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Abstract
We prove that the normalization functor of the Dold-Kan correspondence does not
induce aQuillen equivalence betweenGoerss’model category of simplicial coalgebras
and Getzler–Goerss’ model category of differential graded coalgebras.
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92 W. Hermann B. Sore

1 Introduction

In [9], the authors consider themonoidalmodel categories of simplicialmodulesSMod
and differential gradedmodulesDGMod over a commutative ring A. These categories
are Quillen equivalent via the Dold-Kan correspondence and the authors then give
sufficient conditions for lifting this Quillen equivalence to the level of the associated
categories of monoids, namely, simplicial associative algebras SAlg and differential
graded algebras DGAlg over A. The crucial argument (see [9, Theorem 3.12]) that
enables the lifting of this Quillen equivalence is that the functors (Forget : SAlg →
SMod) and (Forget : DGAlg → DGMod) create (see [9, Definition 3.2]) the model
structures for SAlg and DGAlg respectively.

In [10, Sect. 4], we consider the monoidal model categories of simplicial vec-
tor spaces SVct and differential graded vector spaces DGVct over a field K . Since
these categories are Quillen equivalent via the Dold-Kan correspondence, we inves-
tigate whether dual methods from [9] apply to lift this Quillen equivalence to the
level of the categories of comonoids, namely, simplicial coassociative coalgebras
ScoAlg and differential graded coassociative coalgebras DGcoAlg over K . How-
ever, many problems arise with dualizing the crucial notion of create. While the
small object argument satisfied in many usual categories, enables the transfer of a
model category structure from left to right along a given adjunction, its formal dual
the cosmall object argument is harder to achieve. In fact the categories SVct and
DGVct do not have enough cosmall objects to guarantee a right to left transfer of
model category structure along the adjunctions (Forget : ScoAlg � SVct : Cofree)
and (Forget : DGcoAlg � DGVct : Cofree) respectively. We refer to [1] and [5]
where the authors give conditions for right to left transfer of model category structures.
In [10, Sect. 5] we then restrict to the categories of connected simplicial coassocia-
tive coalgebras ScoAlgc and connected differential graded coassociative coalgebras
DGcoAlgc over a field K . An object C in ScoAlgc (resp. in DGcoAlgc) is an object
in ScoAlg (resp. in DGcoAlg) with C0 = K . Note that connected coalgebras are
conilpotent coalgebras. Moreover the cofree coalgebra on a connected differential
graded vector space V (i.e. V ∈ DGVct with V0 = 0) is just given by T ′

d(V ) the
tensor coalgebra on V . In contrast, the cofree coalgebra on a connected simplicial
vector space W (i.e. W ∈ SVct with W0 = 0) is given by a degreewise extension of
Sweedler’s cofree coalgebra functor on W . Since the functor T ′

d(−) has good homo-
logical properties, the natural attempt was to check directly whether the connected
coalgebra-valued normalization functor induces a Quillen equivalence. But an error
(see [11]) occurs with a wrong definition of the cofree coalgebra functor from SVctc to
ScoAlgc and consequently skews the claimed Quillen equivalence between ScoAlgc
and DGcoAlgc.

The present paper is then the sequel to [10] and brings a correction to [11]. Our
aim remains to check whether the Quillen adjunction (˜N : ScoAlg � DGcoAlg : R)

established in [10, Proposition 4.5]can be improved to a Quillen equivalence. For
this, we are led to understand the homology vector spaces of the cofree coalgebras
Sd(S1) ∈ DGcoAlg and Ss�(S1) ∈ ScoAlg. Note that both objects are connected
coalgebras.Moreover, both involve Sweedler’s cofree coalgebra functor as constructed
in [12, Theorem 6.4.1]. Since we do not assume cocommutativity, the definition of
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On a Quillen adjunction between the categories of differential. . . 93

this cofree coalgebra functor is very abstract and consequently difficult to use for
homological computations. However a more tractable interpretation of this functor
is available: pioneered by Peterson-Taft in [8] for 1-dimensional vector spaces, this
interpretation has been generalized byHazewinkel in [4] for higher dimensional vector
spaces. By using this generalization by [4], we provide some explicit constructions
of multivariable recursive sequences that prove that the normalization functor cannot
induce aQuillen equivalence betweenGoerss’model category of simplicial coalgebras
and Getzler–Goerss’ model category of differential graded coalgebras.

The paper is organized as follows. In Sect. 2, we give a review of Sweedler’s
cofree coalgebra functor, its interpretation by Peterson-Taft and the generalization
by Hazewinkel. In Sect. 3, we recall Getzler–Goerss’ model category of differential
graded coalgebras and Goerss’ model category of simplicial coalgebras. In Sect. 4,
we investigate our motivating problem: given the simplicial vector space �(S1) with
Sweedler’s cofree coalgebra S applied degreewise, we try to evaluate the dimension
of the homology vector spaces of its associated Moore complex ˜NSs�(S1). As a
consequence, we derive the failure of our Quillen adjunction (˜N , R) to be a Quillen
equivalence.

2 Preliminaries on cofree coalgebras

2.1 The construction of the cofree coalgebra functor

Let K be a fixed field. If A is a K -algebra, it is proven in [12, Proposition 6.0.2] that
the vector space

A◦ =
{

f ∈ A∗ | ker f contains a cofinite ideal I of A
}

has a coalgebra structure. Moreover the assignment A �→ A◦ defines a contravariant
functor (−)◦ : Alg → coAlg and by [12, Lemma 6.0.1] if f : A → B is a morphism
of algebras then f ◦ : B◦ → A◦ is the restriction of f ∗ to B◦.

Definition 2.1 Let V be a vector space. A pair (C, π)withC ∈ coAlg and π : C → V
a map of vector spaces is called a cofree coalgebra on V if for any coalgebra D and
any map ν : D → V of vector spaces there exists a unique coalgebra morphism g
such that the diagram

V D
ν

∃! g
C

π

commutes. In other words, the pair (C, π) is couniversal among the pairs (D, ν).
Notice that the coalgebraC when it exists is uniqueup to an isomorphismof coalgebras.

Theorem 2.2 [12, Theorem 6.4.1] There exists a cofree coalgebra on any V ∈ Vct.
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94 W. Hermann B. Sore

If V ∈ Vct and T : Vct → Alg denotes the tensor algebra functor, then
((T (V ∗)◦, π) with π given by the composition T (V ∗)◦ → T (V ∗)∗ → V ∗∗ is the
cofree coalgebra on the bidual V ∗∗. By [12, Lemma 6.4.2] the cofree coalgebra on V
is given by (D, ρ)where D = ∑

E with the sum taken over all subcoalgebras E such
that π(E) ⊆ V and ρ is the restriction of π to D.

Corollary 2.3 The cofree coalgebra construction above defines a functor S : Vct →
coAlg that is right adjoint to the coalgebra forgetful functor U : coAlg → Vct.

2.2 The cofree coalgebra on a 1-dimensional vector space

Let V be a 1-dimensional vector space. Then T (V ∗) is isomorphic to K [X ] and
K [X ]∗ can be identified with KN, the space of all infinite sequences f = ( fn)n≥0
where fn = f (Xn). Let f ∈ S(V ) = K [X ]◦ ⊆ K [X ]∗. Since all non-zero ideals J
of K [X ] are generated by monic polynomials, they are all cofinite. Let f (J ) = 0 for
such a non-zero J containing a monic polynomial h(X) = Xr − h1Xr−1 − · · · − hr .
Then f (Xmh(X)) = 0 for m ≥ 0, i.e.,

fn = h1 fn−1 + h2 fn−2 + · · · + hr fn−r for n ≥ r .

Using this fact [8, Pages 6–7] proves the following important description.

Proposition 2.4 [8, Pages 6–7] The cofree coalgebra S(K ) on a one-dimensional
vector space can be identified with K [X ]◦ which consists of the space of all linearly
recursive sequences, i.e.

sequences f = ( fn)n≥0 satisfying for some r > 0 the relation

fn = h1 fn−1 + h2 fn−2 + · · · + hr fn−r for n ≥ r . (2.1)

2.3 The cofree coalgebra on any finite dimensional vector space

In [4], Hazewinkel gives an appropriate definition of recursiveness in the multivariable
case that generalizes the above description by [8]. We give a brief review of his
construction. However, we restrict in this section to finite dimensional vector spaces
instead of free modules with finite rank over a commutative ring as in Hazewinkel’s
original generalization paper [4].

Let V be a finite dimensional vector space with dimK V = m ≥ 2 and
〈X1, . . . , Xm〉 be a basis of V . It is well-known that the tensor algebra T (V ) can
be identified with the non-commutative polynomial algebra K 〈X1, . . . , Xm〉. If we
denote by Word {1, . . . ,m} the free monoid of all words in the alphabet {1, . . . ,m},
then a word α ∈ Word {1, . . . ,m} is written α = α1 . . . αn where n ∈ N \ {0} and
where the αi are in N \ {0}. The empty word is written ∅. The length of α denoted by
lg(α) is then n and lg(∅) is 0. A basis of K 〈X1, . . . , Xm〉 is given by all monomials
{Xα}α where Xα = Xα1 . . . Xαnand X∅ = 1K .

With this reminder the tensor algebra T (V ∗) can be identified with the non-
commutative polynomial algebra K

〈

X∗
1, . . . , X

∗
m

〉

. Furthermore the completion of
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On a Quillen adjunction between the categories of differential. . . 95

T (V ) given by T̂ (V ) = ∏

n≥0 V
⊗n can be identified with the non-commutative power

series algebra K 〈〈X1, . . . , Xm〉〉. Since V has a finite basis, the completion T̂ (V ) can
also be identified with T (V ∗)∗ via

� : T̂ (V ) −→ (T (V ∗))∗
f �−→ �( f ) : T (V ∗) −→ K

ϕ �−→ 〈 f , ϕ〉 = ∑〈

f i , ϕi
〉

where f i ∈ V⊗i , ϕi ∈ (V ∗)⊗i . Now let f be in T̂ (V ) = K 〈〈X1, . . . , Xm〉〉. Then
f can be written as f = ∑

α fαXα and for a basis element X∗
β ∈ T (V ∗), we have

�( f )(X∗
β) =

〈

f , X∗
β

〉

= fβ .

Definition 2.5 A tensor power series f ∈ T̂ (V ) is representative if there exists k ∈
N \ {0} and (gi )i∈{1,...,k} , (hi )i∈{1,...,k} ∈ T̂ (V ) such that

f (ab) =
k

∑

i=1

gi (a)hi (b) ∀ a, b ∈ T (V ∗).

It is proven in [4, Theorem 3.14] that T Vrepr, the vector space of all representative
tensor power series over K is the cofree coalgebra over V .

In order to have a more tractable characterization of representative tensor power
series, Hazewinkel introduces the following definition (that generalizes linearly recur-
sive sequences).

Definition 2.6 [4, Definition 4.3] Let V be a vector space with basis
{

X j , j ∈ J
}

. A

tensor power series f ∈ T̂ (V ) ∼= K
〈〈

X j , j ∈ J
〉〉

is

(1) left recursive if there is a finite set of monomials Xλi , i = 1, . . . , l and for some
fixed s > max {lg(λi ), i = 1, . . . , l}, there are coefficients cγ,i ∈ K , for each
i = 1, . . . , l and word γ ∈ Word(J ) of length s, such that for n ≥ s for each α ∈
Word(J ) of length n

f (α) =
l

∑

i=1

cαpre(s),i f (λiαsuf) (2.2)

where if β, γ are two words over J then βγ is the concatenation of them and
where for a word α of length ≥ s, αpre(s) is the prefix of α of length s and αsuf is
the corresponding suffix so that α = αpre(s)αsuf .

(2) right recursive if there is a finite set of monomials Xρi , i = 1, . . . , r and for some
fixed t > max {lg(ρi ), i = 1, . . . , r}, there are coefficients dγ,i ∈ K , for each
i = 1, . . . , r and word γ ∈ Word(J ) of length t , such that for n ≥ t for each α ∈
Word(J ) of length n

f (α) =
l

∑

i=1

dαsuf(t),i f (αpreρi ) (2.3)
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96 W. Hermann B. Sore

where this time αsuf(t) is the suffix of α of length t and αpre is the corresponding
prefix so that α = αpreαsuf(t).

(3) left (resp. right) recursive with finiteness condition if it is left (resp. right) recursive
and moreover the recursive coefficient matrix

(

cα,i
)

lg(α)=s,i (resp.
(

dα,i
)

lg(α)=s,i )
has only finitely many entries unequal to zero.

(4) recursive if it is both left and right recursive.
(5) recursive with finiteness condition if it is left recursive with finiteness condition

and right recursive with finiteness condition.

In the case of finitelymany variables, [4, Theorem 5.7] proves that the notions of left
recursiveness, right recursiveness, recursiveness and representativeness are all equiva-
lent. Therefore, we obtain the following result as a consequence of [4, Theorems 3.14,
4.6 and 5.7].

Proposition 2.7 [4, Corollary 5.9] Let V = K⊕m be an m-dimensional vector space.
Then the cofree coalgebra S(V ) = S(K⊕m) = (

T ((K⊕m)∗)
)◦

can be identified
with K

〈

X∗
1, . . . , X

∗
m

〉◦
which consists of the space of all tensor power series in

K 〈〈X1, . . . , Xm〉〉 that are recursive with finiteness condition.
Remark 2.8 Note that the Eq. (2.2) of Definition 2.6 (1) means that a power series f
is left recursive if there exists some order s ∈ N\ {0} and some coefficients cβ,γ ∈ K
such that each coefficient fα with α a word of length lg(α) ≥ s may be expressed as

fα =
∑

γ∈Word
lg(γ )<s

cαpre(s),γ fγαsuf (2.4)

Example 2.9 A recursive power series f ∈ K 〈〈X1〉〉 of order s = 2withα ∈ Word {1}
has the following expressions for its coefficients fα

f11 = c11,∅ f∅ + c11,1 f1
f111 = c11,∅ f1 + c11,1 f11
f1111 = c11,∅ f11 + c11,1 f111

...

f1n = . . . c11,∅ f1n−2 + c11,1 f1n−1

Hence, by setting n = 1 . . . 1
︸ ︷︷ ︸

n

= 1n , c11,∅ = c0 and c11,1 = c1 one returns to the usual

definition of a linearly recursive sequence of order 2.

3 Model category structures on categories of coalgebras

3.1 Amodel category structure onDGcoAlg

In this section, we consider the category of coassociative, counital differential non-
negatively graded coalgebras over a fixed field K , denoted here by DGcoAlg. We
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On a Quillen adjunction between the categories of differential. . . 97

do not assume cocommutativity for DGcoAlg. We recall some basic results due to
Getzler and Goerss in their unpublished paper [2]. These results and their proofs have
been revisited in [10, Sect. 3.1].

There is a categorical equivalence between the category of vector spaces and the
category of profinite vector spaces given by the linear dual functor (−)∗ and the con-
tinuous linear dual functor (−)′. This categorical equivalence extends to a categorical
equivalence between the category of coalgebras and the category of profinite algebras.
This fact is used by Getzler and Goerss to prove the following result.

Proposition 3.1 [2, Proposition 1.10]. Let V be an object in DGVct. Then, there is a
functor denoted Sd from DGVct to DGcoAlg that is right adjoint to the functor Ud

that forgets the coalgebra structure:

(1) if V is degreewise finite dimensional,

Sd(V ) =
(

T̂d(V ∗)
)′

where Td(−), (̂−) and (−)′ denote respectively the tensor algebra, the profinite
completion and the continuous dual functors.

(2) for any V ∈ DGVct,

Sd(V ) = colimα(Sd(Vα))

with Vα running over finite dimensional subvector spaces of V .

Remark 3.2 For a finite dimensional vector space V , the cofree coagebra (T (V ∗))◦

given in Proposition 2.7 and the cofree coalgebra
(

T̂ (V ∗)
)′

given in the previous

Proposition 3.1 (here V is viewed as a differential graded vector space with V concen-
trated in degree 0) are isomorphic since any two-right adjoint of a functor are naturally
isomorphic.

Theorem 3.3 [2, Definition 2.3, Theorem 2.8]. Define f : C → D ∈ DGcoAlg to be

1. a weak equivalence if H∗ f is an isomorphism.
2. a cofibration if f is a degreewise injection of graded vector spaces.
3. a fibration if f has the right lifting property with respect to acyclic cofibrations.

With these definitions, DGcoAlg becomes a closed model category.

3.2 Amodel category structure on ScoAlg

In this section, we consider the category of coassociative, counital simplicial coalge-
bras over a fixed field K , denoted here by ScoAlg. We do not assume cocommutativity
for ScoAlg. In [3, Sect. 3], Goerss has established a model category structure for
cocommutative simplicial coalgebras. In [10, Sect. 3.2], we have adapted Goerss’
arguments for proving the existence of a model category structure for our category of
not necessarily cocommutative simplicial coalgebras ScoAlg.
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98 W. Hermann B. Sore

Lemma 3.4 The forgetful functor Us from the category of simplicial coalgebras to the
category of simplicial vector spaces has a right adjoint Ss .

Proof The functor Ss is obtained by extending degreewise the cofree coalgebra functor
S from the category of vector spaces to the category of not necessarily cocommutative
coalgebras as stated in Corollary 2.3. ��

Theorem 3.5 [3, Sect. 3]. Define f : C → D ∈ ScoAlg to be

1. a weak equivalence if π∗ f is an isomorphism.
2. a cofibration if f is a levelwise inclusion.
3. a fibration if f has the right lifting property with respect to acyclic cofibrations.

With these definitions, ScoAlg becomes a closed model category.

4 A comparison of the categories ScoAlg andDGcoAlg

4.1 The Dold-Kan correspondence

The Dold-Kan correspondence is a classical result that establishes an equivalence of
categories between the category of simplicial objects and the category of differential
non-negatively graded objects in every abelian category. In this section, we collect the
basics for its construction. We refer to [13, Chapter 8] for more details.

Definition 4.1 Let A be a simplicial object in an abelian category C, then

(1) the differential graded object associated to A is denoted by CA and is given by
(CA)n = An with differential the alternating sum of the face operators:

d =
n

∑

i=0

(−1)i di : (CA)n → (CA)n−1

(2) and the differential graded object of degenerate simplices associated to A, denoted
by DA is the subcomplex of CA with

(DA)0 = 0 and (DA)n = s0An−1 + · · · + sn−1An−1 for n ≥ 1.

Definition 4.2 The normalized differential graded object associated to A, denoted by
N A is the quotient of CA by its subcomplex DA, that is

N A = CA/DA.

The normalization functor N is the functor that associates to a simplicial object its
normalized differential graded object.
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On a Quillen adjunction between the categories of differential. . . 99

We also mention the alternative definition of the normalization functor N given by
the Moore chain complex

(N A)n =
n−1
⋂

i=0

ker(di )

with differential (N A)n −→ (N A)n−1 induced from dn by restriction.

Theorem 4.3 (Dold-Kan correspondence) Let C be an abelian category. Then, the
normalization functor N is an equivalence of categories between the category of
differential non-negatively graded objects in C and the category of simplicial objects
in C.

We refer to [13, 8.4.4] for an algorithm that describes the inverse � of the normal-
ization functor and for a proof of the Dold-Kan correspondence.

Example 4.4 Let us denote by S
n the n-sphere chain complex. This is the object of

DGVct which has the field K in degree n and 0 in other degrees. All differentials in
S
n are trivial. We describe the image under the inverse functor � of the vector space

S
n for n ≥ 1 with the help of the algorithm given in Sect. [13, 8.4.4]. If l is an index

with l < n, then
(

�(Sn)
)

l is the zero vector space 0. For an index l ≥ n, the vector

space
(

�(Sn)
)

l consists of

(

l

n

)

copies of K . Hence restricting to n = 1, the diagram

of face operators in the simplicial vector space �(S1) is

0 K K⊕2 K⊕3 K⊕4 · · ·

Wemay represent the face operators involved in�(S1)with matrices where the entries
1 and 0 denote respectively the identity map on K and the trivial map. We give here
the face operators involved in the coming sections.

The face operators di : K −→ 0 are all trivial.
The face operators di : K⊕2 −→ K are given by

d0 = (

1 0
)

, d1 = (

1 1
)

,

d2 = (

0 1
)

.

The face operators di : K⊕3 −→ K⊕2 are given by

d0 =
(

1 0 0
0 1 0

)

, d1 =
(

1 0 0
0 1 1

)

,

d2 =
(

1 1 0
0 0 1

)

, d3 =
(

0 1 0
0 0 1

)

.
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100 W. Hermann B. Sore

4.2 A Quillen adjunction between ScoAlg andDGcoAlg

We refer to [10, Sect. 4.2] for the details of the constructions involved in this paragraph.
We would like to compare the model categories of ScoAlg and DGcoAlg by means
of a Quillen adjunction. For this purpose, we have considered the classical Dold-Kan
correspondence (N , �) between simplicial and differential graded vector spaces as in
[13, Chapter 8]. Then, we have viewed the categories of coalgebras as their respective
categories of comonoids. Moreover, we have seen in Proposition 3.1 that the forgetful
functor Ud from the category of differential graded coalgebras to the category of
differential graded vector spaces has a right adjoint Sd . The counterpart result for the
categories of simplicial coalgebras and vector spaces is recalled in Lemma 3.4. In this
way, the situation to be studied may be illustrated in the diagram

(SVct, ̂⊗, I (K ))

Ss

N
(DGVct,⊗, K [0])

Sd

�

ScoAlg

Us

˜N
DGcoAlg.

Ud

where ˜N stands for the coalgebra-valued normalization functor. In [10, Sect. 4.2] we
prove the following result.

Proposition 4.5 [10, Proposition 4.5] In the above situation the functor ˜N has a right
adjoint R. Moreover the adjoint pair (˜N , R) is a Quillen adjunction.

4.3 Is the Quillen adjunction (˜N, R) a Quillen equivalence?

This section addresses the question whether the Quillen adjunction (˜N , R) considered
in Proposition 4.5 is a Quillen equivalence.

Definition 4.6 Given twomodel categoriesC andD and aQuillen adjunction F : C �
D : U between them, the Quillen pair (F,U ) is a Quillen equivalence if and only if,
for every cofibrant object C ∈ C and fibrant object D ∈ D, a map f : FC → D is a
weak equivalence in D if and only if its adjoint map C → UD is a weak equivalence
in C.

In Goerss’ model category of ScoAlg every object is cofibrant. Moreover every
object is fibrant in the model structure on the category DGVct. Since the functor Sd
preserves fibrations, it follows that every cofree coalgebra is fibrant and in particular
Sd(Sn) is fibrant. By considering the Quillen adjunction (˜N , R), the fibrant object
Sd(S1) ∈ DGcoAlg and the cofibrant object RSd(S1) ∈ ScoAlg, we prove that while
the identity map id : RSd(S1) → RSd(S1) is clearly a weak equivalence in ScoAlg,
its adjoint map ˜N RSd(S1) → Sd(S1) fails to be a weak equivalence in DGoAlg.

Before starting our homological computations, we recall the following definition
on ordered alphabets.
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On a Quillen adjunction between the categories of differential. . . 101

Definition 4.7 [7, Sect. 1.2.1] Given finite words x, y over an ordered alphabet, the
radix order � is defined by

x � y ⇐⇒
⎧

⎨

⎩

lg(x) < lg(y)
or
lg(x) = lg(y) and x = uax ′ and y = uby′

with a, b letters in the ordered alphabet such that a ≤ b.

4.3.1 Description of the Moore chain complex associated to Ss0(S1)

By [10, Proof of Proposition 4.5] we have R ◦ Sd = Ss ◦ �. Therefore, we have
˜N RSd(S1) = ˜NSs�(S1) and we are forced to understand the Moore complex associ-
ated to Ss�(S1). With the help of the description of �(S1) in Example 4.4 we obtain
the simplicial coalgebra Ss�(S1)

Ss�(S1) : S(0) S(K ) S(K⊕2) S(K⊕3) . . .

by extending degreewise Sweedler’s cofree coalgebra functor S given in Corollary 2.3.
Let us consider a face operator

di : K⊕m −→ K⊕(m−1)

with m ≥ 1 coming from the description of �(S1) in Example 4.4. By applying
successively the linear dual functor (−)∗ and the tensor algebra functor T to di we
obtain

T
(

d∗
i

) : T
[(

K⊕(m−1)
)∗] −→ T

[(

K⊕(m)
)∗]

.

Then, we obtain the following morphism

T (d∗
i )∗ :

(

T
[

(

K⊕(m)
)∗])∗ −→

(

T
[

(

K⊕(m−1)
)∗])∗

f �−→ T (d∗
i )∗( f )

by applying the linear dual functor to T
(

d∗
i

)

. With the help of the introduction of

Sect. 2.3, we identify
(

T
[

(

K⊕(m)
)∗])∗

with the completion ̂T
[

K⊕(m)
]

. Thus, f ∈
(

T
[

(

K⊕(m)
)∗])∗

is viewed as an infinite sequence

f = ( fα)α∈Word{1,...,m} = ( f∅, f1, . . . , fm, f11, . . . , fα, . . .)

with the radix order onWord {1, . . . ,m}. Hence, if K⊕m has a basis 〈Y1, . . . ,Ym〉 and
if α is the word α1 . . . αn , then

fα = 〈

f ,Y ∗
α1

. . . Y ∗
αn

〉 = f (Y ∗
α1

. . . Y ∗
αn

). (4.1)
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Furthermore, by considering a basis 〈X1, . . . , Xm−1〉 for K⊕(m−1), the morphism
T (d∗

i )∗( f ) is defined as the composition

T (d∗
i )∗( f ) : T

[

(

K⊕(m−1)
)∗] T (d∗

i )−→ T
[

(

K⊕(m)
)∗] f−→ K

(X∗
k )

⊗n �−→ (d∗
i (X∗

k ))
⊗n �−→ f

(

(d∗
i (X∗

k ))
⊗n

)

(4.2)

where by using the definition of di , d∗
i (X∗

k ) for k ∈ {1, . . . ,m − 1} is a linear combi-
nation of the basis elements Y ∗

l with l ∈ {1, . . . ,m}.
It follows that the functor S applied on the face operators di gives the maps

S(di ) = T (d∗
i )◦ :

(

T
[(

K⊕(m)
)∗])◦ −→

(

T
[(

K⊕(m−1)
)∗])◦

that is, by definition the restriction of T (d∗
i )∗ to the cofree coalgebra

(

T (K⊕m)∗
)◦.

We can now define the normalized or Moore chain complex ([13, Definition 8.3.6])
associated to the simplicial coalgebra Ss�(S1) by

(

Ñ Ss�(S1)
)

n
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

S(0) = K if n = 0
n−1
⋂

i=0

ker S(di ) if n ≥ 1

with differential ∂n :
(

Ñ Ss�(S1)
)

n
−→

(

Ñ Ss�(S1)
)

n−1
induced from S(dn) by

restriction.

4.3.2 Computing H2
(

ÑSs0(S1)
)

We apply the process in Sect. 4.3.1 in order to describe the vector spaces and the

differentials involved in the computation of H2

(

Ñ Ss�(S1)
)

.

If K⊕2 = 〈Y1,Y2〉 , K⊕1 = 〈X1〉 and d0, d1, d2 : K⊕2 −→ K are the face opera-
tors given in Example 4.4, we obtain the following assignments

d∗
0 : X∗

1 �−→ Y ∗
1

d∗
1 : X∗

1 �−→ Y ∗
1 + Y ∗

2

d∗
2 : X∗

1 �−→ Y ∗
2 .

which determine the morphisms T (d∗
i )∗ for i ∈ {0, 1, 2}. In fact, by using (4.2) we

obtain the following composition mappings

T (d∗
0 )∗ : (X∗

1)
⊗n �−→ (Y ∗

1 )⊗n �−→ f
(

(Y ∗
1 )⊗n) = f1 . . . 1

︸ ︷︷ ︸

n

T (d∗
1 )∗ : (X∗

1)
⊗n �−→ (Y ∗

1 + Y ∗
2 )⊗n �−→ f

(

(Y ∗
1 + Y ∗

2 )⊗n) =
∑

α∈Word{1,2}
lg(α)=n

fα
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T (d∗
2 )∗ : (X∗

1)
⊗n �−→ (Y ∗

2 )⊗n �−→ f
(

(Y ∗
2 )⊗n) = f2 . . . 2

︸ ︷︷ ︸

n

(4.3)

respectively.
If K⊕3 = 〈Z1, Z2, Z3〉 , K⊕2 = 〈Y1,Y2〉 and d0, d1, d2, d3 : K⊕3 −→ K⊕2 are

the face operators given in Example 4.4. we obtain the following mappings

d∗
0 :

{

Y ∗
1 �→ Z∗

1
Y ∗
2 �→ Z∗

2
d∗
1 :

{

Y ∗
1 �→ Z∗

1
Y ∗
2 �→ Z∗

2 + Z∗
3

d∗
2 :

{

Y ∗
1 �→ Z∗

1 + Z∗
2

Y ∗
2 �→ Z∗

3
d∗
3 :

{

Y ∗
1 �→ Z∗

2
Y ∗
2 �→ Z∗

3

(4.4)

which determine the morphisms T (d∗
i )∗ for i ∈ {0, 1, 2, 3}.

Example 4.8 By using (4.2), the morphism T (d∗
1 )∗ is given by the following compo-

sition assignments

(

Y ∗
1

)⊗n �−→ (

Z∗
1

)⊗n �−→ f
(

(

Z∗
1

)⊗n
)

= f1n
(

Y ∗
2

)⊗n �−→ (

Z∗
2 + Z∗

3

)⊗n �−→ f
(

(

Z∗
2 + Z∗

3

)⊗n
)

=
∑

α∈Word{2,3}
lg(α)=n

fα

and by means of (4.1), we display the following example of computation

(S(d1)( fα))1211 = T (d∗
1 )∗( f )(Y ∗

1 Y
∗
2 Y

∗
1 Y

∗
1 )

= f ◦ T (d∗
1 )(Y ∗

1 Y
∗
2 Y

∗
1 Y

∗
1 )

= f
(

Z∗
1(Z

∗
2 + Z∗

3)Z
∗
1 Z

∗
1

)

= f (Z∗
1 Z

∗
2 Z

∗
1 Z

∗
1) + f (Z∗

1 Z
∗
3 Z

∗
1 Z

∗
1)

= f1211 + f1311

Lemma 4.9 The vector space
(

Ñ Ss�(S1)
)

2
= ker S(d0) ∩ ker S(d1) consists of mul-

tirecursive sequences

( fα)α∈Word{1,2} = ( f∅, f1, f2, f11, f12, f21, f22, f111, f112, f121, f122, . . .)

with the radix order on Word {1, 2} such that

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

f1 . . . 1
︸ ︷︷ ︸

n

= 0

∑

α∈Word{1,2}
lg(α)=n

fα = 0
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Proof This result is a clear consequence of the given mappings (4.3). ��
Lemma 4.10 The vector space ker ∂2 consists of multirecursive sequences

(gα)α∈Word{1,2} = (g∅, g1, g2, g11, g12, g21, g22, g111, g112, g121, g122, . . .)

with the radix order on Word {1, 2} such that

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

g1 . . . 1
︸ ︷︷ ︸

n

= 0 = g2 . . . 2
︸ ︷︷ ︸

n

∑

α∈Word{1,2}
lg(α)=n

gα = 0

Proof Since ker ∂2 = (ker S(d0) ∩ ker S(d1)) ∩ ker S(d2), the result follows from
Lemma 4.9. ��
Example 4.11 FromDefinition 2.6, the prefix of α ∈ Word {1, 2} of length 2 is denoted
by αpre(2). Let us consider the following coefficients for αpre(2) ∈ {12, 21}

{

cα,γ = 0 if αpre(2) �= γ

cα,γ = 1 if αpre(2) = γ.
(4.5)

Then the sequence (gα)α∈Word{1,2} defined by

gα =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎧

⎪

⎨

⎪

⎩

1 if α = 12

−1 if α = 21

0 otherwise

for lg(α) ≤ 2

⎧

⎪

⎨

⎪

⎩

1 if αpre(2) = 12

−1 if αpre(2) = 21

0 otherwise

for lg(α) ≥ 3

is multirecursive of order s = 3 since for α with lg(α) ≥ 3, it satisfies the relation

gα =
∑

γ∈Word{1,2}
lg(γ )<3

cαpre(3),γ gγαsuf

as observed in Remark 2.8. Moreover this sequence is in ker ∂2 by the characterization
given in the previous Lemma 4.10.
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Example 4.12 Let us consider the following coefficients for α ∈ Word {1, 2} and
αpre(2) ∈ {12, 21}

{

dα,γ = 0 if αpre(2) �= γ

dα,γ = −1 if αpre(2) = γ.
(4.6)

Then, the sequence (hα)α∈Word{1,2} defined by

hα =

⎧

⎪

⎨

⎪

⎩

−(−1)lg(α) if αpre(2) = 12

(−1)lg(α) if αpre(2) = 21

0 otherwise

is in ker ∂2. Moreover it is multirecursive of order s = 3 since for α with lg(α) ≥ 3,
it satisfies the relation

hα =
∑

γ∈Word{1,2}
lg(γ )<3

dαpre(3),γ hγαsuf .

Indeed, if αpre(2) ∈ {12, 21}, then the sum in the previous relation reduces to

dαpre(3),12 h12αsuf + dαpre(3),21 h21αsuf

since by (4.6) the coefficients dα,γ are zero for γ ∈ {∅, 1, 2, 11, 22}. Let us consider
the case αpre(2) = 12 for instance. We can write α = 12aω where a ∈ {1, 2} and
ω ∈ Word {1, 2}, in other words ω is the suffix αsuf corresponding to αpre(3). Thus, in
the one hand we have

hα = h12aω = −(−1)lg(α) = −(−1)lg(12aω) = (−1)lg(ω).

In the other hand we have

dαpre(3),12 = d12a,12 = −1
h12αsuf = h12ω = −(−1)lg(12ω) = −(−1)lg(ω)

dαpre(3),21 = d12a,21 = 0

Consequently hα = (−1)lg(ω) = dαpre(3),12 h12αsuf satisfying the required recursive
relation. The caseαpre(2) = 21 is treated similarly and the relation is trivial forαpre(2) /∈
{12, 21}.
Lemma 4.13 If ( fα)α∈Word{1,2,3} ∈

(

Ñ Ss�(S1)
)

3
, then (∂3 f )12 = 0 = (∂3 f )121.

Proof By using the mappings given in (4.4) we obtain that

(S(d0)( fα))12 = f12
(S(d1)( fα))12 = f12 + f13
(S(d2)( fα))12 = f13 + f23
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Since ( fα)α ∈
(

Ñ Ss�(S1)
)

3
= ker S(d0) ∩ ker S(d1) ∩ ker S(d2), it follows that

(S(d3)( fα))12 = f23 = 0.

A similar argument proves that (∂3 f )121 = 0. ��
Proposition 4.14 The homology vector space H2

(

Ñ Ss�(S1)
)

is of dimension ≥ 2.

Proof We exhibit two vectors in H2

(

Ñ Ss�(S1)
)

that are linearly independent. To

this end, we consider the sequences (gα)α∈Word{1,2} and (hα)α∈Word{1,2} as given in
Examples 4.11 and 4.12 respectively and make the following observations:

(1) Both sequences are in ker ∂2 by construction.
(2) Let a, b ∈ K such that agα+bhα ∈ im∂3 for all α ∈ Word {1, 2}. Then there exists

a sequence ( fγ )γ∈Word{1,2,3} ∈
(

Ñ Ss�(S1)
)

3
such that agα + bhα = (∂3 f )α . By

using the previous Lemma 4.13 we obtain for α = 12 and 121

{

ag12 + bh12 = (∂3 f )12
ag121 + bh121 = (∂3 f )121

⇐⇒
{

a − b = 0
a + b = 0

Hence a = 0 = b and the sequences are linearly independent.

These observations suffice to guarantee the required result. ��

4.3.3 Homology of Sd(S1)

In this section we use a Lemma by Goerss and Getzler in [2] to compute the homology
vector space H∗

(

Sd(S1)
)

. As a consequence, we conclude that the Quillen adjunction
(˜N , R) is not a Quillen equivalence.

Lemma 4.15 [2, Lemma 1.12.1] Let C be a finite dimensional differential graded
coalgebra and (V , ∂) be a differential graded vector space which is concentrated in
non-negative degrees and finite dimensional in each degree. If V0 = 0 then

(

C × Sd(V )
)∗ ∼= TC∗

(

C∗ ⊗ V ∗ ⊗ C∗).

This Lemma has the following consequence: we can choose the differential graded
vector space V to be the n-sphere S

n with n ≥ 1 and C to be the 1-dimensional
differential graded coalgebra K [0] concentrated in degree zero. Note that K [0] is the
terminal object in the categoryDGcoAlg and therefore the product K [0]� X with any
object X in DGcoAlg is isomorphic to X . Thus we obtain that

(

Sd(S
n)

)∗ ∼= TK [0]∗
(

(Sn)∗
) ∼= TK [0]

(

S
−n) = S

0 ⊕ S
−n ⊕ S

−2n ⊕ S
−3n ⊕ . . .

By applying the continuous dual functor (−)′ of [2, Proposition 1.7], we obtain that

Sd(S
1) ∼= ((

Sd(S
1)

)∗)′ ∼= S
0 ⊕ S

1 ⊕ S
2 ⊕ S

3 ⊕ . . .
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and therefore

H∗
(

Sd(S
1)

)

= H∗
(

S
0 ⊕ S

1 ⊕ S
2 ⊕ S

3 ⊕ . . .
)

.

Proposition 4.16 The Quillen adjunction (˜N , R) is not a Quillen equivalence.

Proof The map Ñ RSd(S1) −→ Sd(S1) is not a weak equivalence since

dim H2

(

Sd(S
1)

)

= 1 < dim H2

(

Ñ Ss�(S1)
)

.

However, its adjoint id : RSd(S1) −→ RSd(S1) is clearly a weak equivalence and
therefore the adjunction (˜N , R) cannot be a Quillen equivalence. ��
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