vector fields
prolonged to J∞E . Since, in the function algebra approach, we determine the shell
� by solving the algebraic infinite jet bundle equationAlg(d S) = 0 that corresponds
to the equation d S = 0, where S denotes the functional acting on sections of E , it is
clear that, in the dual approach, the functional S must be defined on C , i.e., S ∈ O(C)

and d S : C → T ∗C , and that we have then to find those ‘points m’ in C that satisfy
dm S = 0.

When switching to the context of algebraic geometry, we start with a quasi-coherent
module E ∈ qcMod(OX ) over the function sheafOX of a scheme X . Let now SOX be
the corresponding symmetric tensor algebra functor. The quasi-coherent commutative
OX -algebra SOX E ∈ qcCAlg(OX ) can be viewed as the pushforward OE

X of the
function sheaf of a vector bundle E → X (we think about E as the module of sections
of the dual bundle E∗). If X is a smooth scheme, the infinite jet functor J∞ [4] leads
to a sheaf J∞(OE

X ) ∈ qcCAlg(DX ) of commutative algebras over the sheaf DX of
rings of differential operators on X , which is quasi-coherent as sheaf ofOX -modules.
The spectrum of the latter is the infinite jet bundle J∞E → X . This bundle is thus an
affine X -DX -scheme J∞E ∈ Aff(DX ).

Since an intersection of schemes may well be not transverse, or, algebraically, since
tensor products of commutative rings viewed as certain modules can be badly behaved
(tensor product functor only right-exact), these tensor products should be left-derived,
i.e., commutative rings or commutative algebras should be replaced by simplicial com-
mutative rings or differential non-negatively graded commutative algebras (category
DGCA). Similarly, since quotients of affine schemes can be non-affine (non-trivial
automorphism groups), they should be derived, i.e., replaced by groupoids, or, in the
case of higher symmetries, by infinity groupoids or simplicial sets (category SSet).
For the functor of points approach to schemes—schemes are viewed as, say, locally
representable sheaves (for the Zariski topology) G : CA → Set from commutative
algebras to sets—this means that we pass to functors F : DGCA → SSet.

In the following we assume that X is a smooth affine algebraic variety, so that
we can, roughly speaking, replace sheaves by their global sections. In particular, in
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the above D-geometric setting, the differential non-negatively graded commutative
algebras of the preceding paragraph, i.e., the objects of DGCA, become the objects of
DG+qcCAlg(DX ), i.e., the sheaves of differential non-negatively graded OX -quasi-
coherent commutative DX -algebras, and, due to the assumption that X is smooth
affine, the category DG+qcCAlg(DX ) is equivalent [6] to the category DGDA of
differential non-negatively graded commutative algebras over the ringD = DX (X) of
global sections ofDX . Let us mention that the latter category is of course the category
CMon(DGDM) of commutative monoids in the symmetric monoidal category DGDM
of differential non-negatively graded modules overD (i.e., the category DGDM of non-
negatively graded chain complexes of D-modules), as well as that, despite the used
simplified notation DGDM and DGDA, the reader should keep in mind the considered
non-negative grading and underlying variety X .

It follows that, in D-geometry, the above functors F : DGCA → SSet become
functors

F : DGDA → SSet.

As suggested in the second paragraph, the category DGDA � DG+qcCAlg(DX ) is
opposite to the category D−Aff(DX ) of derived affine X -DX -schemes. Those func-
tors or presheaves F : DGDA → SSet that are actually sheaves (in the sense detailed
below) are referred to as derived X -DX -stacks and the model category of presheaves
F := Fun(DGDA,SSet) (endowed with its local model structure) models the cat-
egory of derived X -DX -stacks [37,38]. The sheaf condition is a natural homotopy
version of the standard sheaf condition [20]. This homotopical variant is correctly
encoded in the fibrant object condition of the local model structure of F. That struc-
ture encrypts both, the model structure of the target and the one of the source [6,7].
More precisely, one starts with the global model structure onF, which is the one imple-
mented ‘object-wise’ by the model structure of the target category SSet. The model
structure of the source category DGDA is taken into account via the left Bousfield
localization with respect to the weak equivalences of DGDAop, what leads to a new
model category denoted by FO. If τ is an appropriate model pre-topology on DGDAop,
it should be possible to define homotopy τ -sheaves of groups, as well as a class Hτ

of homotopy τ -hypercovers. The mentioned local model category F ˜,τ arises now as
the left Bousfield localization of FOwith respect to Hτ . The local weak equivalences
are those natural transformations that induce isomorphisms between all homotopy
sheaves. The fibrant object condition in F ˜,τ, which is roughly the descent condition
with respect to the homotopy τ -hypercovers, is the searched sheaf or stack condition
for derived X -DX -stacks [37,38]. The notion of derived X -DX -stack represented by
an object in D−Aff(DX ) � DGDAop, i.e., by a derived affine X -DX -scheme, can
easily be defined.

Notice finally that our two assumptions – smooth and affine – on the underlying
algebraic variety X are necessary. Exactly the same smoothness condition is indeed
used in [4, Remark p. 56], since for an arbitrary singular scheme X , the standard
notion of leftDX -module ismeaningless andwould have to be replaced by its extension
defined as quasi-coherentmodule over the deRham space XdR of X . On the other hand,
the assumption that X is affine is needed to replace the category DG+qcMod(DX ) by
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the category DGDM and to thus avoid the problem of the non-existence of a projective
model structure [11]. To be precise, there exists a flat monoidal model structure on
chain complexes of sheaves on a well-behaved ringed space [18], but a treatment
of the non-affine case based on such a construction is not really expedient for our
purpose. However, the confinement to the affine case, does not only allow us to use
the artefacts of the model categorical environment, but it may also allow us to extract
the fundamental structure of the main actors of the considered problem and to extend
these to an arbitrary smooth scheme X [29].

To implement the preceding ideas, one must prove that the triplet (DGDM,DGDM,
DGDA) is a homotopical algebraic context ( HA context) and consider moreover a
homotopical algebraic geometric context (DGDM,DGDM,DGDA, τ,P) (HAG context).
A HA context is a triplet (C,C0,A0) made of a symmetric monoidal model category
C and two full subcategories C0 ⊂ C and A0 ⊂ CMon(C), which satisfy several quite
natural but important assumptions that guarantee that essential tools from linear and
commutative algebra are still available. Further, P is a class of morphisms in DGDAop

that is compatible with τ (a priori one may think about τ as being the étale topology
and about P as being a class of smooth morphisms). In this framework, a 1-geometric
derived X -DX -stack is, roughly, a derived X -DX -stack, which is obtained as the
quotient by a groupoid action – in representable derived X -DX -stacks – that belongs
to P. Hence, P determines the type of action we consider (e.g., a smooth action, maybe
a not really nice action) and determines the type of geometric stack we get.

Let us now come back to the first two paragraphs of this introduction. Since J∞E ∈
Aff(DX ) ⊂ D−Aff(DX ) � DGDAop is a representable derived X -DX -stack, it is
natural to viewC := J∞E/GS, or, better,C := [J∞E/GS] as a 1-geometric derived
X -DX -stack (or even an n-geometric one). Further evidence for this standpoint appears
in [5,27,28,40].

The full implementation of the above D-geometric [4] extensions of homotopical
algebraic geometric ideas [37,38], as well as of the program sketched in the first
paragraph within this HAG setting over differential operators, is being written down
in a separate paper [30]. In the present text, we prove that (DGDM,DGDM,DGDA)
is indeed a HA context. Let us recall that modules over the non-commutative ring
D of differential operators are rather special. For instance, the category DGDM is
closed monoidal, with internal Hom and tensor product taken, not over D, but over
O. More precisely, one considers in fact the O-modules given, for M, N ∈ DGDM,
by HomO(M, N ) and M ⊗O N , and shows that their O-module structures can be
extended to D-module structures. This and other specificities must be kept in mind
throughout the whole of the paper, and related subtleties have to be carefully checked.

It can be shown that the newhomotopical algebraicD-geometric approach provides
in particular a convenient way to encode total derivatives and allows to recover the
classical Batalin-Vilkovisky complex as a specific case of the general constructions
[30].

1 Monoidal model structure on differential gradedD-modules.

In this section, we show that the category DGDM is a symmetric monoidal model
category. Such a category is the basic ingredient of a Homotopical Algebraic Context.
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Definition 1.1 A symmetric monoidal model structure on a category C is a closed
symmetric monoidal structure together with a model structure on C, which satisfy the
compatibility axioms:

MMC1. The monoidal structure ⊗ : C × C → C is a Quillen bifunctor.

MMC2. If QI
q−→ I is the cofibrant replacement of the monoidal unit I (obtained

from the functorial ‘cofibration - trivial fibration’ decomposition of ∅ → I),
then the map

QI ⊗ C
q⊗id−−−→ I ⊗ C

is a weak equivalence for every cofibrant C ∈ C.

We briefly comment on this definition [17].
1. It is known that a morphism of model categories needs not respect the whole

model categorical structure – this would be too strong a requirement. The concept
of Quillen functor is the appropriate notion of morphism between model categories.
In the preceding definition, we ask that ⊗ be a Quillen bi functor, i.e., that, for any
two cofibrations f : T → U and g : V → W , the universal morphism or pushout
product f�g in the next diagram be a cofibration as well—which is trivial if one of
the inducing maps f or g is trivial.

T ⊗ V U ⊗ V

T ⊗ W U ⊗ V
∐

T⊗V T ⊗ W

U ⊗ W

f ⊗id

id⊗g id⊗g

f ⊗id

f �g

(1.1)

If the model category C is cofibrantly generated, it suffices to check the pushout
axiom MMC1 for generating (trivial) cofibrations.

2. Note that the axiom MMC2 is obviously satisfied if I is cofibrant.
The categoryC = DGDM is anAbelian symmetricmonoidal and a finitely generated

model category [6] over any smooth affine variety X over an algebraically closed field
of characteristic 0.

The monoidal unit is I = O = OX (X) viewed as concentrated in degree 0 and
with zero differential. This complex (O, 0) is cofibrant if the unique chain map
({0}, 0) → (O, 0) is a cofibration, i.e., an injective chain map with degree-wise
projective cokernel. It is clear that this cokernel is (O, 0) itself. It is degree-wise pro-
jective if and only if O is a projective D-module. Therefore, the axiom MMC2 is not
obvious, if O is not a flat D-module. The D-module O is flat if and only if, for any
injective D-linear map M → N between right D-modules, the induced Z-linear map
M ⊗D O → N ⊗D O is injective as well. Let now O = C[z], consider the complex
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affine line X = SpecO and denote by (∂z) the right ideal of the ring D = DX (X).
The right D-linear injection (∂z) → D induces the morphism

(∂z) ⊗D O → D ⊗D O � O .

Since ∂z � ∂z ⊗D 1 is sent to 1 ⊗D ∂z1 � 0, the kernel of the last morphism does
not vanish; hence, in the case of the complex affine line, O is not D-flat. Eventually,
MMC2 is not trivially satisfied.

Before proving that MMC1 and MMC2 hold, we have still to show that the category
DGDM, which carries a (cofibrantly generated) model structure, is closed symmetric
monoidal. Let us stress that the equivalent category DG+qcMod(DX ) is of course
equipped with a model structure, but is a priori not closed, since the internal Hom of
OX -modules does not necessarily preserve OX -quasi-coherence (whereas the tensor
product of quasi-coherent OX -modules is quasi-coherent). On the other hand, the
category DG+Mod(DX ) is closed symmetric monoidal [34,35], but not endowed with
a projectivemodel structure [11] (it has an injectivemodel structure,which, however, is
notmonoidal [19]). The problem is actually that the categoryMod(DX ) has not enough
projectives. The issue disappears for qcMod(DX ), since this category is equivalent to
the category DM of modules over the ring D.

Let us start with the following observation. Consider a topological space X – in
particular a smooth variety – and a sheaf RX of unital rings over X , and let R =
�(X ,RX ) be the ring of global sections ofRX .Wewill also denote the global sections
of other sheaves by the Latin letter corresponding to the calligraphic letter used for
the considered sheaf. The localization functor RX ⊗R − : Mod(R) → Mod(RX ) is
left adjoint to the global section functor �(X ,−) : Mod(RX ) → Mod(R):

HomRX (RX ⊗R V ,W) � HomR(V ,HomRX (RX ,W)) � HomR(V ,W ),

(1.2)

for any V ∈ Mod(R) and W ∈ Mod(RX ) [25].
As mentioned above, the category (Mod(DX ),⊗OX ,OX ,HomOX ) is Abelian

closed symmetric monoidal. More precisely, for any N ,P,Q ∈ Mod(DX ), there
is an isomorphism

HomDX (N ⊗OX P,Q) � HomDX (N ,HomOX (P,Q)) . (1.3)

Let nowRX beOX orDX . The precedingHom functorHomRX (−,−) is the ‘internal’
Homof sheaves ofRX -modules, i.e., the functor defined, for any such sheavesV,W ∈
Mod(RX ) and for any open U ⊂ X , by

HomRX (V,W)(U ) = HomRX |U (V|U ,W|U ) ,

where the RHS Hom denotes the morphisms of sheaves ofRX |U -modules. This set is
an Abelian group and anRX (U )-module, ifRX is commutative. Hence, by definition,
we have

�(X ,HomRX (V,W)) = HomRX (V,W) .
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Recall now that, in the (considered) case of a smooth affine variety X , the global
section functor �(X ,−) yields an equivalence

�(X ,−) : qcMod(RX ) → Mod(R) : RX ⊗R −

of Abelian symmetric monoidal categories. The quasi-inverse RX ⊗R − of �(X ,−)

is well-known if RX = OX ; for RX = DX , we refer the reader to [16]; the quasi-
inverses are both strongly monoidal. If V ∈ qcMod(RX ) and W ∈ Mod(RX ), we
can thus write V � RX ⊗R V , where V = �(X ,V), and, in view of (1.2), also

HomRX (V,W) = HomRX (RX ⊗R V ,W) � HomR(V ,W ) . (1.4)

When applying the global section functor to (1.3), we get

HomDX (N ⊗OX P,Q) � HomDX (N ,HomOX (P,Q)) ,

and, when assuming that N ,P,Q ∈ qcMod(DX ) and using (1.4), we obtain

HomD(�(X ,N ⊗OX P), Q) � HomD(N , �(X ,HomOX (P,Q))) ,

or, still,

HomD(N ⊗O P, Q) � HomD(N ,HomO(P, Q)) . (1.5)

Since any D-module L can be viewed as �(X ,L), where L = DX ⊗D L ∈
qcMod(DX ) ⊂ Mod(DX ), the Eq. (1.5) proves that (DM,⊗O,O,HomO) is – just as
(Mod(DX ),⊗OX ,OX ,HomOX ) – an Abelian closed symmetric monoidal category.
Observe that the internal Hom of DM is given by:

HomO(−,−) = �(X ,HomOX (DX ⊗D −,DX ⊗D −)) ∈ DM . (1.6)

Both categories satisfy the AB3 (Abelian category with direct sums) and AB3*

(Abelian categorywith direct products) axioms. It thus follows from [22, Lemma 3.15]
that the corresponding categories of chain complexes are Abelian closed symmetric
monoidal as well. The tensor product is the usual tensor product (−⊗• −, δ•) of chain
complexes and the internal (Hom•(−,−), d•) is defined, for any complexes (M•, dM )

and (N•, dN ) and for any n ∈ N, by

Homn(M•, N•) =
{∏

k∈NHomO(Mk, Nk+n), in the case of DGDM ,
∏

k∈NHomOX (Mk, Nk+n), in the case of DG+Mod(DX ) ,

(1.7)

and, for any f = ( fk)k∈N ∈ Homn(M•, N•), by

(dn f )k = dN ◦ fk − (−1)n fk−1 ◦ dM .
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The closed structure Hom•(−,−) ofDGDM defines a closed structureHom•(−,−)

on the equivalent category DG+qcMod(DX ) via usual transfer

Hom•(−,−) = DX ⊗D (Hom•(�(X ,−), �(X ,−)))

= DX ⊗D

(
∏

k

HomO(�(X ,−k), �(X ,−k+•))
)

= DX ⊗D

(
∏

k

�(X ,HomOX (−k,−k+•))
)

,

where we used (1.6). According to what has been said above, we have the adjunction

DX ⊗D − : Mod(D) � Mod(DX ) : �(X ,−) ,

so that �(X ,−) commutes with limits:

Hom•(−,−) = DX ⊗D �

(

X ,
∏

k

HomOX (−k,−k+•)
)

= DX ⊗D � (X ,Hom•(−,−)) ,

where Hom•(−,−) is now the above closed structure of DG+Mod(DX ). However,
since Hom•(−,−) is in general not quasi-coherent, the RHS is in the present case
not isomorphic to the module Hom•(−,−). More precisely, the closed structure on
DG+qcMod(DX ) is given by the coherator of the closed structure on DG+Mod(DX ).
Note also that, since DGDM and DG+qcMod(DX ) are equivalent symmetric monoidal
categories and the internal Hom of the latter is the transfer of the one of the for-
mer closed symmetric monoidal category, the second category is closed symmetric
monoidal as well (i.e., its monoidal and its closed structures are ‘adjoint’).

Hence, the

Proposition 1.2 The category (DGDM,⊗•,O,Hom•) (resp., (DG+qcMod(DX ),

⊗•,OX ,Hom•)) is Abelian closed symmetric monoidal. The closed structure
is obtained by transfer of ( resp., as the coherator of) the closed structure of
DG+Mod(DX ). In particular, for any N•, P•, Q• ∈ DGDM, there is a Z-module iso-
morphism

HomDGDM(N• ⊗• P•, Q•) � HomDGDM(N•,Hom•(P•, Q•)) , (1.8)

which is natural in N• and Q• .

To examine the axiom MMC1, we need the next proposition. As up till now, we
write D (resp., O) instead of �(X ,DX ) (resp., �(X ,OX )).

Proposition 1.3 If the variety X is smooth affine, the moduleD is projective asD- and
as O-module.
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Proof Projectivity ofD asD-module is obvious, since HomD(D,−) � id(−). Recall
now that the sheafDX of differential operators is a filtered sheaf FDX ofOX -modules,
with filters defined by

F−1DX = {0} and FiDX = {D ∈ DX : [D,OX ] ⊂ Fi−1DX } :

lim−→i
FiDX = DX . The graded sheaf GrDX associated to FDX is the sheaf, whose

terms are defined by

GriDX = FiDX/Fi−1DX .

Consider now, for i ∈ N, the short exact sequence of OX -modules

0 → Fi−1DX → FiDX → GriDX → 0 .

Due to the local freeness of DX , this is also an exact sequence in qcMod(OX ). Since
X is affine, we thus get the exact sequence

0 → �(X ,Fi−1DX ) → �(X ,FiDX ) → �(X ,GriDX ) → 0 (1.9)

in Mod(O) – in view of the equivalence of Abelian categories

�(X ,−) : qcMod(OX ) � Mod(O) .

However, the functor�(X ,−) transforms a locally freeOX -module of finite rank into a
projective finitely generatedO-module. We can therefore conclude that �(X ,GriDX )

is O-projective, what implies that the sequence (1.9) is split, i.e., that

�(X ,FiDX ) = �(X ,GriDX ) ⊕ �(X ,Fi−1DX ) .

An induction and commutation of the left adjoint �(X ,−) with colimits allow to
conclude that

D = �(X , lim−→
i

FiDX ) = lim−→
i

i⊕

j=0

�(X ,Gr jDX ) =
∞⊕

j=0

�(X ,Gr jDX ) .

Finally, D is O-projective as direct sum of O-projective modules.1 �
Theorem 1.4 The category DGDM is a symmetric monoidal model category.

Proof of Axiom MMC1. In this proof, we omit the bullets in the notation of complexes.
Wehave to show that the pushout product of two generating cofibrations is a cofibration
and that the latter is trivial if one of its factors is a generating trivial cofibration. Recall

1 We finally observed that the proof of Proposition 1.3 can also be found in [25].
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that the generating cofibrations (resp., generating trivial cofibrations) in DGDM are the
canonical maps

ι0 : 0 → S0 and ιn : Sn−1 → Dn (n ≥ 1)

(resp., ζn : 0 → Dn (n ≥ 1) ) . (1.10)

Here Dn is the n-disc, i.e., the chain complex

Dn : · · · → 0 → 0 →(n)
D→(n−1)

D → 0 → · · · →(0)
0 (n ≥ 1) , (1.11)

whereas Sn is the n-sphere, i.e., the chain complex

Sn : · · · → 0 → 0 →(n)
D→ 0 → · · · →(0)

0 (n ≥ 0) . (1.12)

The map ιn vanishes, except in degree n − 1, where it is the identity map id; the
differential in Dn vanishes, except in degree n, where it is the desuspension map s−1.

Step 1. We consider the case of ιm�ιn (m, n ≥ 1) (the cases m or n is zero and
m = n = 0 are similar but easier), i.e., we prove that the pushout product in the
diagram

Sm−1 ⊗ Sn−1 Dm ⊗ Sn−1

Sm−1 ⊗ Dn ∐ := Dm ⊗ Sn−1 ∐
Sm−1⊗Sn−1 Sm−1 ⊗ Dn

Dm ⊗ Dn

ιm⊗id

id⊗ιn

id⊗ιn

ιm⊗id

ιm�ιn

(1.13)
is a cofibration.
Remark that

Sm−1 ⊗ Sn−1 : · · · → 0 →(m−1)
D ⊗ (n−1)

D → 0 → · · · → 0 ,

Dm ⊗ Sn−1 : · · · → 0 →(m)

D ⊗ (n−1)
D →(m−1)

D ⊗ (n−1)
D → 0 → · · · → 0 ,

Sm−1 ⊗ Dn : · · · → 0 →(m−1)
D ⊗ (n)

D→(m−1)
D ⊗ (n−1)

D → 0 → · · · → 0 ,

and

Dm ⊗ Dn : · · · → 0 →(m)

D ⊗ (n)
D→(m−1)

D ⊗ (n)
D ⊕ (m)

D
⊗ (n−1)

D →(m−1)
D ⊗ (n−1)

D → 0 → · · · → 0 . (1.14)
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The non-trivial terms of the differentials are, s−1 ⊗ id in Dm ⊗ Sn−1, id⊗s−1 in
Sm−1 ⊗ Dn , as well as s−1 ⊗ id+ id⊗s−1 and id⊗s−1 ⊕ s−1 ⊗ id in Dm ⊗ Dn .

In an Abelian category pushouts and pullbacks do exist. For instance, the pushout
of two morphisms f : A → B and g : A → C is the cokernel (h, k) : B ⊕ C →
coker( f ,−g) of the morphism ( f ,−g) : A → B ⊕ C . In the Abelian category of
chain complexes in an Abelian category, and in particular in DGDM, cokernels are
taken degree-wise. Hence, in degree p ∈ N, the pushout of the chain maps ιm ⊗ id
and id⊗ιn is the cokernel

(h p, kp) : (Dm ⊗ Sn−1)p ⊕ (Sm−1 ⊗ Dn)p → coker((ιm ⊗ id)p,−(id⊗ιn)p) .

This cokernel is computed in the category of D-modules and is thus obtained as
quotient D-module of the direct sum (Dm ⊗ Sn−1)p ⊕ (Sm−1 ⊗ Dn)p by the D-
submodule generated by

{((ιm ⊗ id)p(D ⊗ 	),−(id⊗ιn)p(D ⊗ 	)) : D ⊗ 	 ∈ (Sm−1 ⊗ Sn−1)p} .

In degree p �= m + n− 2, we divide {0} out, and, in degree p = m + n− 2, we divide
the module

(m−1)
D ⊗ (n−1)

D ⊕ (m−1)
D ⊗ (n−1)

D

by the submodule

{(D ⊗ 	,−D ⊗ 	) : D ∈(m−1)
D ,	 ∈(n−1)

D } .

This shows that the considered pushout is

∐
: · · · → 0 →(m)

D ⊗ (n−1)
D ⊕ (m−1)

D ⊗ (n)
D→(m−1)

D ⊗ (n−1)
D → 0 → · · · → 0 .

(1.15)

The non-trivial term of the pushout differential is direct sum differential s−1 ⊗
id⊕ id⊗s−1 viewed as valued in D ⊗ D.

It is clear that the unique chain map ιm�ιn , which renders the two triangles com-
mutative, vanishes, except in degrees m + n − 1 and m + n − 2, where it coincides
with the identity. Recall now that the cofibrations of DGDM are the injective chain
maps with degree-wise projective cokernel. In view of (1.15) and (1.14), the cokernel
of the injective map ιm�ιn vanishes in all degrees, except in degree m + n, where it
is equal to D ⊗O D. It thus suffices to show that D ⊗O D is D-projective, i.e., that
HomD(D ⊗O D,−) : Mod(D) → Ab is an exact functor valued in Abelian groups.
In view of (1.5), we have

HomD(D ⊗O D,−) � HomD(D,HomO(D,−)) � HomO(D,−) : Mod(D) → Ab .
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It follows from Proposition 1.3 that HomO(D,−) is an exact functor Mod(O) →
Mod(O), so also an exact functor Mod(D) → Ab.

Step 2. Take now the pushout product ζm�ιn (m, n ≥ 1, see (1.10)) (the other cases
are analogous). It is straightforwardly seen that the considered chain map is the map

ζm�ιn : Dm ⊗ Sn−1 → Dm ⊗ Dn ,

which vanishes in all degrees, except in degrees m + n − 1 and m + n − 2, where
it coincides with the identity. To see that this cofibration is trivial, i.e., induces an
isomorphism in homology, we compute the homologies H(Dm ⊗ Sn−1) and H(Dm ⊗
Dn). Since Dm is acyclic and sinceD isO-projective, hence,O-flat (this fact has also
been proven independently in [6]), it follows from Künneth’s formula [42, Theorem
3.6.3] that H(Dm ⊗ Sn−1) = H(Dm ⊗ Dn) = 0 . Therefore, the map H(ζm�ιn) is a
D-module isomorphism. �
Proof of Axiom MMC2. Axiom MMC2 holds for DGDM, thanks to the following more
general result, which will be proven independently in 3.1.

Lemma 1.5 Let f : A → B be a weak equivalence in DGDM and let M be a cofibrant
object. Then f ⊗ idM : A ⊗ M → B ⊗ M is again a weak equivalence.

2 Monoidal model structure onmodules over differential graded
D-algebras

2.1 Modules over commutative monoids

It turned out that D-geometric Koszul-Tate resolutions [29] are specific objects of
the category

CMon(ModDGDM(A))

of commutative monoids in the category ModDGDM(A) of modules in DGDM (see Def-
inition 2.1) over an object A of the category CMon(DGDM) = DGDA. Moreover, it is
known thatmodel categoricalKoszul-Tate resolutions [7] are cofibrant replacements
in the coslice category

A ↓ DGDA.

The fact that the latter are special D-geometric Koszul-Tate resolutions seems to
confirm the natural intuition that there is an isomorphism of categories

CMon(ModDGDM(A)) � A ↓ DGDA.

Despite the apparent evidence, this equivalence will be proven in detail below (note
that, since in this proof the unit elements of the commutative monoids and of the
differential gradedD-algebras play a crucial role, a similar equivalence for non-unital
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monoids and non-unital algebras does not hold). Eventually it is clear that an object
of the latter under-category is dual to a relative derived affine X -DX -scheme, where
X is the fixed underlying smooth affine algebraic variety (see above). Similar spaces
appear [7] in the classical Koszul-Tate resolution, where vector bundles are pulled
back over a vector bundle with the same base manifold X .

We first recall the definition of ModC(A) and explain that this category is closed
symmetric monoidal.

Definition 2.1 Let (C,⊗, I,Hom) be a closed symmetric monoidal category with all
small limits and colimits. Consider an (a commutative) algebra inC, i.e., a commutative
monoid (A, μ, η). The corresponding algebra morphisms are defined naturally and
the category of algebras in C is denoted by AlgC. A (left)A-module in C is a C-object
M together with a C-morphism ν : A ⊗ M → M , such that the usual associativity
and unitality diagrams commute. Morphisms of A-modules in C are also defined in
the obvious manner and the category of A-modules in C is denoted by ModC(A).

The category of rightA-modules in C is defined analogously. SinceA is commuta-
tive, the categories of left and right modules are equivalent (one passes from one type
of action to the other by precomposing with the braiding ‘com’).

The tensor product ⊗A of two modules M ′,M ′′ ∈ ModC(A) is defined as usual
[23, VII.4, Exercise 6] as the coequalizer in C of the maps

ψ ′ := (νM ′ ⊗ idM ′′) ◦ (com ⊗ idM ′′), ψ ′′ := idM ′ ⊗νM ′′ : (M ′ ⊗ A) ⊗ M ′′

� M ′ ⊗ (A ⊗ M ′′) ⇒ M ′ ⊗ M ′′ .

Since A ∈ AlgC is commutative, M ′ ⊗A M ′′ inherits an A-module structure from
those of M ′ and M ′′ [38].

Even for an abstract C, one can further define an internal HomA in ModC(A), see
Appendix B. Moreover, the expected adjointness property holds,

HomA(M ⊗A M ′,M ′′) � HomA(M,HomA(M ′,M ′′)) ,

and the category of A-modules in C has all small limits and colimits. We thus get the

Proposition 2.2 [38] Exactly as the original category (C,⊗, I,Hom), the category

(ModC(A),⊗A,A,HomA)

of modules in C overA ∈ AlgC is closed symmetric monoidal and contains all small
limits and colimits.

Proposition 2.3 For any nonzero A ∈ DGDA , there exists an isomorphism of cate-
gories

CMon(ModDGDM(A)) � A ↓ DGDA,

where notation has been introduced above.
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Lemma 2.4 The initial DGDAO can be viewed as a sub- DGDA of any nonzero DGDA

A.

Proof It suffices to notice that the (unique) DGDA-morphism ϕ : O → A, which is
defined by

ϕ( f ) = ϕ( f · 1O) = f · ϕ(1O) = f · 1A ,

is injective, since it is the composition of the injective DGDA-morphism O � f �→
f ⊗1A ∈ O⊗OA and the bijective DGDA-morphismO⊗OA � f ⊗a �→ f ·a ∈ A .

�
Remark 2.5 In the sequel,A is assumed to be a nonzero differential gradedD-algebra,
whenever needed.

Proof of Proposition 2.3 As already said, the category C = DGDM, or, better,
(DGDM,⊗•,O,Hom•) satisfies all the requirements of Definition 2.1 and the category
(ModDGDM(A),⊗A,A,HomA) has thus exactly the same properties, see Proposition
2.2.

Note also that in the Abelian category DGDM of chain complexes in DM, we get

M ′ ⊗A M ′′ = coeq(ψ ′, ψ ′′) = coker(ψ ′′ − ψ ′) ,

so that

(
M ′ ⊗A M ′′)

n = cokern(ψ
′′ − ψ ′) = coker(ψ ′′

n − ψ ′
n) = (

M ′ ⊗• M ′′)
n / im(ψ ′′

n − ψ ′
n) ,

where the D-submodule in the RHS quotient is given by

{
∑

fin

(
m′ ⊗ (a �′′ m′′) − (−1)|a||m′|(a �′ m′) ⊗ m′′) : |a| + |m′| + |m′′| = n

}

,

where all sums are finite and where �′ (resp., �′′) denotes the A-action νM ′ (resp.,
νM ′′ ). Hence, in all degrees, the tensors M ′ ⊗A M ′′ are the tensors M ′ ⊗• M ′′ where
we identify the tensors (a �′m′)⊗m′′ with the tensors (−1)|a||m′| m′ ⊗ (a �′′m′′) . It is
straightforwardly checked that the differential ofM ′⊗• M ′′ stabilizes the submodules,
so that the quotient M ′ ⊗A M ′′ is again in DGDM. Moreover, a DGDM-morphism
M ′ ⊗• M ′′ → M , which vanishes on the submodules, defines a DGDM-morphism
M ′ ⊗A M ′′ → M .

Now, an object in A ↓ DGDA is a DGDA-morphism φ : A → M , i.e., a
DGDM-morphism that respects the multiplications and units. The target is an ele-
ment M ∈ DGDM and is endowed with two DGDM-morphisms μM : M ⊗• M → M
and ηM : O → M , which render commutative the usual associativity, unitality and
commutativity diagrams.

On the other hand, an object N ∈ CMon(ModDGDM(A)) is an N ∈ DGDM equipped
with a DGDM-morphism ν : A ⊗• N → N , for which the associativity and unitality
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diagrams commute. Moreover, it carries a commutative monoid structure, i.e., there
exist A-linear DGDM-morphisms μN : N ⊗A N → N and ηN : A → N , such that
the associativity, unitality and commutativity requirements are fulfilled.

Start from (φ : A → M) ∈ A ↓ DGDA and set N = M and μM = −�−.
Remember that −�− is O-bilinear associative unital and graded-commutative, and
define an A-action on M by

a � m := ν(a ⊗ m) := φ(a)�m . (2.1)

In view of [6, Proposition 6], the well-defined map ν is a DGDM-morphism and it can
immediately be seen that

a′ � (a′′ � m) = (a′ ∗ a′′) � m and 1A � m = m ,

where ∗ denotes the multiplication in A. Since, we have

(a � m′)�m′′ = φ(a)�m′�m′′ = (−1)|a||m′|m′�φ(a)�m′′

= (−1)|a||m′| m′�(a � m′′) = a � (m′�m′′) , (2.2)

the DGDM-morphism μM is a well-defined DGDM and A-linear morphism μN on
M ⊗A M . As for ηN , note that ηM is completely defined by ηM (1A) = ηM (1O) =
1M , see Lemma 2.4. Define now an A-linear morphism ηN : A → M by setting
ηN (1A) = 1M . It follows that

ηN (a) = a � ηN (1A) = a � 1M = φ(a)�1M = φ(a) ,

so that ηN is a DGDM-morphism, which coincides with ηM on O ⊂ A:

ηN ( f ) = f · 1M = f · ηM (1O) = ηM ( f ) .

Conversely, if N ∈ CMon(ModDGDM(A)) is given, set M = N . The composition
of the DGDM-morphism π : M ⊗• M → M ⊗A M with the DGDM-morphism μN is a
DGDM-morphism μM : M ⊗• M → M . The restriction of the DGDM-morphism ηN :
A → M to the subcomplex O ⊂ A in DM is a DGDM-morphism ηM : O → M . We
thus obtain a differential gradedD-algebra structure on M with unit 1M = ηM (1O) =
ηN (1A). Define now a DGDM-morphism φ : A → M by

φ(a) = ν(a ⊗ 1M ) = a � 1M . (2.3)

This map visibly respects the units and, since μM = −�− is A-bilinear in the sense
of (2.2), it respects also the multiplications.

When starting from a DGDA-morphism φ1 and applying the maps (2.1) and (2.3),
we get a DGDA-morphism

φ2(a) = a � 1M = φ1(a)�1M = φ1(a) .
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Conversely, we obtain

a �2 m = φ(a)�m = (a �1 1M )�m = a �1 μN [1M ⊗ m] = a �1 m ,

with self-explaining notation.
In fact, the two maps we just defined between the objects of the categories A ↓

DGDA and CMon(ModDGDM(A)), say F and G, are functors and even an isomorphism
of categories.

Indeed, if
M ′

A

M ′′ ,

θ

ψ ′′

ψ ′

is amorphism� inA ↓ DGDA, then F(�) = θ is amorphism inCMon(ModDGDM(A))

between the modules F(ψ ′) = M ′ and F(ψ ′′) = M ′′, with A-action given by

a �′ m′ = ψ ′(a)�′m′

and similarly for M ′′. To prove this claim, it suffices to check that θ is A-linear:

θ(a �′ m′) = θ(ψ ′(a)�′m′) = ψ ′′(a)�′′θ(m′) = a �′′ θ(m′) .

Conversely, if π : N ′ → N ′′ is a morphism in CMon(ModDGDM(A)) and if φ′ : A →
N ′ is the morphism (2.3) in DGDA defined by a �→ a �′ 1N ′ and similarly for φ′′, then
G(π), given by the commutative triangle

N ′

A

N ′′ ,

π

φ′′

φ′

is a morphism � inA ↓ DGDA between G(N ′) = φ′ and G(N ′′) = φ′′ . Eventually,
the maps F and G are actually functors, and, as verified above, the composites FG
and GF coincide with the corresponding identity functors on objects. It is easily seen
that the same holds on morphisms. This is clear for FG, whereas for GF one has to
notice that φ′(a) = a �′ 1N ′ = ψ ′(a)�′1N ′ = ψ ′(a) and analogously for φ′′. �
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2.2 Differential gradedD-algebras andmodules over them as algebras over a
monad

For the purpose of further studying the category ModDGDM(A) of modules in DGDM
over an algebra A ∈ DGDA, as well as the category DGDA itself, we rely on results
of [36]. To be able to apply the latter, we must view the two preceding categories as
categories of algebras over monads.

2.2.1 Differential gradedD-algebras

Consider the adjunction

S : DGDM � DGDA : F,

whereS is the graded symmetric tensor product functor andF the forgetful functor (see,
for instance, [6]). This Hom-set adjunction can be viewed as a unit-counit adjunction
〈S,F, η, ε〉. It implements a monad 〈T , μ, η〉 = 〈F S,F εS, η〉 in DGDM.

Proposition 2.6 The category DGDA of differential graded D-algebras and the
Eilenberg-Moore category DGDM T of T -algebras in DGDM are equivalent.

Proof The statement is true if the forgetful functor F is monadic. This can be checked
using the crude monadicity theorem (see nLab entry ‘monadicity theorem’). However,
there is a quicker proof. It is known [31] that, if C is a symmetric monoidal, locally
presentable category (see Appendix A), and such that, for any c ∈ C, the functor
c ⊗ • respects directed colimits, then the forgetful functor For : CMon(C) → C is
monadic. Note first that the category C = DGDM is locally presentable. The result
can be proven directly, but follows also from [32]. Moreover, this category is Abelian
closed symmetric monoidal. In view of closedness, the functor c ⊗ • is a left adjoint
functor and respects therefore all colimits. Hence, the functor F : DGDA → DGDM is
monadic.

2.2.2 Modules over a differential gradedD-algebra

Let A ∈ DGDA and consider the adjunction

� : DGDM � ModDGDM(A) : 8 ,

where � is the functor A ⊗• − and � the forgetful functor. Checking that these
functors really define an adjunction, so that, for any M ∈ DGDM, the product�(M) =
A ⊗• M is the free A-module in DGDM, is straightforward. When interpreting this
Hom-set adjunction as a unit-counit adjunction 〈�,�, η, ε〉, we get an inducedmonad
〈U , μ, η〉 = 〈��,�ε�, η〉 in DGDM.

Proposition 2.7 The categoryModDGDM(A)ofA-modules inDGDMand theEilenberg-
Moore category DGDMU of U-algebras in DGDM are equivalent.
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We address the proof of this proposition later on. In view of the requirements of a
Homotopical Algebra Context, we will show that the model structure of DGDM can
be lifted to ModDGDM(A):

Theorem 2.8 The category ModDGDM(A), A ∈ DGDA, is a cofibrantly generated
symmetric monoidal model category that satisfies the monoid axiom (see below).
For its monoidal structure we refer to Proposition 2.2. The weak equivalences and
fibrations are those A-module morphisms ψ whose underlying DGDM-morphisms
�(ψ) are weak equivalences or fibrations, respectively. The cofibrations are defined
as the morphisms that have the LLP with respect to the trivial fibrations. The set of
generating cofibrations (resp., generating trivial cofibrations) is made of the image
�(I ) = {idA ⊗• ιn : ιn ∈ I } (resp., �(J ) = {idA ⊗• ζn : ζn ∈ J }) of the set I of
generating cofibrations (resp., the set J of generating trivial cofibrations) of DGDM.

The proof will turn out to be a consequence of [36, Theorem 4.1(2)]. For con-
venience, we recall that this theorem states that, if C, here DGDM, is a cofibrantly
generated symmetric monoidal model category, which satisfies the monoid axiom
and whose objects are small relative to the entire category, then, for any A ∈
CMon(DGDM) = DGDA, the category DGDMU is a cofibrantly generated symmet-
ric monoidal model category satisfying the monoid axiom. The monoidal and model
structures are defined as detailed in Theorem 2.8. The model part of this result [36,
Proofs of Theorems 4.1(1) and 4.1(2)] is a direct consequence of [36, Lemma 2.3].
This allows in fact to conclude also that the generating sets of cofibrations and trivial
cofibrations are the sets �(I ) and �(J ) described in 2.8.

Since any chain complex of D-modules is small relative to all chain maps, any
object in DGDM is small relative to all DGDM-morphisms. Hence, to finish the proof
of Theorem 2.8, it suffices to check that DGDM satisfies the monoid axiom:

Definition 2.9 Amonoidalmodel categoryC satisfies themonoidaxiom [36,Definition
3.3], if any TrivCof ⊗C-cell ( a concise definition of cells can be found, for instance,
in [6, Appendix 6] ), i.e., any cell with respect to the class of the tensor products
φ ⊗ idC : C ′ ⊗C → C ′′ ⊗C of a trivial cofibration φ : C ′ → C ′′ and the identity of
an object C ∈ C, is a weak equivalence.

If C is cofibrantly generated and closed symmetric monoidal, the monoid axiom
holds if any J ⊗ C-cell, where J is a set of generating trivial cofibrations of C, is a
weak equivalence [36, Lemma 3.5].

Hence, to prove that DGDM satisfies the monoid axiom, it suffices to show that a
J ⊗• DGDM-cell, i.e., a transfinite composition of pushouts of morphisms in J ⊗•
DGDM, is a weak equivalence. Since DGDM is a finitely generated model category [6]
and the domains and codomains of its generating cofibrations I are finite, i.e., n-small
(n ∈ N), relative to the whole category [17, Lemma 2.3.2], weak equivalences are
closed under transfinite compositions [17, Corollary 7.4.2]. Therefore, it is enough to
make sure that a pushout of amorphism ζn⊗• idM ∈ J⊗•DGDM (n ≥ 1, M ∈ DGDM)
is a weak equivalence. Here ζn : 0 → Dn and

Dn : · · · → 0 → 0 →(n)
D→(n−1)

D → 0 → · · · →(0)
0 .
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Using standard arguments that have already been detailed above, one easily checks
that the pushout of ζn ⊗• idM : 0 → Dn ⊗• M along a morphism φ : 0 → N is given
by

0 N

Dn ⊗• M (Dn ⊗• M) ⊕ N

i2

φ

ζn⊗•idM
i1

Applying Künneth’s Theorem to the complexes Dn and M – noticing that both, Dn

and d(Dn) (which vanishes, except in degree n − 1, where it coincides with D), are
termwise flatO-modules (see Proposition 1.3; for a direct proof, see [6])—we get, for
any m, a short exact sequence

0 →
⊕

p+q=m

Hp(D
n) ⊗ Hq(M) → Hm(Dn ⊗• M)

→
⊕

p+q=m−1

Tor1(Hp(D
n), Hq(M)) → 0 .

Since Dn is acyclic, the central term of this exact sequence vanishes, as the first and
the third do. Eventually, the pushout i2 of ζn ⊗• idM is a weak equivalence, since

H(i2) : H(N ) → H(Dn ⊗• M) ⊕ H(N ) � H(N )

is obviously an isomorphism.
The category DGDM thus satisfies all the conditions of [36, Theorem 4.1(2)]. It now

follows from [36, Proofs ofTheorems4.1(1) and4.1(2)] that the categoryModDGDM(A)

is equivalent to the category DGDMU (the result can also be obtained via the crude
monadicity theorem). This completes the proofs of Proposition 2.7 and Theorem 2.8.

Remark 2.10 For any A ∈ CMon(DGDM) = DGDA, an A-algebra A ∈ AlgDGDM(A)

is defined in [36] as a monoid A ∈ Mon(ModDGDM(A)). Theorem 4.1(3) in [36] states
that AlgDGDM(A) is a cofibrantly generated model category. When choosingA = O,
we find that AlgDGDM(O) = Mon(ModDGDM(O)) = Mon(DGDM) is cofibrantly gen-
erated. However, the theorem does not treat the case of commutative O-algebras, of
commutative monoids in DGDM, or, still, of differential graded D-algebras DGDA.
The fact that DGDA is a cofibrantly generated model category has been proven inde-
pendently in [6].

Remark 2.11 In the sequel, we write Mod(A) instead of ModDGDM(A), whenever no
confusion arises.

2.3 Cofibrant objects in Mod(A)

In this last Subsection, we describe cofibrant A-modules. We need a similar lemma
as [7, Lemma 1] that we used to characterize cofibrations in DGDA.
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Lemma 2.12 Let (A, dA) ∈ DGDA, (T , dT ) ∈ Mod(A), let (g j ) j∈J be a family of
symbols of degree n j ∈ N, and let V = ⊕

j∈J D ·g j be the free non-negatively graded
D-module with homogeneous basis (g j ) j∈J .

(i) To endow the graded D-module T ⊕ A ⊗• V – equipped with the natural A-
module structure induced by the A-actions of T and A ⊗• V – with a differential d
that makes it an A-module, it suffices to define

d(g j ) ∈ Tn j−1 ∩ d−1
T {0} , (2.4)

to extend d as D-linear map to V , and to finally define d on T ⊕ A ⊗• V , for any
t ∈ Tp, a ∈ Ak, v ∈ Vp−k , by

d(t ⊕ a ⊗ v) = dT (t) + dA(a) ⊗ v + (−1)ka � d(v) , (2.5)

where � is the A-action on T . The inclusion

(T , dT ) ↪→ (T ⊕ A ⊗• V , d)

is a morphism ofA-modules. Moreover, the differential (2.5) is the unique differential
that restricts to dT on T , maps V into T and provides an A-module structure on the
graded D-module T ⊕ A ⊗• V equipped with its natural A-action.

(ii) If (B, dB) ∈ Mod(A) and p ∈HomA(T , B), it suffices – to define a morphism
q ∈ HomA(T ⊕ A ⊗• V , B) (where the A-module (T ⊕ A ⊗• V , d) is constructed
as described in (i)) – to define

q(g j ) ∈ Bn j ∩ d−1
B {p d(g j )} , (2.6)

to extend q as D-linear map to V , and to eventually define q on T ⊕ A ⊗• V by

q(t ⊕ a ⊗ v) = p(t) + a � q(v) , (2.7)

where � is theA-action on B. Moreover, 2.7 is the uniqueA-module morphism (T ⊕
A ⊗• V , d) → (B, dB) that restricts to p on T .

Note that Condition (2.4) corresponds to the characterizing lowering condition in
relative Sullivan D-algebras [6].

Proof (i) It is straightforward to see that d is a well-defined, degree −1 and D-linear
map on T ⊕A⊗• V . It squares to zero, since theA-action −�− = ν on T commutes
with the differentials on A ⊗• T and T ,

dT (a � d(v)) = dT (ν(a ⊗ d(v))) = ν(dA(a) ⊗ d(v) + (−1)ka ⊗ dT (d(v)))

= dA(a) � d(v) ,

and thus compensates the other non-vanishing term in d2(t+a⊗v). Hence, T ⊕A⊗•
V ∈ DGDM. Its naturalA-action – also denoted by−�− – endows it with anA-module
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structure, if it commutes with the differentials dA⊗ id+ id⊗ d ofA⊗• (T ⊕A⊗• V )

and d of T ⊕A⊗• V . This condition is easily checked, so that T ⊕A⊗• V is actually
an A-module for the differential d and the A-action

a′ � (t + a′′ ⊗ v) = a′ � t + (a′a′′) ⊗ v .

It is clear that T is anA-submodule of T ⊕A⊗• V . Concerning uniqueness, let ∂ be
any differential that has the required properties. Then,

∂(t + a ⊗ v) = dT (t) + ∂(a � (1A ⊗ v))

= dT (t) + dA(a) � (1A ⊗ v) + (−1)ka � ∂(v)

= dT (t) + dA(a) ⊗ v + (−1)ka � ∂(v) ,

with

∂(g j ) ∈ Tn j−1 ∩ d−1
T {0} .

(ii) Similar proof. �
We are now prepared to study cofibrantA-modules. This description will be needed

later on. Let us recall that the cofibrations inDGDA, or, equivalently, inDGDMT –where
T is the composite of the free differential graded D-algebra functor S (symmetric
tensor product functor) and the forgetful functor – , are the retracts of relative Sullivan
D-algebras (B⊗SV , d) [6].Wewill prove that, similarly, cofibrant objects inMod(A),
or, equivalently, in DGDMU – where U is the composite of the freeA-module functor
A ⊗• − and the forgetful functor – , are retracts of ‘Sullivan A-modules’. If one
remembers that the binary coproduct in Mod(A) (resp., DGDA) is the direct sum
(resp., tensor product), and that the initial object in Mod(A) (resp., DGDA) is ({0}, 0)
(resp., (O, 0)), the definition of relative Sullivan A-modules is completely analogous
to that of relative Sullivan D-algebras [6]:

Definition 2.13 Let A ∈ DGDA. A relative Sullivan A-module ( RSAM) is a Mod(A)-
morphism

(B, dB) → (B ⊕ A ⊗• V , d)

that sends b ∈ B to b + 0 ∈ B ⊕A⊗• V . Here V is a free non-negatively graded D-
module, which admits a homogeneous basis (mα)α<λ that is indexed by awell-ordered
set, or, equivalently, by an ordinal λ, and is such that

dmα ∈ B ⊕ A ⊗• V<α , (2.8)

for all α < λ. In the last requirement, we set V<α := ⊕
β<α D · mβ . We translate

(2.8) by saying that the differential d is lowering. A RSAM over (B, dB) = ({0}, 0) is
called a Sullivan A-module ( SAM) (A ⊗• V , d).
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In principle the free A-module functor is applied to (M, dM ) ∈ DGDM and leads
to (A ⊗• M, dA⊗•M ) ∈ Mod(A). In the preceding definition, this functor is taken on
V ∈ GDM and provides a graded D-module with an A-action. The latter is endowed
with a lowering differential d such that (A ⊗• V , d) ∈ Mod(A).

Theorem 2.14 Let A ∈ DGDA. Any cofibrant object in Mod(A) is a retract of a
Sullivan A-module and vice versa.

Since we do not use the fact that any retract of a Sullivan module is cofibrant, we
will not prove this statement.

Proof By Proposition 2.8, the model category Mod(A) is cofibrantly generated. Cofi-
brations are therefore retracts of morphisms in�(I )-cell [17, Proposition 2.1.18 (b)],
i.e., they are retracts of transfinite compositions of pushouts of generating cofibrations
�(I ).

We start studying the pushout of a generating cofibration

�(ιn) := idA ⊗•ιn : A ⊗• Sn−1 → A ⊗• Dn

along a Mod(A)-morphism f : A ⊗• Sn−1 → B, where n > 0 (the case n = 0 is
simpler). This pushout is given by the square

(A ⊗• Sn−1, dA⊗•Sn−1) (B, dB)

(A ⊗• Dn, dA⊗•Dn ) (B ⊕ A ⊗• Sn, d) ,

f

�(ιn) h
g

(2.9)

where the differential d and the Mod(A)-maps g and h are defined as follows.
Observe that (A⊗• Sn−1, dA⊗•Sn−1)meets the requirements of point (i) of Lemma

2.12. Indeed, if 1n−1 is the basis of Sn−1, the differential δ constructed in Lemma 2.12
satisfies δ(1n−1) = 0 and

δ(a ⊗ (	 · 1n−1)) = dA(a) ⊗ (	 · 1n−1) = dA⊗•Sn−1(a ⊗ (	 · 1n−1)) ,

where	 · 1n−1 denotes the action of	 ∈ D on 1n−1. It now follows from point (ii) of
Lemma 2.12 that f is completely determined by its value f (1n−1) ∈ Bn−1 ∩ d−1

B {0}
(we identify 	 · 1n−1 with 1A ⊗ (	 · 1n−1)).

Using again Lemma 2.12.(i), we define d as the unique differential on B⊕A⊗• Sn
satisfying

d|B = dB and d(1n) = f (1n−1) .

The morphism h is defined as the inclusion of (B, dB) into (B ⊕ A ⊗• Sn, d).
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As for g, we define it as h ◦ f on A ⊗• Sn−1. Then we set T = A ⊗• Sn−1 and
V = Sn , and observe that the differential ∂ on

T ⊕ A ⊗• V = A ⊗• Dn ,

given by

∂(1n) = 1n−1 ∈ Tn−1 ∩ d−1
T {0} ,

coincides with the differential dA⊗•Dn . In view of this observation, the Mod(A)-map
g can be defined as the extension of h ◦ f toA⊗• Dn . Part (ii) of Lemma 2.12 allows
to see that g is now fully defined by

g(1n) = 1n ∈ (B ⊕ A ⊗• Sn)n ∩ d−1{h( f (∂(1n)))} .

Next, we prove that the diagram (2.9) commutes and is universal among all such
diagrams.

A concerns commutativity, note that any element of A ⊗• Sn−1 is a finite sum of
elements a ⊗ (D · 1n−1) = a � (D · 1n−1), so that the two Mod(A)-maps h ◦ f and
g ◦ �(ιn) coincide if they do on 1n−1 – what is a direct consequence of the preceding
definitions.

To prove universality, consider anyA-module (C, dC ), together with two Mod(A)-
morphisms

p : (A ⊗• Dn, dA⊗•Dn ) → (C, dC )

and q : (B, dB) → (C, dC ), such that q ◦ f = p ◦ �(ιn) , and show that there is a
unique Mod(A)-map

u : (B ⊕ A ⊗• Sn, d) → (C, dC )

that renders commutative the ‘two triangles’.
When extending q by means of Lemma 2.12 to a Mod(A)-map on B ⊕ A ⊗• Sn ,

we just have to define u(1n) ∈ Cn ∩ d−1
C (p(1n−1)). Observe that, if u exists, we have

necessarily u|B = u ◦ h = q and u(1n) = u(g(1n)) = p(1n). It is easily seen that
the latter choice satisfies the preceding conditions and that u is unique. Notice that,
obviously, u ◦ h = q and that u ◦ g = p, since this equality holds on 1n and 1n−1: for
1n−1, we have

u(g(1n−1)) = u( f (1n−1)) = q( f (1n−1)) = p(�(ιn)(1n−1)) = p(1n−1) .

Finally (2.9) is indeed the pushout diagram of �(ιn) along f .
The maps in �(I )-cell are the transfinite compositions of such pushout diagrams.

A transfinite composition of pushouts is the colimit of a colimit respecting functor

123



316 G. D. Brino et al.

X : λ → Mod(A) (where λ is an ordinal), such that themaps Xβ → Xβ+1 (β+1 < λ)
are pushouts of generating cofibrations �(I ). Let therefore

X0 → X1 → . . . → Xβ → Xβ+1 → . . .

be such a functor. The successive maps are pushouts in the category Mod(A):

X0 = B, X1 = B ⊕ A ⊗• Sn(1), . . . , Xβ = B ⊕ A ⊗•
⊕

α≤β

Sn(α), . . . ,

Xω = B ⊕ A ⊗•
⊕

α<ω

Sn(α), Xω+1 = Xω ⊕ A ⊗• Sn(ω+1), . . . ,

where any n(α) ∈ N. It follows that the transfinite composition or colimit is

colimα<λ Xα = B ⊕ A ⊗•
⊕

α<λ,α∈Os

Sn(α) ,

where Os denotes the successor ordinals, or, better, the composition is the Mod(A)-
map

(B, dB) →
⎛

⎝B ⊕ A ⊗•
⊕

α<λ,α∈Os

Sn(α), d

⎞

⎠ , (2.10)

where d is defined by d |Xα = dXα (α ∈ Os) and dXα is defined inductively by
dXα |Xα−1 = dXα−1 and by dXα (1n(α)) = fα(1n(α)−1) , with self-explaining notation
(if α = ω + 1, then dXα−1 = dXω is defined by its restrictions to the Xβ , β < ω).
Eventually, any �(I )-cell is a relative Sullivan A-module and any cofibration is a
retract of a relative Sullivan A-module.

Let now C be a cofibrantA-module and let QC be its cofibrant replacement, given
by the small object argument [17, Theorem 2.1.14]: the Mod(A)-map z′ : 0 → QC
is in �(I )-cell ⊂ Cof, hence it is a relative Sullivan A-module. Moreover, in the
commutative diagram

0 QC

C C

z′

z z′′

idC

�
, (2.11)

the right-down arrow z′′ is in TrivFib and the left-down z in Cof = LLP(TrivFib),
so that the dashed Mod(A)-arrow � does exist. The diagram encodes the information
z′′ ◦ � = idC, i.e., the information that the cofibrant C ∈ Mod(A) is a retract of the
Sullivan A-module QC . �
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3 Homotopical algebraic Context for DGDM

A Homotopical Algebraic Context ( HAC) is a context that satisfies several minimal
requirements for the development of Homotopical Algebra within this setting. Such a
context is a triplet (C,C0,A0) made of a symmetric monoidal model category C and
two full subcategories C0 ⊂ C and A0 ⊂ CMon(C), which satisfy assumptions that
will be recalled and commented below.

We will show that the triplet

(DGDM,DGDM,DGDA)

is a HAC. Therefore, some preparation is needed.

3.1 Transfinite filtrations and gradings

We start with a useful lemma. If A ∈ DGDA and M ∈ GDM, the tensor product
A⊗• M can be an object in Mod(A), in essentially two ways. If M comes with its own
differential, i.e., if M ∈ DGDM, the natural choice for the differential on A ⊗• M is
the standard differential on a tensor product of complexes. If, on the contrary, M has
no own differential, the tensor product can be a Sullivan A-module. We will tacitely
use the following

Lemma 3.1 Let A ∈ DGDA, B ∈ Mod(A), and M ∈ GDM such that A ⊗• M ∈
Mod(A). Then, the A-module B ⊗A (A ⊗• M) and the A-module B ⊗• M – with
canonicalA-action and transferred differential coming from the differential of B ⊗A
(A ⊗• M) – are isomorphic as A-modules. If M ∈ DGDM and the differential of
A ⊗• M is the standard differential, the transferred differential on B ⊗• M is also
the standard differential, so that the isomorphism of A-modules holds with standard
differentials.

Proof Weconsider first the general case.TheA-actionon thegradedD-module B⊗•M
is the natural action implemented by the action of B. Set now

ı : B ⊗A (A ⊗• M) � b ⊗ (a ⊗ m) �→ (−1)|a||b|a � (b ⊗ m) ∈ B ⊗• M . (3.1)

It can straightforwardly be checked that i is a well-defined isomorphism ofA-modules
inGDM. Let now dB (resp., d) be the differential of B (resp.,A⊗• M). The differential

∂ := ı ◦ (dB ⊗ id⊗• + idB ⊗ d) ◦ ı−1 (3.2)

makes B⊗• M anA-module and ı an isomorphism ofA-modules. The particular case
mentioned in the lemma is obvious. �

We also need in the following some results related to λ-filtrations, where λ ∈ O
is an ordinal. Recall first that, if C is a cocomplete category, the colimit is a functor
colim : Fun(λ,C) → C, whose source is the category Fun(λ,C) of diagrams of type
λ in C.
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Definition 3.2 Let λ ∈ O be an ordinal and let C ∈ Cat be a category, which is
closed under small colimits. An object C ∈ C is λ-filtered, if it is the colimit C =
colimβ<λFβ C of a λ-sequence of C-monomorphisms, i.e., of a colimit respecting
functor FC : λ → C, such that all maps Fβ,β+1 C : Fβ C → Fβ+1 C , β + 1 < λ, are
C-monomorphisms:

F0 C → F1 C → . . . → Fγ C → . . .

The family (Fβ C)β∈λ is called a λ-filtration of C .
Let (Fβ C)β∈λ and (Fβ D)β∈λ be λ-filtrations of C ∈ C and D ∈ C, respectively.

A C-morphism f : C → D is compatible with the λ-filtrations, if it is the colimit
f = colimβ<λ ϕβ of a natural transformation ϕ : FC → F D:

F0 C F1 C . . . Fγ C . . .

F0 D F1 D . . . Fγ D . . .

ϕ0 ϕ1 ϕγ

In the first two lemmas below, we replace our standard category DGDM by the more
general category DG RM, where R is, as usual, an arbitrary unital ring. For the model
structure on DG RM, we refer to [6], as well as to references therein.

Lemma 3.3 Consider a nonzero ordinal λ ∈ O \ {0}, two λ-filtered chain complexes
C, D ∈ DG RM, with λ-filtrations (Fβ C)β∈λ and (Fβ D)β∈λ, and let f : C → D be a
DG RM-morphism, which is compatible with the filtrations and whose corresponding
natural transformation is denoted by ϕ : FC → F D. If, for any β < λ, the map
ϕβ : Fβ C → Fβ D is a weak equivalence in DG RM, then the same holds for f .

Proof In the following, we assume temporarily that FβγC and Fβγ D are injective,
for all β < γ < λ. Note first that, any DG RM-map g : C ′ → C ′′ induces a DG RM-
isomorphism C ′/ ker g � im g. Hence, for any β ≤ γ < λ, we get

Fβ C � im(Fβγ C) ⊂ Fγ C .

This identification implies that Fβγ C is the canonical injection

Fβγ C : Fβ C ↪→ Fβ C ⊂ Fγ C

and that the differentials ∂β, ∂γ of Fβ C,Fγ C satisfy

∂γ |Fβ C = ∂β .

The same observation holds for D. For the natural transformation ϕ, we get

ϕγ |Fβ C = ϕβ .
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Recall now that a colimit in DG RM, sayC = colimβ<λFβ C , is constructed degree-
wise in Mod(R):

Cn :=
∐

β<λ

Fβ,n C/ ∼ ,

where cβ,n ∼ cγ,n , if there is δ ≥ sup(β, γ ), δ < λ such that Fβδ C (cβ,n) =
Fγ δ C (cγ,n), i.e., cβ,n = cγ,n . It follows that

Cn =
⋃

β<λ

Fβ,n C . (3.3)

The set Cn can be made an object Cn ∈ Mod(R) in a way such that the maps πβ,n :
Fβ,n C → Cn become Mod(R)-morphisms and Cn becomes the colimit in Mod(R)
of Fn C : λ → Mod(R). Due to (3.3), the maps πβ,n are the canonical injections

πβ,n : Fβ,n C ↪→ Cn .

Universality of the colimit allows to conclude that there is a Mod(R)-morphism ∂n :
Cn → Cn−1 such that

∂n|Fβ,n C = ∂β . (3.4)

We thus get a complex (C•, ∂•) ∈ DG RM, together with DG RM-morphisms

πβ,• : Fβ,• C ↪→ C• , (3.5)

and this complex is the colimit C in DG RM of FC [6].

We have still to remove the temporary assumption. Note first the following:

Remark 3.4 If λ ∈ O and X ∈ Fun(λ,C) is a λ-diagram in a cocomplete category
C, then, for any β < γ ≤ λ, the map Xβ∗, which assigns to any γ \ β-object α
the C-morphism Xβα : Xβ → Xα , is a natural transformation between the constant
functor Xβ and the functor X , both restricted to γ \ β. The application of the colimit
functor colim : Fun(γ \ β,C) → C to this natural transformation leads to

colimβ≤α<γ Xβα : Xβ → colimβ≤α<γ Xα . (3.6)

Further, a functor G : D′ → D′′ preserves colimits, if, in case (C, ψ) is the colimit of a
diagram F inD′, then (G(C),G(ψ)) is the colimit of the diagramG F inD′′. Hence, the
functor X : λ → C preserves colimits means that, for a limit ordinal γ = colimα<γ α

in λ, i.e., for the colimit (γ, β < γ ) of the diagram 0 → 1 → · · · → α → α + 1 →
. . . (γ ) in λ, the colimit of the diagram X0 → X1 → · · · → Xα → Xα+1 → . . . (γ )

in C is (Xγ , Xβγ ). In other words,

Xγ = colimβ≤α<γ Xα and Xβγ = colimβ≤α<γ Xβα . (3.7)
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We are now prepared to show, by transfinite induction on γ , that the tempo-
rary hypothesis assuming that FβγC (the case of Fβγ D is similar) is injective for
β < γ < λ, is in fact a consequence of the actual assumptions of Lemma 3.3. The
induction starts, since Fβ,β+1C is injective for β + 1 < λ. The induction assump-
tion is that FβαC is injective for β < α < γ . In the case γ ∈ Os , we have
FβγC = Fγ−1,γC Fβ,γ−1C , which is injective, because the first acting map is injec-
tive in view of the induction assumption (or the fact that it is identity) and the second
map is injective since (FβC)β<λ is a λ-filtration. If γ ∈ O�, γ = colimα<γ α, it
follows from (3.7), applied to the colimit respecting functor X = FC , that

FβγC : FβC → FγC

is the map

colimβ≤α<γ FβαC : FβC → colimβ≤α<γ FαC .

Moreover, the equation (3.6) shows that themap (3.5) is nothing butcolimβ≤α<λ FβαC .
When, at the beginning of the proof of Lemma 3.3, the role of λ is played by
γ , the temporary assumption is exactly the induction assumption, so that Fβγ =
colimβ≤α<γ FβαC is the natural injection (3.5) for the considered case λ = γ , what
eventually removes the temporary assumption.

In the sequel, we omit the subscript • , as well as the index n of chain maps and
differentials.

When considering both colimits, C and D, we use the above notation, adding a
superscript C or D, if confusion has to be avoided. Further, the colimit map f =
colimβ<λ ϕβ is obtained using the universality of the colimit C = colimβ<λFβ C .
More precisely, the DG RM-morphisms ϕβ : Fβ C → D factor through C , i.e.,

f |Fβ C = ϕβ . (3.8)

We are now prepared to show that the DG RM-morphism f induces an isomorphism
of graded R-modules in homology.

If the induced degree zero Mod(R)-morphism H( f ) is not injective, one of its
components H( f ) : Hn(C) → Hn(D), has a non-trivial kernel, i.e., there is a ∂C -
cycle cn that is not a ∂C -boundary, such that

f cn = ∂D dn+1 . (3.9)

We have

cn = cβ,n and dn+1 = dγ,n+1 , (3.10)

for some β, γ < λ. It is clear that cβ,n is a ∂Cβ -cycle, but not a ∂
C
β -boundary.Moreover,

ϕβ cβ,n = f cn = ∂D
γ dγ,n+1 .
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Depending on whether β ≥ γ or β < γ , this contradicts the fact that H(ϕβ) or
that H(ϕγ ) is an isomorphism. Therefore, we finally conclude that H( f ) is indeed
injective.

As for the surjectivity of H( f ) : Hn(C) → Hn(D), let vn ∈ Dn∩ker ∂D: vn = vβ,n
and vβ,n ∈ Fβ,n D ∩ ker ∂D

β . Since H(ϕβ) : H(Fβ C) → H(Fβ D) is surjective, the
homology class [vβ,n]im ∂Dβ

is the image by H(ϕβ) of the homology class of some

uβ,n ∈ Fβ,n C ∩ ker ∂Cβ . Thus

ϕβuβ,n = vβ,n + ∂D
β vβ,n+1 and f uβ,n = vn + ∂D vβ,n+1 .

Since uβ,n ∈ Cn ∩ ker ∂C , it follows that [uβ,n]im ∂C ∈ Hn(C) is sent by H( f ) to
[vn]im ∂D ∈ Hn(D). �

To state and prove the next lemma, we need some preparation.
Consider the setting of Lemma 3.3. The cokernel of any DG RM-map g : C ′ → C ′′

is computed degree-wise, so thatcoker g : C ′′ → C ′′/im g, where the RHS differential
is induced by the differential of C ′′.

In our context, we thus get that, for any β + 1 < λ, the cokernel of Fβ,β+1 C is the
DG RM-morphism

hCβ+1 : Fβ+1 C � cβ+1 �→ [cβ+1]Fβ C ∈ Fβ+1 C/Fβ C .

The target complex is denoted by Grβ+1 C ∈ DG RM and its differential is the differ-
ential ∂Cβ+1,� induced by ∂Cβ+1. It follows that ϕβ+1 induces a DG RM-map

ϕβ+1,� :Grβ+1 C →Grβ+1 D .

It is possible to extendGrC , defined so far on successor ordinals, to a colimit respecting
functor GrC : λ → DG RM, which we call λ-grading associated to the λ-filtration
FC : λ → DG RM.
Although we will not need this extension, we will use the precise definition of a

colimit respecting functor F : C → D. Recall first that, if J : I → C is a C-diagram,
its C-colimit, if it exists, is an object c ∈ C, together with C-morphisms ηi : Ji → c,
such that η j Ji j = ηi (i.e., together with a natural transformation η between J and
the constant functor c). The functor F is said to be colimit preserving, if the D-
colimit of F J exists and is given by the object F(c), together with the D-morphisms
F(ηi ) : F(Ji ) → F(c) (i.e., the natural transformation is the whiskering of η and F).

Observe now that, sinceFC : λ → DG RM is colimit respecting by assumption, we
have, for α < λ, α ∈ O�, α = colimβ<α β,

Fα C = colimβ<αFβ C , together with the canonical injections

Fβα C : Fβ C ↪→ Fα C .

The same holds for C replaced by D. Since the colimit colimβ<α ϕβ is obtained using
the universality of (Fα C,F•α C) with respect to the cocone (FαD,F•αD ϕ•), this
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colimit map is the unique DG RM-map mα : Fα C → Fα D, such that mαFβα C =
Fβα D ϕβ , i.e., such that mα|Fβ C = ϕβ . Hence, for any limit ordinal α < λ, we have

ϕα = colimβ<α ϕβ . (3.11)

Lemma 3.5 Let λ ∈ O \ {0}, let C, D ∈ DG RM, with λ-filtrations (Fβ C)β∈λ and
(Fβ D)β∈λ, and let f : C → D be a DG RM-morphism, which is compatible with the
filtrations and whose corresponding natural transformation is denoted by ϕ : FC →
F D.Assume thatϕ0 : F0 C → F0 D is aweak equivalence and that, for any γ +1 < λ,
the induced DG RM-map ϕγ+1,� : Grγ+1 C → Grγ+1 D is a weak equivalence. Then
ϕβ : Fβ C → Fβ D is a weak equivalence, for all β < λ, and therefore f is also a
weak equivalence.

Proof We proceed by transfinite induction. The induction starts, since ϕ0 is a weak
equivalence by assumption. Let now β < λ and assume that ϕα is a weak equivalence
for all α < β.

If β ∈ Os , say β = γ + 1, we consider the commutative diagram

0 Fγ C Fγ+1 C Grγ+1 C 0

0 Fγ D Fγ+1 D Grγ+1 D 0

∼ ∼ ,

whose rows are exact and whose left (resp., right) vertical arrow ϕγ (resp., ϕγ+1,�) is a
weak equivalence. The connecting homomorphism theorem now induces in Mod(R)
the diagram

· · · Hn+1(Grγ+1 C) Hn(Fγ C) Hn(Fγ+1 C) Hn(Grγ+1 C) Hn−1(Fγ C) · · ·

· · · Hn+1(Grγ+1 D) Hn(Fγ D) Hn(Fγ+1 D) Hn(Grγ+1 D) Hn−1(Fγ D) · · ·
∼= ∼= ∼= ∼=

with exact rows and isomorphisms as non-central vertical arrows. Further the dia-
gram commutes. Indeed, the connecting homomorphism 	C : Hn+1(Grγ+1 C) →
Hn(Fγ C) is defined by

	C [[cγ+1]Fγ C ]im ∂Cγ+1,�
= [cγ ]im ∂Cγ

if and only if there exists c′
γ+1 ∈ Fγ+1 C , such that

[cγ+1]Fγ C = [c′
γ+1]Fγ C and ∂Cγ+1c

′
γ+1 = cγ ,

i.e., if and only if

∂Cγ+1cγ+1 = cγ .

Hence, in the LHS square of the preceding diagram, the top-right composition leads
to

H(ϕγ )	
C [[cγ+1]Fγ C ]im ∂Cγ+1,�

= [ϕγ cγ ]im ∂Dγ
.
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On the other hand, the left-bottom composition

	D H(ϕγ+1,�)[[cγ+1]Fγ C ]im ∂Cγ+1,�
= 	D[ϕγ+1,�[cγ+1]Fγ C ]im ∂Dγ+1,�

= 	D[[ϕγ+1cγ+1]Fγ D]im ∂Dγ+1,�

coincides with the value [ϕγ cγ ]im ∂Dγ
, if and only if

∂D
γ+1ϕγ+1cγ+1 = ϕγ cγ ,

what is obviously the case.
It now follows from the Five Lemma that Hn(ϕγ+1) is an isomorphism, for all

n ∈ N, i.e., that ϕγ+1 = ϕβ is a weak equivalence.
If β ∈ O�, it follows from Lemma 3.3 that ϕβ is a weak equivalence. �
The last lemma may be advantageously used to prove Lemma 1.5.

Proof of Lemma 1.5 Recall that our aim is to prove that, if, in DGDM, f : A → B is a
weak equivalence and M is a cofibrant object, then f ⊗ idM : A ⊗ M → B ⊗ M is
a weak equivalence as well (we omit the subscript • in the tensor product). It follows
from the description of the model structure on DGDM [6], that cofibrant objects are
exactly those differential graded D-modules that are degree-wise D-projective. In
particular, each term of M is D-flat. On the other hand, D is O-projective and thus
O-flat. Therefore, if 0 → N → P → Q → 0 is a short exact sequence ( SES) in
Mod(O), the free D-module functor D ⊗O • on Mod(O) transforms the considered
SES into a new SES in Mod(O) and even in Mod(D). Further, left-tensoring the latter
sequence over D by any term Mk , leads to a SES in Abelian groups Ab and even in
Mod(O). Since Mk ⊗D D ⊗O • � Mk ⊗O • , one deduces that any term Mk of M is
also O-flat.

Let now (M≤k, dM ) ∈ DGDM be the chain complex (M, dM ) truncated at degree
k ∈ N. Then, in the diagram (3.12) below, the top and the bottom rows areω-filtrations
of A⊗M and B⊗M , respectively. In addition, the product f ⊗ idM is compatible with
these ω-filtrations and is the colimit of the natural transformation ϕ• := f ⊗ idM≤• .

A ⊗ M≤0 A ⊗ M≤1 · · · A ⊗ M≤n · · ·

B ⊗ M≤0 B ⊗ M≤1 · · · B ⊗ M≤n · · ·
f ⊗idM≤0 f ⊗idM≤1 f ⊗idM≤n

(3.12)

The morphism f ⊗ idM is a weak equivalence, if the assumptions of Lemma 3.5 are
satisfied. For any 1 ≤ k + 1 < ω, the induced map

ϕk+1,� :Grk+1(A ⊗ M) →Grk+1(B ⊗ M) is f ⊗ idMk+1 : A ⊗ Mk+1 → B ⊗ Mk+1 .
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Moreover, the map

ϕ0 : A ⊗ M≤0 → B ⊗ M≤0 is f ⊗ idM0 : A ⊗ M0 → B ⊗ M0 .

To show that f ⊗idMk , k ∈ N, is aweak equivalence,we prove the equivalent statement
that its mapping coneMc( f ⊗ idMk ) is acyclic. Notice that

Mc( f ⊗ idMk ) � (Mc( f ))[−k] ⊗ Mk , (3.13)

as DGDM, since Mk has zero differential. To find that the RHS is acyclic, it suffices to
consider the involved complexes in DGOM, to recall that Mk is O-flat and that, since
f is weak equivalence, H((Mc( f ))[−k]) = 0. The looked for acyclicity then follows
from Künneth’s formula. �

3.2 HAC condition 1: properness

The first of the HAC assumptions mentioned at the beginning of this section is the
condition HAC1 [38, Assumption 1.1.0.1].
HAC1. The underlying model category C is proper, pointed, and, for any c′, c′′ ∈ C,
the morphisms

Qc′ ∐ Qc′′ → c′ ∐ c′′ → Rc′ ∏ Rc′′ , (3.14)

where Q (resp., R) denotes the cofibrant (resp., the fibrant) replacement functor, are
weak equivalences. Moreover, the homotopy category Ho(C) of C is additive.

Assumption HAC1 implies that HomC(c′, c′′) is an Abelian group. This fact and
the homotopy part of the assumption allow to understand that the idea is to require
that C be a kind of ‘weak’ additive or Abelian category.

Let us briefly explain the different parts of condition HAC1. Properness is defined
as follows [14, Def. 13.1.1]:

Definition 3.6 A model category C is said to be:

(1) left proper, if every pushout of a weak equivalence along a cofibration is a weak
equivalence,

(2) right proper, if every pullback of a weak equivalence along a fibration is a weak
equivalence,

(3) proper, if it is both, left proper and right proper.

Pointed means that the category has a zero object 0. The first morphism in (3.14)
comes from the composition of the weak equivalences Qc′ → c′ and Qc′′ → c′′
with the canonical maps c′ → c′ ∐ c′′ and c′′ → c′ ∐ c′′, respectively. As for the
second, note that, in addition to the weak equivalence c′ → Rc′, we have also the
map c′ → 0 → Rc′′, hence, finally, a map c′ → Rc′ ∏ Rc′′. Similarly, there is a map
c′′ → Rc′ ∏ Rc′′, so, due to universality, there exists a map c′ ∐ c′′ → Rc′ ∏ Rc′′.

We now check HAC1 for the basic model category DGDM of the present paper.
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Properness of DGDM will be dealt with in Theorem 3.7 below. Since DGDM is
Abelian, hence, additive, it has a zero object – in the present situation ({0}, 0) – . As
for the arrows in (3.14), note that the coproduct and the product of chain complexes of
modules are computed degree-wise and that finite coproducts and products of modules
coincide and are just direct sums. Since the direct sum of two quasi-isomorphisms is a
quasi-isomorphism, the first canonical arrow is a quasi-isomorphism.Recallmoreover,
that, in DGDM, every object is fibrant, so that we can choose the identity as fibrant
replacement functor R. Therefore, the second canonical arrow is the identity map and
is thus a quasi-isomorphism. Further, the homotopy category Ho(DGDM) is equivalent
to the derived category D

+(Mod(D)), which is triangulated and thus additive. This
additive structure on the derived category can be transferred to the homotopy category
(so that the functor that implements the equivalence becomes additive).

We are now left with verifying properness of DGDM. By [14, Corollary 13.1.3], a
model category all of whose objects are fibrant is right proper: it is easily seen that
this is the case, not only for DGDM, but also for DGDA and Mod(A). We will check
that these three categories are left proper as well, so that

Theorem 3.7 The model categories DGDM, DGDA and Mod(A) are proper.

Proof Since O ∈ DGDA and Mod(O) = DGDM, it suffices to prove the statement
for DGDA and Mod(A), where A is any object of DGDA. Below, the letter C denotes
systematically any of the latter categories, DGDA or Mod(A).

We already mentioned that C is cofibrantly generated, so that any cofibration is a
retract of a map in I -cell, where I is the set of generating cofibrations [17, Proposition
2.1.18(b)].More precisely, the small object argument allows to factor anyC-morphism
s : X → W as s = p i , with i ∈ I -cell⊂ Cof and p ∈ I -inj= TrivFib. If s ∈ Cof, it
has the LLP with respect to p. Hence, the commutative diagram

X X X

W U W

s i s

l
∼
p

, (3.15)

where l is the lift and where p l = 1.
We must show that the pushout g : W → V of a weak equivalence f : X → Y

along the cofibration s : X → W is a weak equivalence.
Note first that, if h : U → Z is the pushout of f along i , then g is a retract of h. To

see this, consider the following commutative diagram, where the dashed arrows come
from the universality of a pushout:
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X Y

W V

U Z

W V

f

s

i

s l

g

p

h

g

. (3.16)

Due to the uniqueness property encrypted in any universal construction, the composite
of the two dashed arrows is the identity of V . Hence, g is indeed a retract of h. As
weak equivalences are closed under retracts, it thus suffices to show that the pushout
h is a weak equivalence.

We will actually prove that the pushout of a weak equivalence along any map in
I -cell, i.e., along any transfinite composition of pushouts of maps in I , is a weak
equivalence.

Step 1. In this step, we explain – separately in each of the two categories DGDA and
Mod(A) – why the pushout of a weak equivalence along a pushout of a map in I , i.e.,
along a pushout of a generating cofibration, is again a weak equivalence.

InDGDA, see [7, Example 1], any pushout of a generating cofibration is a (minimal)
relative SullivanD-algebra (T , dT ) ↪→ (T ⊗ SSn, d), where d is defined as described
in [7, Lemma 1]. Similarly, in Mod(A), see Proof of Theorem 2.14, any pushout of a
generating cofibration is a relative Sullivan A-module (T , dT ) ↪→ (T ⊕ A ⊗ Sn, d),
where d is defined as detailed in Lemma 2.12.

We first examine the DGDA-case. Here the pushout

X X ⊗ SSn

Y Y ⊗ SSn

iX

f f ⊗idSSn

iY

.

of a weak equivalence f : (X , ∂)
∼−→ (Y , δ) along a relative Sullivan D-algebra

(X , ∂) ↪→ (X ⊗ SSn, ∂(1)) is made of

– the relative SullivanD-algebra (Y , δ) ↪→ (Y ⊗ SSn, δ(1)), whose differential δ(1)
is given by

δ(1)(1n) := f (∂(1)(1n)) ∈ Yn−1 ∩ δ−1{0} , (3.17)

where 1n is the basis of Sn , and
– the DGDA-morphism f ⊗ idSSn : (X ⊗ SSn, ∂(1)) → (Y ⊗ SSn, δ(1)) .

Reference [7, Lemma 1(i)] allows to see that (3.17) defines a relative Sullivan D-
algebra. Since the RHS arrow in the above diagram is necessarily an extension ε of
iY f : X → Y ⊗ SSn , we apply [7, Lemma 1(ii)] to the morphism iY f . Therefore we
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note that the relative Sullivan D-algebra X ⊗ SSn is actually constructed according
to [7, Lemma 1(i)]. Indeed, in view of the first paragraph below [7, Lemma 1], since
the differential ∂(1) restricts to ∂ on X and satisfies ∂(1)(1n) ∈ Xn−1 ∩ ∂−1{0}, it is
necessarily given by Eq. (9) in [7, Lemma 1]. Hence, the reference [7, Lemma 1(ii)]
can be used and the extension ε is fully defined by

ε(1n) := 1Y ⊗ 1n ∈ (Y ⊗ SSn)n ∩ (δ(1))−1{ f ∂(1)(1n)} .

The extending DGDA-morphism ε is then given, for any x ∈ X and any σ ∈ SSn ,
by ε(x ⊗ σ) = f (x) ⊗ σ , so that ε = f ⊗ idSSn . As concerns universality, let
h : Y → E and k : X ⊗ SSn → E be DGDA-maps, such that k iX = h f , and define
the ‘universality map’ μ : Y ⊗ SSn → E as extension of h (using the same method
as for ε), by setting

μ(1n) := k(1X ⊗ 1n) ∈ En ∩ d−1
E {h δ(1)(1n)} .

To check the latter condition on dE , it suffices to note that, on 1n , we have

dE k = k ∂(1) = k iX ∂(1) = h f ∂(1) = h δ(1) ,

due to (3.17). Further, the condition μ iY = h is satisfied by construction, and to see
that με = k, we observe that

μ(ε(x ⊗ σ)) = h( f (x))�Eμ(σ) and k(x ⊗ σ)

= k(x ⊗ 1O)�Ek(1X ⊗ σ) = h( f (x))�Eμ(1Y ⊗ σ) ,

where k(1X ⊗ σ) coincides with μ(1Y ⊗ σ), since both maps are DGDA-maps and
k(1X ⊗ 1n) coincides with μ(1Y ⊗ 1n), by definition. Eventually, uniqueness of the
‘universality map’ is easily checked.

As f ⊗ idSSn is a weak equivalence in DGDA if it is a weak equivalence in DGDM,
we continue working in the latter category. Notice first that, if Z denotes X or Y and
if d(1) denotes ∂(1) or δ(1), the differential d(1) stabilizes the graded D-submodule
Zk = Z ⊗ S≤k Sn (k ∈ N = ω) of Z ⊗ SSn [7, Lemma 1(i)]. Hence, the restriction

ϕk := f ⊗ idS≤k Sn : Xk → Yk

of the DGDM-map f ⊗ idSSn is itself a DGDM-map. Moreover, the injections Zk� :
Zk → Z� (k ≤ �) are canonical DGDM-maps, so that we have a functor Z∗ : ω →
DGDM, with obvious colimit Z⊗ SSn . Since ϕ∗ : X∗ → Y∗ is a natural transformation
between theω-filtrations of X⊗ SSn and Y ⊗ SSn , with colimit f ⊗ idSSn , it remains
to prove that the diagram

X X1 · · · Xk · · ·

Y Y1 · · · Yk · · ·
f∼ ϕ1 ϕk (3.18)
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satisfies the hypotheses of Lemma 3.5, i.e., that for any k, theDGDM-map ϕk,� induced
by ϕk between the k-terms of the ω-gradings associated to the two ω-filtrations, is a
weak equivalence. Thiswill be done independently in Lemma3.8,what then concludes
our argument in the DGDA-case.

In the category Mod(A), the pushout

X X ⊕ A ⊗ Sn

Y Y ⊕ A ⊗ Sn

iX

f∼ f ⊗idA⊗Sn

iY

of a weak equivalence f : (X , ∂)
∼−→ (Y , δ) along a relative Sullivan A-module

(X , ∂) ↪→ (X ⊕ A ⊗ Sn, ∂(1)) is made of

– the relative Sullivan A-module (Y , δ) ↪→ (Y ⊕ A ⊗ Sn, δ(1)), whose differential
δ(1) is determined by

δ(1)(1n) = f (∂(1)(1n)) ∈ Yn−1 ∩ δ−1{0} ,

and
– the Mod(A)-morphism f ⊕ idA⊗Sn : (X ⊕A⊗ Sn, ∂(1)) → (Y ⊕A⊗ Sn, δ(1)) .

This statement can be understood similarly to (but more easily than) its counterpart
in the DGDA-case (replace Sullivan algebras and [7, Lemma 1] by Sullivan modules
and Lemma 2.12).

As above, since f ⊕ idA⊗Sn is a weak equivalence in Mod(A) if it is a weak equiv-
alence in DGDM, we continue working in the latter category. Notice also that the rows
of the preceding diagram are 2-filtrations of X ⊕A⊗ Sn and Y ⊕A⊗ Sn , respectively,
that f ⊕ idA⊗Sn is compatible with these filtrations and that the corresponding natural
transformation ϕ∗ is defined by the vertical arrows of the diagram. Since f is a weak
equivalence, and the induced DGDM-map ϕ1,� between the 1-terms of the associated
2-gradings is, as DGDM-map, the identity idA⊗Sn , the map f ⊕ idA⊗Sn is a weak
equivalence, thanks to Lemma 3.5.

From here to the end of this proof, we consider the two cases, DGDA and Mod(A),
again simultaneously and denote both categories by C. We have just shown that the
pushout of any weak equivalence along the pushout of any generating cofibration
is itself a weak equivalence. In the sequel, we denote the pushout of a generating
cofibration, or, better, the corresponding relative Sullivan D-algebra (X , ∂) ↪→ (X ⊗
SSn, ∂(1)) or relative Sullivan A-module (X , ∂) ↪→ (X ⊕ A ⊗ Sn, ∂(1)), by

X (0,1) : (X (0), ∂(0)) ↪→ (X (1), ∂(1)) or even X (β,β+1) : (X (β), ∂(β))

↪→ (X (β+1), ∂(β+1)) , (3.19)

where β is an ordinal.

Step 2. In this second step, we finally show that the pushout of a weak equivalence
φ(0) : X (0) → Y (0) inC along aC-map in I -cell, i.e., along a transfinite composition of
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pushouts ofmaps in I , is again aweak equivalence.More precisely, such a composition
is the colimit

colimβ<λ X (0,β) : X (0) → colimβ<λ X (β)

of a colimit respecting functor X (∗) : λ → C (λ ∈ O), such that any map X (β,β+1) :
X (β) ↪→ X (β+1) (β + 1 < λ) is the pushout of a map in I , i.e., is a Sullivan ‘object’
of the type (3.19).

It might be helpful to notice that the considered transfinite composition is given, in
the Mod(A)-case, by (2.10), and in the DGDA-case, by

X (0) → X (0) ⊗ S
⎛

⎝
⊕

β<λ,β∈Os

Sn(β)

⎞

⎠ ,

see [7, Proof of Theorem 4(i)].

Step 2.a. The idea is to first construct the following commutative diagram:

X (0) X (1) · · · X (β) X (β+1) · · · X (γ ) · · ·

Y (0) Y (1) · · · Y (β) Y (β+1) · · · Y (γ ) · · ·

X (0,1)

φ(0)∼ φ(1)

X (1,2)

φ(β)

X (β,β+1)

φ(β+1) φ(γ )

Y (0,1) Y (1,2) Y (β,β+1)

(3.20)

Figure: Pushout along an I -cell
More precisely, for γ < λ , we will build, by transfinite induction,

– a colimit respecting functor Y (∗)
γ : γ + 1 → C with injective elementary maps

Y (β,β+1) (β + 1 < γ + 1) and
– a natural transformation φ

(∗)
γ between X (∗)

γ and Y (∗)
γ ,

such that φ(γ ) is a weak equivalence and

Y (0) Y (0,γ )−→ Y (γ ) φ(γ )

←− X (γ )

is the pushout of

Y (0) φ(0)

←− X (0) X (0,γ )−→ X (γ ) .

This construction is based on the assumption that Y (∗)
α and φ

(∗)
α have been constructed

with the mentioned properties, for any α < γ .
The induction starts since the requirements concerning Y (∗)

0 and φ
(∗)
0 are obviously

fulfilled and φ(0) is a weak equivalence.
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We first examine the case γ ∈ Os . We can begin with the functor Y (∗)
γ−1, the natural

transformation φ
(∗)
γ−1 and the square of the pushout φ

(γ−1). Then we build the pushout

Y (γ−1) Y (γ−1,γ )−→ Y (γ ) φ(γ )

←− X (γ )

of

Y (γ−1) φ(γ−1)

←− X (γ−1) X (γ−1,γ )−→ X (γ )

as in Step 1. It follows from the induction assumption and the description in Step
1 that there is a canonical functor Y (∗)

γ that has the required properties, as well as a

canonical natural transformation φ
(∗)
γ . Moreover, the map φ(γ ) is a weak equivalence,

and, since the outer square of two pushout squares is a pushout square, the map φ(γ )

has the requested pushout property.
If γ = colimβ<γ β ∈ O�, note that, since colimits commute, the searched pushout

colim(Y (0) ←− X (0) −→ X (γ ))

of φ(0) along X (0,γ ) : X (0) → X (γ ), i.e., along colimβ<γ X (0,β) : X (0) →
colimβ<γ X (β), is equal to

colimβ<γ colim(Y (0) φ(0)

←− X (0) X (0,β)−→ X (β))

= colimβ<γ (Y
(0) Y (0,β)−→ Y (β) φ(β)

←− X (β)) . (3.21)

Of course, the functors Y (∗)
α (resp., the natural transformations φ

(∗)
α ), α < γ , define

a functor Y (∗) : γ → C with the same properties (resp., a natural transformation
φ(∗) : X (∗) → Y (∗)). The functor Y (∗) can be extended by

Y (γ ) := colimβ<γ Y (β) and Y (α,γ ) := colimα≤β<γ Y (α,β) ,

as colimit respecting functorY (∗)
γ with injective elementarymaps. Similarly, the natural

transformation φ(∗) can be extended, via the application of the colimit functor,

φ(γ ) := colimβ<γ φ(β) : X (γ ) → Y (γ ) ,

to a natural transformation φ
(∗)
γ . Hence, the colimit (3.21) is given by

Y (0) Y (0,γ )−→ Y (γ ) φ(γ )

←− X (γ ) .

It now suffices to check that φ(γ ) is a weak equivalence in DGDM. Since, as easily
seen, X (∗) (resp., Y (∗)) is a γ -filtration of X (γ ) (resp., Y (γ )), since φ(γ ) is filtration-

123



Homotopical algebraic context over differential operators 331

compatible with associated natural transformation φ(∗), and since φ(α), α < γ , is a
weak equivalence, it follows from Lemma 3.3 that φ(γ ) is a weak equivalence as well.

Step 2.b. The pushout of φ(0) along

colimγ<λ X (0,γ ) : X (0) → colimγ<λ X (γ )

is given by Eq. (3.21) with γ replaced by λ (and β by γ ). It is straightforwardly
checked that Y (∗) (resp., φ(∗)) is a functor defined on λ (resp., a natural transformation
between such functors). Hence, the colimit (3.21) is given by

Y (0) colimγ<λ Y (0,γ )

−→ colimγ<λ Y
(γ )

colimγ<λ φ(γ )

−→ colimγ<λ X (γ ) .

Since X (∗),Y (∗) are λ-filtrations of colimγ<λ X (γ ) and colimγ<λ Y (γ ), respectively,
and the considered pushout colimγ<λ φ(γ ) of φ(0) is filtration-compatible, it follows
from Lemma 3.3 that this pushout is a weak equivalence.

To complete the proof of Theorem 3.7, it remains to show that the following lemma,
which we state separately for future reference, holds. �
Lemma 3.8 Diagram (3.18) satisfies the assumptions of Lemma 3.5.

Proof For X ⊗ SSn , the term Xk+1 := Xk+1/Xk (k + 1 < ω) of the ω-grading,
associated to the ω-filtration with filters X� = X ⊗ S≤�Sn (� < ω), is isomorphic as
DGDM-object to

Xk+1 � X ⊗ Sk+1Sn ,

where the RHS is endowed with the usual tensor product differential. A similar
statement holds for Y ⊗ SSn . Moreover, when read through the preceding iso-
morphisms, say IX and IY , the DGDM-map ϕk+1,� : Xk+1 → Y k+1 induced by
ϕk+1 = f ⊗ idS≤k+1Sn , is the DGDM-map

IY ϕk+1,� I−1
X = f ⊗ idSk+1Sn .

Since ϕ0 = f is a weak equivalence, it remains to show that f ⊗ idSk+1Sn is a weak
equivalence, for all k + 1 < ω, or, still, that f ⊗ idSk Sn is a weak equivalence, for all
1 ≤ k < ω.

Just as in Eq. (3.13), we have here

Mc( f ⊗ idSk Sn ) �Mc( f )[−kn] ⊗ Sk Sn ,

as DGDM-object, since Sk Sn has zero differential. We now proceed as in [6, Sections
7.5 and 8.7]: The symmetrisation map σ induces a short exact sequence

0 → kerk σ
i−→

k⊗
Sn

σ−→ Sk Sn → 0
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in the Abelian category DGOM. Since this sequence canonically splits, we get the
GOM-isomorphism

H(Mc( f )[−kn] ⊗
k⊗

Sn) � H(Mc( f )[−kn] ⊗ kerk σ) ⊕ H(Mc( f )[−kn] ⊗ Sk Sn) .

To prove the weak equivalence condition, it suffices to show that the LHS-homology
vanishes. Assume that the claim is proven for 0 ≤ k − 1 < ω. The induction starts
since f is a weak equivalence, i.e., a quasi-isomorphism. The fact that

H(Mc( f )[−kn] ⊗
k−1⊗

Sn ⊗ Sn) = 0

is then a consequence of the Künneth formula for complexes and the previously men-
tioned fact that D is O-flat. �

3.3 HAC condition 2: combinatoriality

All the requirements of the second axiom HAC2 [38, Assumption 1.1.0.2] of a Homo-
topical Algebraic Context have been established above, except the combinatoriality
condition for the model structure of Mod(A). For future reference, we will also prove
the combinatoriality of the model structures of DGDM and of DGDA. A reader, who
is interested in set-theoretical size issues and universes, finds all relevant information
in Appendix C.

Roughly, a combinatorial model category is a well manageable type of model
category, in the sense that it is generated from small ingredients: it is a category

– in which any object is the colimit of small objects from a given set of generators,
and

– which carries a cofibrantly generatedmodel structure, i.e., amodel structurewhose
cofibrations (resp., trivial cofibrations) are generated by sets I (resp., J ) of gener-
ating morphisms whose sources are small.

More precisely,

Definition 3.9 A combinatorial model category, is a locally presentable category
that is endowed with a cofibrantly generated model structure.

For locally presentable categories, i.e., categories that are locally κ-presentable
for some regular cardinal κ , we refer to Appendix A. Aspects of the foundational
background of and further details on combinatorial model categories are available in
[1,8]. Eventually, a category that satisfies all the conditions of a locally presentable
category, except that it is not necessarily cocomplete, is referred to as an accessible
category.

Our categories of interest, DGDM, DGDA, and Mod(A), are cofibrantly gener-
ated model categories. In particular, they are (complete and) cocomplete, so that,
to prove their combinatoriality, it suffices to prove their accessibility. As for DGDM,
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we mentioned in the proof of Proposition 2.6 that it is locally presentable, hence,
accessible. Regarding the accessibility of DGDA � DGDMT (see Proposition 2.6)
and Mod(A) � DGDMU (see Proposition 2.7), we recall [1, 2.78] that a category of
algebras over a monad is accessible, if the monad is. Furthermore [1, 2.16], a monad
(V , μ, η) over a category C is accessible, if its endofunctor V : C → C is accessible.
Finally, a functor G : C′ → C′′ is called accessible, if it is accessible for some regular
cardinal κ , i.e., if C′ and C′′ are κ-accessible categories, and if G preserves κ-directed
colimits. Summarizing, to prove that DGDA and Mod(A) are accessible, we only need
to show that both, T = FS andU = ��, preserve κ-directed colimits. In fact, since
the left adjoints S and � respect all colimits, it suffices to reassess the right adjoints
F : DGDA → DGDM and� : Mod(A) → DGDM. However, in [6], we showed that F
commutes with directed colimits (and κ-directed ones), and the proof for� is similar.
Hence,

Proposition 3.10 The (proper)model categoriesDGDM,DGDA, andMod(A) are com-
binatorial model categories.

3.4 HAC condition 3: cofibrancy and equivalence-invariance

As above, we chooseA ∈ DGDA. The condition HAC3 [38, Assumption 1.1.0.3] asks
that, for any cofibrant M ∈ Mod(A), the functor

− ⊗A M : Mod(A) → Mod(A)

respect weak equivalences. The requirement is not really surprising. Indeed, to avoid
‘equivalence-invariance breaking’ in the model category Mod(A) via tensoring by M ,
this operation should preserve weak equivalences – at least for ‘good’ objects M , i.e.,
for cofibrant ones. This is similar to tensoring, in the category Mod(R) of modules
over a ring R, by an R-module M , what is an operation that respects injections for
‘good’ objects M , i.e., for flat R-modules.

Proposition 3.11 Let A ∈ DGDA. For every cofibrant M ∈ Mod(A), the functor

− ⊗A M : Mod(A) → Mod(A)

preserves weak equivalences.

Proof We have to prove that, if f : P → Q is a weak equivalence in Mod(A), then
f ⊗A idM is a weak equivalence as well.
By Lemma 2.14, the module M is a retract of a Sullivan A-module, i.e., there

exist a Sullivan A-module A ⊗ V and Mod(A)-morphisms i : M → A ⊗ V and
j : A ⊗ V → M such that j ◦ i = idM . Since the diagram

P ⊗A M P ⊗A (A ⊗ V ) P ⊗A M

Q ⊗A M Q ⊗A (A ⊗ V ) Q ⊗A M

idP ⊗Ai

f ⊗AidM

idP ⊗A j

f ⊗AidA⊗V f ⊗AidM
idQ ⊗Ai idQ ⊗A j

(3.22)
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is a retract diagram in Mod(A), it suffices to show that f ⊗A idA⊗V is a weak
equivalence.

The proof of Lemma 2.14 shows that A ⊗ V is the colimit of the λ-sequence
X : λ → Mod(A) defined by

Xβ = A ⊗
⊕

α≤β,α∈Os

Sn(α) ,

where Sn(α) is the sphere D · 1n(α), n(α) ∈ N, see Eq. 2.10. If we shift the index α of
the generators 1n(α) by −1, we get

Xβ = A ⊗ V<β , where V<β =
⊕

α−1<β

D · 1n(α−1) .

As the morphisms Xβ,β+1 are the canonical injections, the A-module A ⊗ V is
equipped with the λ-filtration Fβ(A ⊗ V ) = Xβ , i.e., with the λ-filtration

0 ↪→ A ⊗ V<1 ↪→ · · · ↪→ A ⊗ V<β ↪→ · · ·

Since Mod(A) is a closed monoidal category, the tensor product P ⊗A − is a left
adjoint functor and thus preserves colimits. Hence,

0 ↪→ P ⊗A (A ⊗ V<1) ↪→ · · · ↪→ P ⊗A (A ⊗ V<β) ↪→ · · ·

is a λ-filtration of the A-module P ⊗A (A ⊗ V ), or, in view of Lemma 3.1,

0 ↪→ P ⊗ V<1 ↪→ · · · ↪→ P ⊗ V<β ↪→ · · ·

is a λ-filtration of the A-module P ⊗ V . If we tensor by Q instead of P , we get an
analogous λ-filtration for Q ⊗ V . Moreover, one easily checks (see Eq. 3.1) that

ı ◦ ( f ⊗A idA⊗V ) ◦ ı−1 = f ⊗ idV ,

so that the used identifications imply that the Mod(A)-morphism f ⊗A idA⊗V coin-
cides with the Mod(A)-morphism f ⊗ idV . Since the weak equivalences in Mod(A)

are those Mod(A)-morphisms that are weak equivalences in DGDM, it actually suffices
to show that f ⊗ idV : P ⊗ V → Q ⊗ V is a weak equivalence in DGDM.

We already mentioned (see paragraph above Proposition 3.10) that the forgetful
functor� : Mod(A) → DGDM respects directed colimits (alternatively we may argue
that � preserves filtered colimits as right adjoint between two accessible categories).
Thus, the λ-filtrations of P ⊗ V and Q ⊗ V in Mod(A) are also λ-filtrations in
DGDM. Let now ϕ be the natural transformation between the DGDM-filtration functors
Fβ(P ⊗ V ) = P ⊗ V<β and Fβ(Q ⊗ V ) = Q ⊗ V<β , defined by ϕβ = f ⊗ idV<β :
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0 P ⊗ V<1 · · · P ⊗ V<β, · · ·

0 Q ⊗ V<1 · · · Q ⊗ V<β · · ·
ϕ0=0 ϕ1= f⊗idV<1 ϕβ= f⊗idV<β . (3.23)

The colimit colimβ<λ ϕβ is given by f ⊗ idV , so that the DGDM-morphism f ⊗ idV
is compatible with the considered DGDM-filtrations.

In order to apply Lemma 3.5, note that ϕ0 is a weak equivalence and look at

ϕβ+1,� :Grβ+1(P ⊗ V ) →Grβ+1(Q ⊗ V ) ,

where

Grβ+1(P ⊗ V ) = P ⊗ V<β+1/P ⊗ V<β .

Observe first that, we have a GDM-isomorphism j : Grβ+1(P ⊗ V ) → P ⊗ Sn(β+1)

and denote by δ the pushforward

δ = j ◦ ∂ P⊗V
β+1,� ◦ j−1

of the differential of Grβ+1(P ⊗ V ) . As, in view of Equation (3.2), the differential
∂ P⊗V
β+1 of Fβ+1(P ⊗ V ) = P ⊗ V<β+1 is the pushforward

ı ◦ (dP ⊗ id⊗ + idP ⊗ d) ◦ ı−1

of the differential of P ⊗A (A ⊗ V<β+1), and as d is the lowering differential of the
Sullivan A-module A ⊗ V (i.e., d 1n(β) ∈ A ⊗ V<β ), we get, for any argument in
P ⊗ Sn(β+1),

δ(p ⊗ 	 · 1n(β)) = j [∂ P⊗V
β+1 (p ⊗ 	 · 1n(β))] = j [dP p ⊗ 	 · 1n(β)

+(−1)|p|ı(p ⊗ 	 · d 1n(β))]
= dP p ⊗ 	 · 1n(β) = (dP ⊗ idSn(β+1) )(p ⊗ 	 · 1n(β))
=: d⊗(p ⊗ 	 · 1n(β)) ,

where d⊗ the natural differential on P ⊗ Sn(β+1). It follows that

d⊗ = j ◦ ∂ P⊗V
β+1,� ◦ j−1 ,

so that j is a DGDM-isomorphism and that we can identify (Grβ+1(P ⊗ V ), ∂ P⊗V
β+1,�)

and (P⊗ Sn(β+1), d⊗) as differential gradedD-modules (and similarly for P replaced
by Q). It is now easily checked that, when read through these isomorphisms, the
morphism ϕβ+1,� is the DGDM-morphism

f ⊗ idSn(β+1) : P ⊗ Sn(β+1) → Q ⊗ Sn(β+1) .

123



336 G. D. Brino et al.

In view of Lemma 3.5, it finally suffices to prove that f ⊗ idSn(β+1) is a weak equiva-
lence.

Via the by now standard argument, we get

Mc( f ⊗ idSn(β+1) ) � (Mc f )[−n(β + 1)] ⊗ Sn(β+1) .

Since f is a weak equivalence by assumption, Künneth’s formula gives

H•(Mc( f ⊗ idSn(β+1) )) � H•((Mc f )[−n(β + 1)] ⊗ Sn(β+1))

� H•−n(β+1)(Mc f ) ⊗ Sn(β+1) = 0 ,

so that f ⊗ idSn(β+1) is a weak equivalence. This completes the proof. �

3.5 HAC condition 4: base change and equivalence-invariance

In this section, we investigate the condition HAC4 [38, Assumption 1.1.0.4].
It actually deals with the categories CMon(ModDGDM(A)) and NuCMon(ModDGDM

(A)) of unital and non-unital commutative monoids in Mod(A). In [38], the HAC
conditions are formulated over an underlying category, which is not necessarilyDGDM,
but any combinatorial symmetric monoidal model category C. The category of non-
unital monoids appears in Assumption 1.1.0.4, only since C is not necessarily additive
[38, Remark 1.1.0.5]. In our present case, the category C = DGDM is Abelian and thus
additive, so that the condition on non-unital algebras is redundant here.

Just as there is an adjunction S : DGDM � CMon(DGDM) : F , see Subsection
2.2.1, we have an adjunction

SA : Mod(A) � CMon(Mod(A)) : FA ,

which is defined exactly as S � F , except that the tensor product is not over O
but over A. Hence, it is natural to define weak equivalences (resp., fibrations) in
CMon(Mod(A)), as those morphisms that are weak equivalences (resp., fibrations) in
Mod(A), or, equivalently, in DGDM. Assumption 1.1.0.4 now reads
HAC 4.

– The preceding classes of weak equivalences and fibrations endow CMon(Mod(A))

with a combinatorial proper model structure.
– For any cofibrant B ∈ CMon(Mod(A)), the functor

B ⊗A − : Mod(A) → Mod(B)

respects weak equivalences.

The axiom is easily understood. Recall first that the category CMon(Mod(A)) is
isomorphic to the category A ↓ DGDA, see Proposition 2.3. Moreover, in [7] and
[29], we emphasized the importance of a base change, i.e., of the replacement of
A ↓ DGDA by B ↓ DGDA (we actually passed fromA = O to B = J , where J was
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interpreted as the function algebra of an infinite jet bundle). This suggests to reflect
upon a functor from CMon(Mod(A)) to CMon(Mod(B)), or, simply, from Mod(A)

to Mod(B). The natural transition functor is B ⊗A − , provided B is not only an
object B ∈ DGDA but an object B ∈ CMon(Mod(A)). Just as the functor − ⊗A M
in HAC3, the functor B ⊗A − is required to preserve weak equivalences, at least for
cofibrant objectsB ∈ CMon(Mod(A)). HAC4 further asks that the above-definedweak
equivalences and fibrations implement a model structure on CMon(Mod(A)) and that
cofibrancy be with respect to this structure. Finally, exactly as the so far considered
model categories DGDM, DGDA, and Mod(A), the model category CMon(Mod(A))

must be combinatorial and proper.
Note that there are important examples that do not satisfy this axiom. For instance, it

does not hold if the underlying category is the category C = DGR M of non-negatively
graded chain complexes of modules over a commutative ring R with nonzero charac-
teristic. Our task is to show that it is valid, if R is replaced by the non-commutative
ring D of characteristic 0. On the other hand, the assumption HAC4 is essential in
proving, for instance, the existence of an analog of the module !B/A of relative dif-
ferential 1-forms. The existence of this cotangent complex ‘!B/A’ is on its part the
main ingredient in the definition of smooth and étale morphisms.

Proposition 3.12 The category CMon(Mod(A)), whose morphisms are weak equiv-
alences (resp., fibrations) if they are weak equivalences (resp., fibrations) in DGDM,
and whose morphisms are cofibrations if they have in CMon(Mod(A)) the left lifting
property with respect to trivial fibrations, is a combinatorial proper model category.

Proof The categorical isomorphism

CMon(Mod(A)) � A ↓ DGDA

of Proposition 2.3 allows endowing CMon(Mod(A)) with the model structure of
A ↓ DGDA: a CMon(Mod(A))-morphism is a weak equivalence (resp., a fibration, a
cofibration), if it is a weak equivalence (resp., a fibration, a cofibration) in DGDA [15].
Hence, a CMon(Mod(A))-morphism is a weak equivalence (resp., a fibration), if it is a
weak equivalence (resp., a fibration) in DGDM [6]. We know that these definitions pro-
vide CMon(Mod(A))with a model structure, so that a CMon(Mod(A))-morphism is a
cofibration if and only if it has in CMon(Mod(A)) the left lifting property with respect
to trivial fibrations. It follows that the distinguished classes of Proposition 3.12 equip
CMon(Mod(A))with a model structure. In addition, in view of [15, Theorem 2.8], this
model category is proper and cofibrantly generated. Its generating cofibrations (resp.,
trivial cofibrations) are obtained from the cofibrations I (resp., trivial cofibrations J )
of DGDA by means of the left adjoint functor

L⊗ : DGDA � B �→ (A → A ⊗ B) ∈ CMon(Mod(A)) : For . (3.24)

It remains to show that the category CMon(Mod(A)) is accessible. Remark that
the monad For L⊗ coincides with the coproduct functor A ⊗ − : DGDA � B �→
A ⊗ B ∈ DGDA, and that, if For is monadic, we have the equivalence of categories
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DGDAA⊗− � CMon(Mod(A)). To prove the accessibility of CMon(Mod(A)), it thus
suffices to show thatA⊗− respects directed colimits and thatFor satisfies the require-
ments of the monadicity theorem. However, the coproduct functor A ⊗ − of DGDA
commutes with colimits and in particular with directed ones. The first condition of
the monadicity theorem asks that For reflect isomorphisms, what is easily checked.
The second condition asks that CMon(Mod(A)) admit coequalizers of reflexive pairs
and that For preserve them. Since CMon(Mod(A)) is a model category, it has all
coequalizers. Finally, when applyingFor to the coequalizer of two parallel morphisms
in CMon(Mod(A)), we get the coequalizer in DGDA of the images by For of the
considered parallel morphisms. Indeed, as for the universality of this coequalizer-
candidate in DGDA, any second coequalizer-candidate can be canonically lifted to
A ↓ DGDA, and universality inA ↓ DGDA provides a unique factorization-morphism
in A ↓ DGDA, whose projection via For is a factorization-morphism in DGDA. It can
further be seen that the latter is unique, what completes the proof of the accessibility
of CMon(Mod(A)). �

The next proposition ensures that also Part 2 of HAC4 is satisfied.

Proposition 3.13 Let A be an object in DGDA and let B be a cofibrant object in
CMon(Mod(A)). The functor

B ⊗A − : Mod(A) → Mod(B)

preserves weak equivalences.

Proof Byassumption themorphismφB : A → B is a cofibration inCMon(Mod(A)) �
A ↓ DGDA, i.e., a cofibration in DGDA. Consider now, in DGDA, the cofibration -
trivial fibration factorization of φB constructed in [7, Theorem 5]:

(A, dA) (A ⊗ SV , d2)

(B, dB) (B, dB)
∼

idB

. (3.25)

The dashed arrow in this diagram exists in view of the left lifting property of
cofibrations with respect to trivial fibrations. The diagram

(A, dA)

(B, dB) (A ⊗ SV , d2) (B, dB)∼ (3.26)

now shows that A → B is a retract of A → A⊗ SV in A ↓ DGDA, or, equivalently,
that B is a retract of A ⊗ SV in CMon(Mod(A)) and so in Mod(A).
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Let now f : P → Q be a weak equivalence in Mod(A). Since, as easily checked,
f ⊗A idB is a retract of f ⊗A idA⊗SV inMod(A), it suffices to show that the lattermor-
phism is a weak equivalence in Mod(A). Indeed, in this case f ⊗A idB is also a weak
equivalence in Mod(A), so a weak equivalence in DGDM; it follows that the Mod(B)-
morphism f ⊗A idB is a weak equivalence in Mod(B), what then completes the proof.

If we use the identification detailed in Lemma 3.1, the morphism

f ⊗A idA⊗SV : P ⊗A (A ⊗ SV ) → Q ⊗A (A ⊗ SV )

becomes

f ⊗ idSV : P ⊗ SV → Q ⊗ SV

and it suffices to prove that f ⊗ idSV is a weak equivalence in Mod(A), i.e., in DGDM.
It is known from [7, Theorem 5 and Section 6.2] that (A ⊗ SV , d2) is the colimit

in DGDA of a λ-sequence of injections

(A, dA) ↪→(A ⊗ SV<1, d2,<1) ↪→ (A ⊗ SV<2, d2,<2) ↪→ · · ·
· · · (A ⊗ SV<ω, d2,<ω) ↪→ (A ⊗ SV<ω+1, d2,<ω+1) ↪→ · · · (3.27)

whereA⊗SV<β has the usual meaning (see above) and where d2,<β is the restriction
of d2 . Since colimits in an undercategory are computed as colimits in the underlying
category, the commutativeMod(A)-monoid (A⊗SV , d2) is also the colimit of the pre-
ceding λ-sequence inA ↓ DGDA � CMon(Mod(A)). Moreover, as a coslice category
of an accessible category is accessible, the categoriesCMon(Mod(A)) andMod(A) are
both accessible. It follows that the forgetful functor FA : CMon(Mod(A)) → Mod(A)

commutes with filtered colimits as right adjoint SA � FA between accessible cate-
gories. Hence, the sequence (3.27) is a λ-filtration of A ⊗ SV in Mod(A). We can
now argue as in the proof of Proposition 3.11: the sequence

(P, dP ) ↪→(P ⊗ SV<1, δP,<1) ↪→ (P ⊗ SV<2, δP,<2) ↪→ · · ·
· · · (P ⊗ SV<ω, δP,<ω) ↪→ (P ⊗ SV<ω+1, δP,<ω+1) ↪→ · · ·

is a λ-filtration of (P ⊗ SV , δP ) – in Mod(A), as well as in DGDM. Here

δP = ı ◦ (dP ⊗ id⊗ + idP ⊗ d2) ◦ ı−1

is the differentialdP⊗id⊗ + idP ⊗ d2 pushed forward from P⊗A(A⊗SV ) to P⊗SV .
Let nowϕ be, as in the proof of Proposition 3.11, the natural transformationbetween the
DGDM-filtration functors Fβ(P⊗SV ) = P⊗SV<β and Fβ(Q⊗SV ) = Q⊗SV<β ,
defined by ϕβ = f ⊗ idSV<β

:
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(P, dP ) (P ⊗ SV<1, δP,<1) · · · (P ⊗ SV<β, δP,<β) · · ·

(Q, dQ) (Q ⊗ SV<1, δQ,<1) · · · (Q ⊗ SV<β, δQ,<β) · · ·
ϕ0= f ϕ1= f ⊗idSV<1

ϕβ= f ⊗idSV<β .

(3.28)

It follows again that the DGDM-morphism f ⊗ idSV is compatible with the DGDM-
filtrations. To show that f ⊗ idSV is a weak equivalence in DGDM, it suffices to prove
that the ϕβ = f ⊗ idSV<β

, β < λ, are weak equivalences, see Lemma 3.3. This proof
will be a transfinite induction on β < λ.

The induction starts, since ϕ0 = f is a weak equivalence by assumption. We thus
must show that ϕβ , β < λ, is a weak equivalence, assuming that the ϕα , α < β, are
weak equivalences.

The limit ordinal case β ∈ O� is a direct consequence of Lemma 3.3.
Let now β ∈ Os be the successor of an ordinal γ .
To simplify notation, we denote the differential graded D-module

Fγ (P ⊗ SV ) = (P ⊗ SV<γ , δP,<γ ) (resp., Fγ (Q ⊗ SV ) = (Q ⊗ SV<γ , δQ,<γ ))

by (P ′, dP ′) (resp., (Q′, dQ′)) and we denote the morphism ϕγ = f ⊗ idSV<γ
by f ′.

The isomorphism

P ⊗ SV<β � P ⊗ SV<γ ⊗ S(D · 1n(γ )) = P ′ ⊗ SSn(γ ) (3.29)

of graded D-modules (it just replaces � by ⊗ and vice versa, so that we will use it
tacitly) allows to push the differential

δP,<β = ı ◦ (dP ⊗ id⊗ + idP ⊗ d2|A⊗SV<β
) ◦ ı−1

of P ⊗ SV<β forward to a differential ∂P,<β of P ′ ⊗ SSn(γ ) and to thus obtain an
isomorphic differential graded D-module structure on P ′ ⊗ SSn(γ ). The lowering
property of d2 induces a kind of lowering property for ∂P,<β :

(∂P,<β − dP ′ ⊗ idSSn(γ ) )(P ′ ⊗ Sk+1Sn(γ )) ⊂ P ′ ⊗ Sk Sn(γ ). (3.30)

Indeed, let p ⊗ �ivαi ⊗ � j s j be an element in P ′ ⊗ Sk+1Sn(γ ) (notation is self-
explaining, in particular αi < γ and s j = Dj · 1n(γ )). We have

∂P,<β(p ⊗ �ivαi ⊗ � j s j ) = δP,<β(p ⊗ �ivαi � � j s j )

= ı(dP ⊗ id⊗ + idP ⊗ d2|A⊗SV<β
)

(p ⊗ (1A ⊗ (�ivαi � � j s j ))) . (3.31)

When noticing that

1A ⊗ (�ivαi � � j s j ) = (1A ⊗ �ivαi )♦♦ j (1A ⊗ s j ) ,
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where ♦ is the multiplication in A ⊗ SV<β , and when remembering that d2 is a
derivation of ♦, we see that the expression in Eq. (3.31) reads

ı
(
dP p ⊗ (1A ⊗ (�ivαi � � j s j ))

+ (−1)|p| p ⊗ d2(1A ⊗ �ivαi ) � � j s j
)

± ı

⎛

⎝(−1)|p| p ⊗ (1A ⊗ �ivαi )♦
∑

j

±(1A ⊗ s1)♦ . . .♦d2(1A ⊗ s j )♦ . . .♦(1A ⊗ sk+1)

⎞

⎠ .

(3.32)

The first term (two first rows) is equal to

ı
(
dP p ⊗ (1A ⊗ �ivαi ) ⊗ � j s j + (−1)|p| p ⊗ d2(1A ⊗ �ivαi ) ⊗ � j s j

)

= ı
(
(dP ⊗ id⊗ + idP ⊗ d2|A⊗SV<γ

)(p ⊗ (1A ⊗ �ivαi ))
)

⊗ � j s j

= (δP,<γ ⊗ idSSn(γ ) )(p ⊗ �ivαi ⊗ � j s j )

= (dP ′ ⊗ idSSn(γ ) )(p ⊗ �ivαi ⊗ � j s j ) .

Since d2(1A ⊗ s j ) ∈ A ⊗ SV<γ , the remaining term in Eq. (3.32) is an element of
P ′ ⊗ Sk Sn(γ ), so that the claim (3.30) holds true.

The DGDM-isomorphism (3.29) and the lowering property (3.30) are of course also
valid for Q ⊗ SV<β � Q′ ⊗ SSn(γ ) . Recall now that it remains to prove that

ϕβ = f ⊗ idSV<β
: (P ⊗ SV<β, δP,<β) → (Q ⊗ SV<β, δQ,<β)

is a weak equivalence in DGDM, i.e., that

f ′ ⊗ idSSn(γ ) : (P ′ ⊗ SSn(γ ), ∂P,<β) → (Q′ ⊗ SSn(γ ), ∂Q,<β)

is aweak equivalence. In view of the afore-detailed lowering property (3.30), it suffices
to replicate the proof of the DGDA-case in Step 1 of the proof of Theorem 3.7.
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Appendices

In the following appendices, notation is the same as in the main part of the text.

Appendix A: Locally presentable categories

Recall that an infinite cardinal κ is regular, if no set of cardinality κ is the union of
less than κ sets of cardinality less than κ . For instance, if κ = ℵ0 = ω, no countable
set is a finite union of finite sets, so that ℵ0 = ω is regular.
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Let (I ,≤) be a directed poset, i.e., a partially ordered set in which every pair of
elements has an upper bound, i.e., for any i, j ∈ I , there exists k ∈ I such that i ≤ k
and j ≤ k. We view this poset as a category I whose morphisms i → j correspond
to the inequalities i ≤ j . A diagram of type I in a category C is a direct system and
its limit is a direct limit or directed colimit. More generally, for a regular cardinal κ , a
κ-directed poset (J ,≤) is a poset in which every subset of cardinality less than κ has
an upper bound. Then a colimit over a diagram of type J in a category C is called a
κ-directed colimit. For κ = ℵ0, we recover the preceding notion of directed colimit.

A finitely presented (left) module over a ring R is an R-module that is generated
by a finite number of its elements, which satisfy a finite number of relations. The
categorical substitute for this idea is a category all of whose elements are directed
colimits lim−→i

ci = ⊔
i ci/ ∼ of some generating objects ci . This leads to the concept

of locally κ-presentable category: such a category is, roughly, a category that comes
equipped with a (small) subset S of κ-small objects that generate all objects under
κ-directed colimits.

Remember first that the idea of smallness of an object c ∈ C is that the covariant
Hom functor HomC(c, •) commutes with a certain type of colimits. This actually
means (see, for instance, [6]) that any morphism c → colimi ci out of the small c into
a certain type of colimit colimi ci factors through one of the maps c j → colimi ci .
If κ is a regular cardinal, a κ-small, κ-compact, or κ-presentable object c ∈ C is an
object, such that HomC(c, •) commutes with κ-directed colimits. An object is called
small, if it is κ-small, for some regular κ.

Combining the two last paragraphs, we get the

Definition 4.1 For a regular cardinal κ , a locally κ-presentable category C is

1. a locally small category
2. that has all small colimits
3. and admits a set S ⊂ Ob(C) of κ-small objects, such that any object in C is the

κ-directed colimit of objects in S.

A category is termed a locally presentable category, if it is locally κ-presentable,
for some regular κ.

Appendix B: Internal Hom inmodules over a commutative monoid

Let (C,⊗, I,Hom) be a closed symmetric monoidal category with all small limits and
colimits.

In the main part of the present text, we recalled that the category ModC(A) of
modules in C over a commutative monoidA in C is also a closed symmetric monoidal
category with all small limits and colimits. However, we did not define the internal
HomA of this category of modules, at least not in the considered abstract setting.
Remember first that C and ModC(A) are endowed with bifunctors Hom and HomA,
and that C is in addition equipped with an internal Hom. Before considering the
internal HomA, recall still that a closed monoidal category C can be equivalently
defined as a monoidal category together with, for any two objects C ′ and C ′′, a C-
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object Hom(C ′,C ′′) and a C-morphism

evC ′,C ′′ : Hom(C ′,C ′′) ⊗ C ′ → C ′′ ,

which are universal in the sense that, for every C-object X and C-morphism f :
X ⊗ C ′ → C ′′, there exists a unique C-morphism h : X → Hom(C ′,C ′′) such that
f = evC ′,C ′′ ◦ (h ⊗ idC ′). Indeed, if we start for instance from the usual definition,
the existence of evC ′,C ′′ comes from

Hom(X ,Hom(C ′,C ′′)) � Hom(X ⊗ C ′,C ′′) ,

when choosing X = Hom(C ′,C ′′). Moreover, if h : X → Hom(C ′,C ′′), we get a
C-map

f := evC ′,C ′′ ◦ (h ⊗ idC ′) : X ⊗ C ′ → C ′′ .

Conversely, if f ∈ Hom(X ⊗ C ′,C ′′), there exists a unique h ∈ Hom(X ,Hom
(C ′,C ′′)), such that evC ′,C ′′ ◦ (h ⊗ idC ′) = f . Now, if M ′,M ′′ ∈ ModC(A), the
ModC(A)-object HomA(M ′,M ′′) should be the kernel of the ‘map

Hom(M ′,M ′′) � f �→ f ◦ μM ′ − μM ′′ ◦ (idA ⊗ f ) ∈ Hom(A ⊗ M ′,M ′′) ’ .

To put this idea right, we consider the isomorphism

Hom(Hom(M ′,M ′′),Hom(A ⊗ M ′,M ′′)) � Hom(Hom(M ′,M ′′) ⊗ A ⊗ M ′,M ′′) ,

and define the preceding kernel as the equalizer of the pair of parallel C-arrows

evM ′,M ′′ ◦ (id ⊗ μM ′), μM ′′ ◦ (idA ⊗ evM ′,M ′′) ◦ (com ⊗ idM ′)

∈ Hom(Hom(M ′,M ′′) ⊗ A ⊗ M ′,M ′′) .

This C-object inherits an A-module structure.

Appendix C: Universes

It is well-known that the set of all sets is not a set but a proper class. In the following,
we consider a pyramid of types of set. Start with some type of set on top of the pyramid
and call it the 0-sets. Then the set of all 0-sets is not a 0-set, but a set of a next, more
general, type, say a 1-set. Similarly, the set of all 1-sets is not a 1-set but a 2-set, and
so on. Finally, the union of all types of set is the proper class of all sets.

The adequate formalization of the idea of set of all sets of a certain type is the notion
of Grothendieck universe (∗). A Grothendieck universe a (very large) set U , whose
elements are sets and which is closed under all standard set-theoretical operations.
More precisely [2],

Definition 4.2 A universe is a set U that satisfies the axioms:
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(1) if x ∈ U and y ∈ x , then y ∈ U ,
(2) if x, y ∈ U , then the set {x, y} is an element of U ,
(3) if x ∈ U , then the set P(x) of all subsets of x is an element of U ,
(4) if I ∈ U and xi ∈ U , for all i ∈ I , then

⋃
i∈I xi ∈ U ,

(5) N ∈ U .

The preceding axioms allow to provemany additional closure properties, but it is not
impossible to leave a universe. The elements ofU are termedU -sets. In particular,U
is the set of allU -sets (see (∗)). As suggested aboveU /∈ U , but there exists a pyramid
of universes U ∈ V ∈ W ∈ . . . , so that any element ofU is also an element of V and
of W , and so on. It is therefore natural to think about the union of all Grothendieck
universes as the proper class of all sets. Moreover, this interpretation implies that any
set belongs to some universe (Grothendieck’s axiom).

We continue with a number of basic definitions.
A set S is U -small, if S is isomorphic to a U -set (not all authors distinguish

between U -set and U -small set). The category U-Set is the category with objects
all theU -sets and with morphisms all the maps between twoU -sets. Both, the collec-
tionOb(U−Set) of objects and the collectionMor(U−Set) of morphisms are sets,
although no U -sets, but we can speak about the category U-Set without having to
pass to proper classes.

Moreover, a U -category C, or, better, a locally U -small category C, is a category
such that, for any c′, c′′ ∈ C, the set HomC(c′, c′′) is U -small. In [2], a category C
is viewed as the set Mor(C) of its arrows (containing the subset of identity arrows,
i.e., the subset Ob(C) of objects). Hence, C ∈ U and C is U -small can be given the
usual meanings. More precisely, if C � Mor(C) ∈ U , then Ob(C) ∈ P(C) ∈ U : for
C ∈ U , we haveOb(C) ∈ U andMor(C) ∈ U , i.e., objects and morphisms areU -sets.
Similarly, if a categoryC �Mor(C) isU -small, it is easily seen thatOb(C) andMor(C)
are U -small sets. Let us stress that:

Remark 4.3 Contrarily to a U -set S, which is just a set S ∈ U , a U -category C is not
a category C ∈ U : A U -category is a locally U -small category in the above sense,
whereas a category C ∈ U is a category such that Ob(C),Mor(C) ∈ U . Note that, in
view of what has been said above, any category C belongs to U , is U -small, and is
locally U -small, for some universe U .

The necessity to change from a universe V to a larger universe W � V appears
in particular when speaking about generalized spaces. If C denotes some category of
spaces, its Yoneda dual category

Cˇ := Fun(Cop,Set) ,

i.e., the category of contravariant Set-valued functors defined on C, or, still, the
category of presheaves defined on C, may be viewed as a category of generalized
spaces. In our work, the category

SC V̌ := Fun(Cop, V−SSet)
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of simplicial presheaves on C with respect to V will play an important role. We start
recalling some fundamental results [2]:

Proposition 4.4 Consider a universe V , two categories C,D, as well as the category
Fun(C,D) of functors from C to D.

(1) If C,D ∈ V ( resp., are V -small ), the category Fun(C,D) is an element of V
( resp., is V -small ).

(2) If C is V -small and D is a V -category, the category Fun(C,D) is a V -category.
(3) If C is V -small, the category Č V is a V -category.
(4) If C is a V -category, the category Č V is not necessarily a V -category.

Remark 4.5 Usually authors do not specify the universe in which they work, assuming
implicitly that their constructions and results hold in any universe V . However, some-
times set-theoretical size issues force them to pass to a higher universeW � V . In this
case, their theory is (considered as) valid in any universes V ∈ W . One says that the
theory has been universally quantified over 1,2, or several universes, and one speaks
about the universal polymorphism approach. If the passage to higher universes is
also implicit, one speaks about typical ambiguity. However, this ambiguity, although
often used and even sometimes recommended, can be dangerous [33, Remarks 1.3.2
and 2.5.12].

In our paper, we start with the category C = DGDM, which is locally U -small for
some universe U (it is clear that the categories DGDA and Mod(A) are also locally
U -small). However, Ob(DGDM) and Mor(DGDM) can be sets that belong only to a
higher universe V � U , so that DGDM is then V -small (and the same holds for DGDA
and Mod(A)). Since DGDM is V -small, the category

DGDM V̌ = Fun(DGDMop, V−Set)

is locally V -small (4.4) and thus it isW -small for some higher universeW � V . When
considering the V -small category C = DGDAop, we conclude that

SDGDAop V̌ = Fun(DGDA, V−SSet)

is locally V -small and W -small [37, Appendix A.1].
The preceding paragraph explains the idea behind the introduction of the three

universesU ∈ V ∈ W in [38]. In the present paper, we work implicitly in an arbitrary
universe U that we need a priori not mention. However, since typical ambiguity can
lead to problems, wemention explicitly the change of universe each time it is required.
In fact, this is not necessary until we pass to simplicial presheaves.
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