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Abstract Let R be any ring with identity and Ch(R) the category of chain complexes
of (left) R-modules.We show that theGorensteinAC-projective chain complexes of [1]
are the cofibrant objects of an abelian model structure on Ch(R). The model structure
is cofibrantly generated and is projective in the sense that the trivially cofibrant objects
are the categorically projective chain complexes.We show that when R is a Ding-Chen
ring, that is, a two-sided coherent ring with finite self FP-injective dimension, then
the model structure is finitely generated, and so its homotopy category is compactly
generated. Constructing this model structure also shows that every chain complex over
any ring has a Gorenstein AC-projective precover. These are precisely Gorenstein
projective (in the usual sense) precovers whenever R is either a Ding-Chen ring, or,
a ring for which all level (left) R-modules have finite projective dimension. For a
general (right) coherent ring R, the Gorenstein AC-projective complexes coincide
with the Ding projective complexes of [31] and so provide such precovers in this case.

Keywords Abelian model category · Gorenstein AC-projective ·
Ding-Chen ring

Mathematics Subject Classification 18G25 · 55U35

Communicated by Emily Riehl.

B James Gillespie
jgillesp@ramapo.edu
http://pages.ramapo.edu/ jgillesp/

1 School of Theoretical and Applied Science, Ramapo College of New Jersey, 505 Ramapo Valley
Road, Mahwah, NJ 07430, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40062-018-0203-9&domain=pdf


770 J. Gillespie

1 Introduction

With the goal of attaching a triangulated stable module category to a general ring, the
Gorenstein AC-injective and Gorenstein AC-projective R-modules were introduced
and studied in [2]. It was shown there that the class of Gorenstein AC-projective
modules form the cofibrant objects of an abelian model structure on the category R-
Mod, of (left) R-modules. On the other hand, the dual Gorenstein AC-injectives are the
fibrant objects of another model structure on R-Mod. These concepts were extended
to the category Ch(R), of chain complexes of R-modules, in [1]. In particular, the
Gorenstein AC-injective andGorenstein AC-projective chain complexes were studied,
and, the Gorenstein AC-injective complexes were shown to be the fibrant objects of
a (cofibrantly generated) abelian model structure on Ch(R). However, as noted in the
introduction to [1], the Gorenstein AC-projective model structure was not constructed
there; it is much more technical to construct. It is the purpose of this paper to give this
construction to complete the work in [1].

Let us recall the definition of a Gorenstein AC-projective chain complex and give
a precise statement of the main result in this paper.

Definition 1.1 We call a chain complex X Gorenstein AC-projective if there exists
an exact complex of projective complexes

· · · → P1 → P0 → P0 → P1 → · · ·

with X = ker (P0 → P1) and which remains exact after applying HomCh(R)(−, L)

for any level chain complex L; see Sect. 2.8 for the notion of a level chain complex.

It was shown in [1, Theorem 4.13] that X is Gorenstein AC-projective if and only
if each Xn is a Gorenstein AC-projective R-module and any chain map f : X → L is
null homotopic whenever L is a level complex. For most rings commonly occurring in
practice, the Gorenstein AC-projective complexes coincide with the usual Gorenstein
projective complexes of [9], or at least with the Ding projective complexes of [31,
Section 3]. See the proof of Corollary 5.6 and the following remarks at the end of
Sect. 5 for more precise statements.

The theorem left open to prove is Theorem 1.2 below.We recall that by a projective
cotorsion pair (W, C) we mean a complete cotorsion pair, in some abelian category
with enoughprojectives,withW thick (so closed under direct summands and satisfying
the two-out-of-three property on short exact sequences) and such thatW∩C is precisely
the class of projective objects. By Hovey’s correspondence between cotorsion pairs
and abelian model structures [21], such a cotorsion pair is equivalent to an abelian
model structure on the category in which every object is fibrant, the objects in C are
cofibrant, and the objects in W are trivial. Such an abelian model structure is called
projective because the trivially cofibrant objects C ∩ W coincide with the projective
objects. We now state the main result.

Theorem 1.2 Let R be any ring and let GP denote the class of Gorenstein AC-
projective chain complexes. Set W = GP⊥, the right orthogonal with respect to
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Gorenstein AC-projective complexes 771

Ext1Ch(R)(−,−). Then (GP,W) is a projective cotorsion pair in Ch(R). It is cogen-
erated by a set and so it is equivalent to a cofibrantly generated projective model
structure on Ch(R). The homotopy category of this model structure is equivalent to
K (GP), the triangulated category of all Gorenstein AC-projective chain complexes
modulo the usual chain homotopy relation.

We also point out that the homotopy category is a well generated category in the
sense of [25]. Indeed once we construct a cofibrantly generated model structure on
a locally presentable (pointed) category, a main result from [27] assures us that its
homotopy category is well generated. So the point is to build a cofibrantly gener-
ated model structure, which due to the work of Hovey boils down to constructing a
projective cotorsion pair that is cogenerated by a set [21].

Section 6 concerns the case of when R is a Ding-Chen ring in the sense of [3,4,12].
This is a two-sided coherent ring R for which R has finite self FP-injective (absolutely
pure) dimension when viewed as either a left or a right module over itself. The result
proved, Theorem6.4, says a few things about themodel structure of Theorem1.2. First,
the identify functor from it to the Gorenstein AC-injective model structure of [1] is a
Quillen equivalence in this case. Second, the model structure is finitely generated and
so it follows from a result of Hovey [20, Corollary 7.4.4] that the associated homotopy
category is compactly generated. Finally, Theorem6.4 gives a further description of the
homotopy category. In particular,we see that the homotopy category is equivalent to the
chain homotopy category of all chain complexes X (resp. Y ) with each component Xn

(resp. Yn) a Gorenstein projective (resp. Gorenstein injective) R-module in the usual
sense of [6]. This follows from the characterizations of Ding modules and complexes
provided in [16].

The plan to prove Theorem 1.2 is to imitate the proof in [2] of the Gorenstein AC-
projective model structure on R-modules, which first built a Quillen equivalent model
structure on chain complexes and then passed it down to the category of R-modules.We
follow the same approach, working in Ch(Ch(R)), the category of chain complexes of
chain complexes. This is the same as the category of bicomplexes. However, changing
signs to work with bicomplexes misses the point. Perhaps the correct perspective is
to follow the idea in [17]. One can first identify Ch(R) with the category of graded
R[x]/(x2)-modules where R[x]/(x2) is thought of as a graded ring, with a copy of R
in degrees 0 and −1, and putting x in degree −1. Then to imitate the proof in [2] we
should be working with chain complexes of graded R[x]/(x2)-modules. However, for
our purposeswe find it be easier to just stickwith the categoryCh(Ch(R)), andwe refer
to an object in this category as a double complex or simply a complex of complexes. The
reason for this is mainly because the literature on chain complexes already has many
handy references for the graded tensor product and Hom that we will use, and these
are stated in terms of chain complexes and not graded R[x]/(x2)-modules. So Sect. 3
shows how to construct projectivemodel structures on double complexes. Then Sect. 4
uses this to build a model structure on double complexes that is Quillen equivalent
to the one in Theorem 1.2. We finally are able to prove that main theorem in Sect. 5
by passing the model structure on double complexes down to the ground category of
chain complexes. We also point out at the end of Sect. 5 how Theorem 1.2 provides
for the existence of Gorenstein projective (or at least Ding projective) precovers in
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772 J. Gillespie

Ch(R) for the most commonly used coherent rings R. Section 6 describes the special
case when R is a Ding-Chen ring.

The author would like to acknowledge and thank the referee for taking the time to
read and provide feedback on the manuscript.

2 Preliminaries

Throughout the paper R denotes a general ring with identity. An R-module will mean
a left R-module, unless stated otherwise. The category of R-modules will be denoted
R-Mod and the associated category of chain complexes by Ch(R).

The point of this section is to provide a short review of the preliminary concepts,
and notations, which are foundational to this paper . It is all standard except the last
Sect. 2.8 which summarizes needed facts from [1,2]. Also, the useful Lemma 2.3 has,
to the author’s knowledge, not appeared in the literature.

2.1 Cotorsion pairs and precovers

Let A be an abelian category. By definition, a pair of classes (X ,Y) in A is called a
cotorsion pair ifY = X⊥ andX = ⊥Y . Here, given a class of objects C inA, the right
orthogonal C⊥ is defined to be the class of all objects X such that Ext1A(C, X) = 0
for all C ∈ C. Similarly, we define the left orthogonal ⊥C. We call the cotorsion pair
hereditary if ExtiA(X,Y ) = 0 for all X ∈ X , Y ∈ Y , and i ≥ 1. The cotorsion
pair is complete if it has enough injectives and enough projectives. This means that
for each A ∈ A there exist short exact sequences 0 −→ A −→ Y −→ X −→ 0 and
0 −→ Y ′ −→ X ′ −→ A −→ 0 with X, X ′ ∈ X and Y,Y ′ ∈ Y . Standard references
include [6,18] and connections to abelian model categories can be found in [15,21].

Complete cotorsion pairs are closely related to the study of precovers and pre-
envelopes. This area has been extensively studied bymany authors, especially Enochs,
Jenda, Estrada, García-Rozas, and many coauthors; for example, see [6,9]. LetX be a
class of objects inA. A morphism φ : X −→ A inA is called an X -precover if X ∈ X
and

HomA(X ′, X) −→ HomA(X ′, A) −→ 0

is exact for every X ′ ∈ X . Further, if ker φ ∈ X⊥, then φ is called a special X -
precover. There is a dual notion of a (special) X -pre-envelope. The connection to
cotorsion pairs is the easy observation that if (X ,Y) is a complete cotorsion pair, then
each object A ∈ A has a special X -precover and a special Y-pre-envelope.

2.2 Projective and injective cotorsion pairs

Assume A is a bicomplete abelian category with enough projectives. By a projective
cotorsion pair in A we mean a complete cotorsion pair (C,W) for which W is thick
and C ∩ W is the class of projective objects. Such a cotorsion pair is equivalent to a
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Gorenstein AC-projective complexes 773

projective model structure on A. By this we mean the model structure is abelian in
the sense of [21] and all objects are fibrant. The cofibrant objects are exactly those
in C and the trivial objects are exactly those in W . We also have the dual notion of
injective cotorsion pairs (W,F) which give us injective model structures on abelian
categories with enough projectives. See [14] for more on projective and injective
cotorsion pairs. One important fact is that such cotorsion pairs are always hereditary
and this implies that the associated homotopy category must be stable; that is, it is not
just pre-triangulated but a triangulated category.We will use the following proposition
to construct projective cotorsion pairs in this paper.

Proposition 2.1 (Construction of a projective model structure) LetA be a bicomplete
abelian category with enough projectives and denote the class of projectives byP . Let
C be any class of objects and set W = C⊥. Suppose the following conditions hold:

(1) (C,W) is a complete cotorsion pair.
(2) W is thick.
(3) P ⊆ W .

Then there is an abelian model structure onA where every object is fibrant, C are the
cofibrant objects,W are the trivial objects, and P = C ∩W are the trivially cofibrant
objects. In other words, (C,W) is a projective cotorsion pair.

2.3 Chain complexes on abelian categories

Let A be an abelian category. We denote the corresponding category of chain com-
plexes by Ch(A). In the case A = R-Mod, we denote it by Ch(R). Our convention

is that the differentials of our chain complexes lower degree, so · · · −→ Xn+1
dn+1−−→

Xn
dn−→ Xn−1 −→ · · · is a chain complex. We also have the chain homotopy category

ofA, denoted K (A). Its objects are also chain complexes but its morphisms are chain
homotopy classes of chain maps. Given a chain complex X , the nth suspension of X ,
denoted �n X , is the complex given by (�n X)k = Xk−n and (d�n X )k = (−1)ndk−n .
For a given object A ∈ A, we denote the n-disk on A by Dn(A). This is the complex

consisting only of A
1A−→ A concentrated in degrees n and n − 1, and 0 elsewhere. We

denote the n-sphere on A by Sn(A), and this is the complex consisting only of A in
degree n and 0 elsewhere.

Given two chain complexes X,Y ∈ Ch(A)we defineHom(X,Y ) to be the complex

of abelian groups · · · −→ ∏
k∈Z Hom(Xk,Yk+n)

δn−→ ∏
k∈Z Hom(Xk,Yk+n−1) −→ · · · ,

where (δn f )k = dk+n fk − (−1)n fk−1dk . We get a functor Hom(X,−) : Ch(A) −→
Ch(Z). Note that this functor takes exact sequences to left exact sequences, and it is
exact if each Xn is projective. Similarly the contravariant functor Hom(−,Y ) sends
exact sequences to left exact sequences and is exact if each Yn is injective. It is an
exercise to check that the homology satisfies Hn[Hom(X,Y )] = K (A)(X, �−nY ).

Being an abelian category, Ch(A) comes with Yoneda Ext groups. In particu-
lar, Ext1Ch(A)

(X,Y ) will denote the group of (equivalences classes) of short exact
sequences 0 −→ Y −→ Z −→ X −→ 0 under the Baer sum operation. There is a sub-
group Ext1dw(X,Y ) ⊆ Ext1Ch(A)

(X,Y ) consisting of the “degreewise split” short exact
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774 J. Gillespie

sequences. That is, those for which each 0 −→ Yn −→ Zn −→ Xn −→ 0 is split exact.
The following lemma gives a well-known connection between Ext1dw and the above
hom-complex Hom.

Lemma 2.2 For chain complexes X and Y , we have isomorphisms:

Ext1dw(X, �(−n−1)Y ) ∼= HnHom(X,Y ) = K (A)(X, �−nY )

In particular, for chain complexes X and Y , Hom(X,Y ) is exact iff for any n ∈ Z, any
chain map f : �n X −→ Y is homotopic to 0 (or iff any chain map f : X −→ �nY is
homotopic to 0).

In the case ofA = R-Mod, we recall the usual tensor product of chain complexes.
Given that X (resp. Y ) is a complex of right (resp. left) R-modules, the tensor product
X ⊗ Y is defined by (X ⊗ Y )n = ⊕i+ j=n(Xi ⊗ Y j ) in degree n. The boundary map
δn is defined on the generators by δn(x ⊗ y) = dx ⊗ y + (−1)|x |x ⊗ dy, where |x | is
the degree of the element x .

2.4 Grothendieck categories

Recall that a Grothendieck category G is a cocomplete abelian category with a set of
generators and such that direct limits are exact. Grothendieck categories automatically
have enough injectives, and so such categories often admit injective cotorsion pairs
yielding injective model structures on G. If G possesses a set of projective generators
then we can also look for projective cotorsion pairs in G. In this paper we will be work-
ing with categories of R-modules, chain complexes of R-modules, and bicomplexes
of R-modules. These are all Grothendieck categories possessing a set of projective
generators.

2.5 Disks and spheres and cotorsion pairs

Let G be a Grothendieck category. We point out a lemma that is often useful for
constructing chain complexes in one side of a given cotorsion pair in Ch(G). Recall
that we say an object M ∈ G is a transfinite extension of a set of objects S when there
is an ordinal λ and M = lim−→α<λ

Mα for some λ-diagram of monomorphisms

M0
i0−→ M1

i1−→ · · · Mα
iα−→ Mα+1 −→ · · ·

having M0, cok iα ∈ S for each α < λ and such that Mγ = lim−→α<γ
Mα for each limit

ordinal γ < λ. It is well known that the left half of a cotorsion pair is closed under
transfinite extensions and this is known as the Eklof Lemma. The dual statement is
also true. We say an object M is an inverse transfinite extension of a set of objects S
when M = lim←−α<λ

Mα for some λ-diagram of surjections

M0
i0←− M1

i1←− · · · Mα
iα←− Mα+1 ←− · · ·
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Gorenstein AC-projective complexes 775

having M0, ker iα ∈ S for each α < λ and such that Mγ = lim←−α<γ
Mα for each limit

ordinal γ < λ. It was shown in [29, Lemma 2.3] that the right half of a cotorsion pair
in R−Mod is closed under inverse transfinite extensions. These ideas are applied to
get the following lemma.

Lemma 2.3 Let G be a Grothendieck category with a projective generator and let
(X ,Y) be a cotorsion pair of chain complexes in Ch(G). Suppose C is some given
class of objects in G.
(1) If the spheres Sn(C) are inX wheneverC is in C, then any bounded below complex

with entries in C is also in X .
(2) If the disks Dn(C) are in X whenever C is in C, then any bounded above exact

complex with cycles in C is also in X .
(3) If the spheres Sn(C) are inY whenever C is in C, then any bounded above complex

with entries in C is also in Y .
(4) If the disks Dn(C) are in Y whenever C is in C, then any bounded below exact

complex with cycles in C is also in Y .

Proof Note that (1) and (3) are dual statements and (2) and (4) are dual. We will prove
(1) and (4). For (1), suppose that (X, d) is a bounded below complex with entries in
C. It is easy to check that X can be expressed as a transfinite extension of spheres
Sn(Xn), on the components Xn . Each Sn(Xn) is in X by hypothesis and so X is in X
too by the Eklof Lemma.

Next we prove (4). Here we note that any bounded below exact complex (X, d) can
be expressed as an inverse transfinite extension as indicated in the diagram:

0 ←−−−− Z3X ←−−−− · · ·
⏐
⏐
�

⏐
⏐
�

0 ←−−−− Z2X ←−−−−
d

X3 · · ·
⏐
⏐
�

⏐
⏐
� d

⏐
⏐
�

0 ←−−−− Z1X ←−−−−
d

X2 X2 · · ·
⏐
⏐
�

⏐
⏐
� d

⏐
⏐
� d

⏐
⏐
�

X0 ←−−−−
d

X1 X1 X1 · · ·
∥
∥
∥ d

⏐
⏐
� d

⏐
⏐
� d

⏐
⏐
�

X0 X0 X0 X0 · · ·
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 0 0 0

Indeed note that each horizontal map in the diagram is surjective with its kernel being
a disk Dn+1(ZnX). So X is an inverse transfinite extension of the disks Dn+1(ZnX).
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776 J. Gillespie

The desired result now follows from [29, Lemma 2.3] which is the dual of the Eklof
Lemma. The proof of [29, Lemma 2.3] is given for the category of modules over a
ring, but the proof holds in any Grothendieck category with a projective generator. �

2.6 The modified Hom and Tensor complexes

Here we focus in particular on Ch(R), the category of chain complexes of R-modules.
The above Hom of Sect. 2.3 is often referred to as the internal hom, for in the case
that R is commutative,Hom(X,Y ) is again an object of Ch(R). Note that the cycles in
degree 0 of the internal homcoincidewith the external hom functor: Z0[Hom(X,Y )] ∼=
HomCh(R)(X,Y ). This idea can be used to define an alternate internal hom aswas done
in [5,9]. (This is the hom that corresponds to the graded hom in the category of graded
R[x]/(x2)-modules, where R[x]/(x2) is thought of as a graded ring with a copy of
R in degrees 0 and −1, and putting x in degree −1.) To define it for a given pair
X,Y ∈ Ch(R), we let Hom(X,Y ) to be the complex

Hom(X,Y )n = ZnHom(X,Y )

with differential

λn : Hom(X,Y )n −→ Hom(X,Y )n−1

defined by (λ f )k = (−1)ndk+n fk . Notice that the degree n component ofHom(X,Y )

is exactly HomCh(R)(X, �−nY ). In this way we get an internal hom Hom which is
useful for categorical considerations in Ch(R). For example, Hom(X,−) is a left
exact functor, and is exact if and only if X is projective in the category Ch(R). On
the other hand, Hom(−,Y ) is exact if and only if Y is injective in Ch(R). There are

corresponding derived functors which we denote by Ext
i
. They satisfy that Ext

i
(X,Y )

is a complex whose degree n is ExtiCh(R)(X, �−nY ).
Similarly, the usual tensor product of chain complexes does not characterize categor-

ical flatness. For this one needs the modified tensor product and its left derived torsion
functor from [5,9]. We will denote it by⊗, and it is defined in terms of the usual tensor
product ⊗ as follows. Given a complex X of right R-modules and a complex Y of left
R-modules, we define X⊗Y to be the complexwhose nth entry is (X⊗Y )n/Bn(X⊗Y )

with boundary map (X ⊗ Y )n/Bn(X ⊗ Y ) → (X ⊗ Y )n−1/Bn−1(X ⊗ Y ) given by

x ⊗ y �→ dx ⊗ y.

This defines a complex and we get a bifunctor −⊗− which is right exact in each
variable. We denote the corresponding left derived functors by Tori . We refer the
reader to [9] for more details.
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Gorenstein AC-projective complexes 777

2.7 Finitely chain complexes and projective chain complexes

A standard characterization of projective objects in Ch(R) is the following: A complex
P is projective if and only if it is an exact complex with each cycle Zn P a projective
R-module. We also recall that, by definition, a chain complex X is finitely generated
if whenever X = �i∈I Si , for some collection {Si }i∈I of subcomplexes of X , then
there exists a finite subset J ⊆ I for which X = �i∈J Si . It is a standard fact that
X is finitely generated if and only if it is bounded (above and below) and each Xn is
finitely generated. We say that a chain complex X is of type FP∞ if it has a projective
resolution by finitely generated projective complexes. Certainly any such X is finitely
presented and hence finitely generated. Recall that by definition a chain complex X is
finitely presented if HomCh(R)(X,−) preserves direct limits; X is finitely presented if
and only if it is bounded and each Xn is a finitely presented R-module.

2.8 Absolutely clean and level complexes; character duality

The so-called level and absolutely clean R-modules were introduced in [2] as gener-
alizations of flat modules over coherent rings and injective modules over Noetherian
rings. The same notions in the category Ch(R)were also studied in [1]. Here we recall
some definitions and results from [1] that will be used in the present paper.

Definition 2.4 We call a chain complex A absolutely clean if Ext1Ch(R)(X, A) = 0 for

all chain complexes X of type FP∞. Equivalently, ifExt
1
(X, A) = 0 for all complexes

X of type FP∞. On the other hand, we call a chain complex L level if Tor1(X, L) = 0
for all chain complexes X of right R-modules of type FP∞.

For the reader’s convenience we now list some properties of the absolutely clean
and level complexes.

Proposition 2.5 [1, Propositions 2.6 and 4.6] A chain complex A is absolutely clean if
and only if A is exact and each Zn A is an absolutely clean R-module. A chain complex
L is level if and only if L is exact and each ZnL is a level R-module.

Recall that the character module of M is defined as M+ = HomZ(M,Q/Z),
and that M+ is a right (resp. left) R-module whenever M is a left (resp. right) R-
module. The construction extends to chain complexes: Given a chain complex X , we
have X+ = HomZ(X,Q/Z). Since Q/Z is an injective cogenerator for the category
of abelian groups, the functor HomZ(−,Q/Z) preserves and reflects exactness. So
Proposition 2.5 immediately gives us the following corollary due to the perfect char-
acter module duality between absolutely clean and level modules [2, Theorem 2.10].

Proposition 2.6 [1, Corollary 4.7] A chain complex L of left (resp. right) modules is
level if and only if L+ = HomZ(L ,Q/Z) is an absolutely clean complex of right (resp.
left) modules. And, a chain complex A of left (resp. right) modules is absolutely clean
if and only if A+ = HomZ(A,Q/Z) is a level complex of right (resp. left) modules.
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778 J. Gillespie

The notion of duality pair used in [2] was extended to chain complexes in [16]. We
recall the definition: Suppose C is a collection of chain complexes of right R-modules,
and D is a collection of chain complexes of left R-modules, we say that (C,D) is a
duality pair if X ∈ C if and only if X+ ∈ D, and Y ∈ D if and only if Y+ ∈ C. It
is immediate from Proposition 2.6 that the absolutely clean and level complexes give
rise to two duality pairs. One where C is the class of all absolutely clean complexes
of right R-modules, and another where C is the class of all level complexes of right
R-modules.

Proposition 2.7 [16, Theorem 5.9] Suppose (C,D) is a duality pair in Ch(R) such
that D is closed under pure quotients. Let C be a chain complex of projective chain
complexes. Then X⊗C is exact for all X ∈ C if and only if Hom(C,Y ) is exact for all
Y ∈ D. In particular, A⊗C is exact for all absolutely clean complexes A if and only
if Hom(C, L) is exact for all level complexes L.

The classes of absolutely clean and level complexes each possess a long list of
nice homological properties. For example, each is closed under direct products, direct
sums, direct summands, direct limits, transfinite extensions, pure submodules and pure
quotients. Moreover, the level complexes form a resolving class while the absolutely
clean complexes form a coresolving class; see [1, Propositions 2.7 and 4.8]. One of
the most important properties for our purposes is listed in the following proposition.

Proposition 2.8 [1, Corollaries 2.11 and 4.9] There exists a cardinal κ such that every
absolutely clean (resp. level) chain complex is a transfinite extension of absolutely
clean (resp. level) complexes with cardinality bounded by κ . In particular, there is
a set S of absolutely clean (resp. level) complexes for which every absolutely clean
(resp. level) complex is a transfinite extension of ones in S.

3 Projective model structures on double complexes

Since Ch(R) is an abelian categorywe can of course consider Ch(Ch(R)), the category
of chain complexes of chain complexes. Using [30, Sign Trick 1.2.5], the category
Ch(Ch(R)) can be identified with the category of bicomplexes. However, for our
purpose here it is easier to stick with the category Ch(Ch(R)), and we will refer to an
object in this category as either a double complex or a complex of complexes. Another
way the reader may wish to think about this category is to first identify Ch(R) with
the category R[x]/(x2)−Mod, of graded R[x]/(x2)-modules over the graded ring
R[x]/(x2) (putting x in degree −1). Then the category of double complexes we work
with may be identified with Ch(R[x]/(x2) − Mod), the category of chain complexes
of graded R[x]/(x2)-modules. The paper [17] has more details on this perspective for
the interested reader.

The purpose of this section is to prove the following theorem, which is a chain
complex version of [2, Theorem 6.1].

Theorem 3.1 Given a ring R, let A be a given chain complex of right R-modules.
Let C be the class of all A-acyclic complexes of projective complexes; that is, chain
complexes C with each Cn a projective chain complex and such that A⊗C is exact.
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Then there is a cofibrantly generated abelian model structure on Ch(Ch(R)) where
every object is fibrant, C is the class of cofibrant objects, andW = C⊥ is the class of
trivial objects. In other words, (C, C⊥) is a projective cotorsion pair in Ch(Ch(R)).

To prove Theorem 3.1 we follow the sequence of lemmas from [2, Section 7],
extending them to work for double complexes rather than just chain complexes. The
proofs are essentially the same but we include the general versions here for clarity
and convenience of the reader. Again, the key is to resist the temptation to work with
bicomplexes and to note that the arguments readily adapt to working with double
complexes (complexes of graded R[x]/(x2)-modules).

We start with a classic result of Kaplansky [24] stating that every projective module
is a direct sum of countably generated projective modules. It follows that the same
result holds for a projective chain complex too, which we explain in the following
lemma.

Lemma 3.2 (Kaplansky) The following are equivalent for a chain complex P.

(1) P is projective in Ch(R).
(2) P is a direct sum of countably generated projective complexes.
(3) P ∼= ⊕i∈I Dni (Pi ) for some countably generated projective R-modules Pi .

Proof We note that any chain complex X is countably generated if and only if each
Xn is countably generated (for example, see [10, Lemma 4.10], taking κ = ℵ1). The
implications (3) �⇒ (2) �⇒ (1) are clear. For (1) �⇒ (3), it is well known that
a projective complex is isomorphic to a direct sum ⊕n∈ZDn(Pn) where each Pn is
some projective R-module. But the classic result of Kaplansky [24] tells us that each
projective Pn is in turn a direct sum of countably generated projectives. So (3) is clear
too. �
Definition 3.3 We define the cardinality of a chain complex X of R-modules to be
| ∐n∈Z Xn|. The cardinality of a double chain complex X ∈ Ch(Ch(R)) is defined
similarly.

Lemma 3.4 (Covering Lemma for double complexes) Let κ be an infinite cardinal
and suppose X is a nonzero double complex in which each Xn has a direct sum
decomposition Xn = ⊕i∈In Mn,i where each chain complex Mn,i has |Mn,i | < κ for
all i ∈ In. Then for any choice of subcollections Jn ⊆ In (at least one of which
is nonempty), with |Jn| < κ , we can find a nonzero subcomplex S ⊆ X with each
Sn = ⊕i∈Kn Mn,i for some subcollections Kn ⊆ In satisfying Jn ⊆ Kn and |Kn| < κ .

Proof Suppose we are given such subcollections Jn ⊆ In . First, for each n, we may
build a subcomplex Xn of X as follows: In degree n the (double) complex will consist
of⊕i∈Jn Mn,i . Then noting d(⊕i∈Jn Mn,i ) ⊆ ⊕i∈In−1Mn−1,i and |d(⊕i∈Jn Mn,i )| < κ ,
we can find a subset Ln−1 ⊆ In−1 such that |Ln−1| < κ and yet d(⊕i∈Jn Mn,i ) ⊆
⊕i∈Ln−1Mn−1,i . Now the subcomplex of X that we are constructing will consist of
⊕i∈Ln−1Mn−1,i in degree n − 1. We continue down in the same way finding Ln−2 ⊆
In−2 with |Ln−2| < κ and with d(⊕i∈Ln−1Mn−1,i ) ⊆ ⊕i∈Ln−2Mn−2,i . In this way we
get a subcomplex of X:

X
n = · · · −→ 0 −→ ⊕i∈Jn Mn,i −→ ⊕i∈Ln−1Mn−1,i −→ ⊕i∈Ln−2Mn−2,i −→ · · ·
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Finally set S = �l∈NXl and note that this double complex, obviously nonzero because
at least one Jn �= φ, will work. (The sets Kn we claim to exist are the union of all the
Jn’s and all the various Li in sight. We still have |Kn| < κ .) �

Nowwe have a similar lemma but concerning exact complexes of chain complexes.

Lemma 3.5 (Exact Covering Lemma for double complexes) Let κ be an infinite car-
dinal and suppose Y is an exact complex of chain complexes in which each Yn has
a direct sum decomposition Yn = ⊕i∈In Mn,i where each chain complex Mn,i has
|Mn,i | < κ for all i ∈ In. Then for any choice of subcollections Kn ⊆ In, with
|Kn| < κ , we can find an exact subcomplex T ⊆ Y with each Tn = ⊕i∈Jn Mn,i for
some subcollections Jn ⊆ In satisfying Kn ⊆ Jn and |Jn| < κ .

Proof We prove this in two steps.
(Step 1). We first show the following: IfX ⊆ Y is any exact subcomplex with |X| < κ ,
then for any single one of the given Kn , we can find an exact subcomplex T ⊆ Y

containing X and so that for this given n, Tn = ⊕i∈Ln Mn,i for some Ln ⊆ In with
Kn ⊆ Ln and |Ln| < κ .

First, we can find for the given n (since |Xn| < κ), a subset Dn ⊆ In with |Dn| < κ

such that Xn ⊆ ⊕i∈Dn Mn,i . Now define Ln = Dn ∪ Kn and set Tn = ⊕i∈Ln Mn,i . Of
course |Ln| < κ and Xn ⊆ Tn .

So all we need to do is extend Tn into an exact subcomplex containing X and with
cardinality less than κ . We build down by setting Tn−1 = Xn−1 + d(Tn) and Ti = Xi

for all i < n − 1. One can check that

Tn −→ Xn−1 + d(Tn) −→ Xn−2 −→ · · ·

is exact. In particular, we have exactness in degree n − 1 since d(Xn) ⊆ d(Tn).
Next we build up from Tn . To start, take the kernel of Tn −→ Tn−1 and find a

T
′
n+1 ⊆ Yn+1 such that |T′

n+1| < κ and T
′
n+1 maps surjectively onto this kernel.

Then take Tn+1 = Xn+1 + T
′
n+1. Now Tn+1 also maps surjectively onto this kernel.

We continue upward to build Tn+2,Tn+3, . . . in the same way and we are done.
(Step 2). We now finish the proof. From Step 1, taking X = 0 and the subcollection
to be K0 we can find an exact subcomplex T

0 ⊆ Y such that (T0)0 = ⊕i∈L0M0,i for
some L0 ⊆ I0 with K0 ⊆ L0 and |L0| < κ . Now using Step 1 again, with X = T

0

and using K−1, we get another exact subcomplex T
1 containing T

0 and such that
(T1)−1 = ⊕i∈L−1M−1,i for some L−1 ⊆ I−1 with K−1 ⊆ L−1 and |L−1| < κ . Lets
say thatT0 was constructed using a “degree 0 operation” andT1 was constructed using
a “degree -1 operation”. Then we can continue to use “degree k operations” with the
following back and forth pattern on k:

0, −1, 0, 1, −2,−1, 0, 1, 2, −3,−2,−1, 0, 1, 2, 3 . . .

to build an increasing chain of exact subcomplexes, {Tl }. Finally set T = ∪l∈NTl .
Then by a cofinality argument we see that for each n we have Tn = ⊕i∈Jn Mn,i for
some subsets Jn ⊆ In (the Jn’s are each a countable union of the newly constructed
Ln’s obtained in each “pass”, and so |Jn| < κ). Clearly each Kn ⊆ Jn and T is an
exact subcomplex of Y. �
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With these lemmas in hand, we now return to the hypotheses of Theorem 3.1.
First suppose that we are given a chain complex P ∈ Ch(Ch(R)) of projective chain
complexes. By the Kaplansky result, Lemma 3.2, we can write each component Pn

as a direct sum Pn = ⊕i∈In Pn,i where each Pn,i is a countably generated projective
chain complex. Note that if κ > max{ |R| , ω } is a regular cardinal, then |Pn,i | < κ .

Next, referring again to the hypotheses of Theorem 3.1, assumewe are given a chain
complex A of right R-modules. Using the natural isomorphism (see [9, Prop. 4.2.1])

X⊗(⊕i∈SYi ) ∼= ⊕i∈S(X⊗Yi )

we may identify A⊗P with the complex whose degree n is ⊕i∈In A⊗Pn,i . Moreover,
for any subcomplex S ⊆ P of the form Sn = ⊕i∈Kn Pn,i for some Kn ⊆ In we can
and will identify A⊗S with the subcomplex of A⊗P whose degree n is

⊕i∈Kn A⊗Pn,i ⊆ ⊕i∈In A⊗Pn,i .

We note that if κ > max{ |R| , ω } is a regular cardinal, then such a subcomplex S

satisfies |S| < κ whenever |Kn| < κ . Similarly, if κ > max{ |A| , ω } is a regular
cardinal, note that |A⊗S| < κ whenever |Kn| < κ . We will use all of the above
observations in the proof of our theorem below.

Theorem 3.6 Let A be a given chain complex of right R-modules and take κ >

max{ |R| , |A| , ω } to be a regular cardinal. Let P be any nonzero complex of projec-
tive complexes in which A⊗P is exact. Then we can write P as a continuous union
P = ∪α<λQα where eachQα,Qα+1/Qα are also A⊗ − exact complexes of projective
complexes (that is, each is A-acyclic) and |Qα|, |Qα+1/Qα| < κ .

Proof Asdescribed before the statement of the theorem,wewrite eachPn = ⊕i∈In Pn,i

where each Pn,i is a countably generated projective complex. We prove the theorem
in two steps.
(Step 1). We first show the following: We can find a nonzero subcomplex Q ⊆ P of
the formQn = ⊕i∈Ln Pn,i for some subcollections Ln ⊆ In having |Ln| < κ and such
that A⊗Q is exact.

Since P is nonzero at least one Pn �= 0. For this n, take any nonempty Jn ⊆ In
having |Jn| < κ . Apply the Covering Lemma 3.4 with P in the place of X and taking
the subcollections to consist of this Jn and all the other Jn may be empty. This gives
us a nonzero subcomplex with S

1
n = ⊕i∈K 1

n
Pn,i for some subcollections K 1

n ⊆ In
satisfying Jn ⊆ K 1

n and |K 1
n | < κ for each n.

Now A⊗S
1 is the subcomplex of A⊗P having (A⊗S

1)n = ⊕i∈K 1
n
A⊗Pn,i . That

is, the subcollections K 1
n ⊆ In determine A⊗S

1. We now apply the Exact Covering
Lemma 3.5 with A⊗P in the place of Y and taking the subcollections to be the K 1

n .
This gives us an exact subcomplex T

1 ⊆ A⊗P with each T
1
n = ⊕i∈J 1n

A⊗Pn,i for

some subcollections J 1n ⊆ In satisfying K 1
n ⊆ J 1n and |J 1n | < κ .

But perhaps now the direct sums ⊕i∈J 1n
Pn,i don’t even form a subcomplex of P

(because the tensor product with A may send some maps to 0). So we again apply the
Covering Lemma to P with the J 1n as the subcollections to find a subcomplex S2 ⊆ P
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with each S2n = ⊕i∈K 2
n
Pn,i for some subcollections K 2

n ⊆ In satisfying J 1n ⊆ K 2
n and

|K 2
n | < κ . Of course S1 ⊆ S

2 because K 1
n ⊆ K 2

n for each n.
But now certainly A⊗S

2 need not be exact, so we again apply the Exact Covering
Lemma to A⊗P taking the subcollections to be the K 2

n . This gives us an exact sub-
complex T2 ⊆ A⊗Pwith each T2

n = ⊕i∈J 2n
A⊗Pn,i for some subcollections J 2n ⊆ In

satisfying K 2
n ⊆ J 2n and |J 2n | < κ . Notice that we have A⊗S

1 ⊆ T
1 ⊆ A⊗S

2 ⊆ T
2

because K 1
n ⊆ J 1n ⊆ K 2

n ⊆ J 2n .
But again, the ⊕i∈J 2n

Pn,i need not form a subcomplex of P. So we continue this
back and forth method, applying the Covering Lemma to P and the newly obtained
subcollections J ln , and then applying the Exact Covering Lemma to A⊗P and the
newly found subcollections Kl

n . We obtain an increasing sequence of subcomplexes
of P

0 �= S
1 ⊆ S

2 ⊆ S
3 ⊆ · · ·

corresponding to the subcollections J 1n ⊆ J 2n ⊆ J 3n ⊆ · · · . We also get an increasing
sequence of subcomplexes of A⊗P

A⊗S
1 ⊆ T

1 ⊆ A⊗S
2 ⊆ T

2 ⊆ A⊗S
3 ⊆ T

3 ⊆ · · ·

with each T
l exact.

So we set Q = ∪l∈NSl and claim that Q satisfies the properties we sought. Indeed
notice each Qn = ⊕i∈Ln Pn,i where Ln = ∪l∈N J ln . Also we still have |Ln| < κ .
Finally, since A⊗ − commutes with direct limits we get A⊗Q = ∪l∈NA⊗S

l =
∪l∈NTl . This complex is exact because each T

l is exact.
(Step 2). We now can easily finish to obtain the desired continuous union. Start by
finding a nonzero Q

0 ⊆ P of the form Q
0
n = ⊕i∈L0

n
Pn,i for some subcollections

L0
n ⊆ In having |L0

n| < κ and such that A⊗Q
0 is exact. Note that Q0 and P/Q0 are

also complexes of projective complexes and since 0 −→ Q
0 −→ P −→ P/Q0 −→ 0 is a

degreewise split short exact sequence, so must be

0 −→ A⊗Q
0 −→ A⊗P −→ A⊗P/Q0 −→ 0.

It follows that A⊗P/Q0 must also be exact. So if it happens that P/Q0 is nonzero we
can in turn find a nonzero subcomplex Q

1/Q0 ⊆ P/Q0 with Q1/Q0 and

(P/Q0)/(Q1/Q0) ∼= P/Q1

both A⊗ − exact complexes of projective complexes with cardinality less than κ .
Note that we can identify these quotients such as P/Q0 as complexes whose degree
n entry is ⊕i∈In−Ln Pn,i and in doing so we may continue to find an increasing union
0 �= Q

0 ⊆ Q
1 ⊆ Q

2 ⊆ · · · corresponding to a nested union of subsets L0
n ⊆ L1

n ⊆
L2
n ⊆ · · · for each n. Assuming this process doesn’t terminate we setQω = ∪α<ωQ

α

and note that Qω
n = ⊕i∈Lω

n
Pn,i where Lω

n = ∪α<ωLα
n . So still, Qω and P/Qω are

complexes of projective complexes and are A⊗ − exact since A⊗ − commutes with
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direct limits. Therefore we can continue this process with P/Qω to obtain Qω+1 with
all the properties we desire. Using this process we can obtain an ordinal λ and a
continuous union P = ∪α<λQ

α withQα,Qα+1/Qα all being A⊗ − exact complexes
of projective complexes and having |Qα|, |Qα+1/Qα| < κ . �

We can now prove Theorem 3.1

Proof The plan is to apply Proposition 2.1. First let κ > max{ |R| , |A| , ω } be a reg-
ular cardinal and let S be the set of all A-acyclic complexes of projective complexes
P ∈ C such that |P| ≤ κ . (We really need to take a representative for each isomorphism
class so that we actually get a set as opposed to a proper class). Now the set S cogen-
erates a complete cotorsion pair (by [21, Theorem 2.4]) (⊥(S⊥), S⊥) in Ch(Ch(R)),
where the left side consists precisely of all retracts of transfinite extensions of com-
plexes in S. But S ⊆ C, and C is closed under retracts and transfinite extensions, so
⊥(S⊥) ⊆ C. The reverse containment C ⊆ ⊥(S⊥) comes from Theorem 3.6. This
proves the first part of Proposition 2.1.

Setting W = C⊥, it is left to show that W is thick and contains the projective
objects of Ch(Ch(R)). To see that W is thick, first note that, because C consists of
complexes of projective complexes (that is, complexes with projective objects in each
degree), Lemma 2.2 implies that X ∈ W if and only if Hom(C,X) is acyclic for all
C ∈ C. Now suppose we have a short exact sequence

0 −→ X −→ Y −→ Z −→ 0,

where two out of three of the entries are in W , and suppose C ∈ C. Since each Cn is
a projective object, the resulting sequence

0 −→ Hom(C,X) −→ Hom(C,Y) −→ Hom(C,Z) −→ 0

is still short exact. Since two out of three of these complexes are acyclic, so is the
third. This proves thickness of W .

Now ifX is contractible, thenHom(C,X) is obviously acyclic for anyC, soX ∈ W .
In particular, W must contain the projective objects as these are contractible; for
example, see [13, Lemma 4.5].

So we have finished proving that the model structure exists. It is cofibrantly gener-
ated because we are working in a Grothendieck category with enough projectives and
the cotorsion pair is cogenerated by a set; see the results of [21, Section 6]. �

4 The AC-acyclic projective model structure on double complexes

Let C be the class of all the complexes of projectives appearing in Definition 1.1. That
is, C consists of all exact complexes of projective complexes

C ≡ · · · → P1 → P0 → P0 → P1 → · · ·
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which remain exact after applying HomCh(R)(−, L) for any level chain complex L .
We show in this brief section that C is the left half of a projective cotorsion pair,
cogenerated by a set in Ch(Ch(R)).

Lemma 4.1 LetCbe a complex of projective complexes. The following are equivalent:

(1) C ∈ C. That is, C remains exact after applying HomCh(R)(−, L) for any level
chain complex L.

(2) C remains exact after applying Hom(−, L) for any level complex L.
(3) C remains exact after applying A⊗− for any absolutely clean chain complex (of

right R-modules) A.

Proof Referring to Sect. 2.6 it is easy to see that the condition C remains exact after
applying HomCh(R)(−L) is equivalent to requiring that it remains exact after applying
Hom(−, L) for any level complex L . But, by Proposition 2.7, this is equivalent to
requiring that it remains exact after applying A⊗− for any absolutely clean chain
complex (of right R-modules) A. �
Lemma 4.2 There exists a single absolutely clean chain complex (of right R-modules)
A with the property that a complex C of projective complexes is in the class C if and
only if A⊗C is exact.

Proof We take A to be the direct sum of the disks Dn(RR) alongwith all the absolutely
clean complexes in a set S as in Proposition 2.8. One can check that A has the desired
property. �

Taking A as in Lemma4.2 and applyingTheorem3.1we get the following corollary.
Wewill call a complexC ∈ C anAC-acyclic complex of projective complexes; again,
they are the complexes of projectives appearing in Definition 1.1.

Corollary 4.3 Let C be the class of all AC-acyclic complexes of projective complexes.
Then there is a cofibrantly generated abelian model structure on double complexes
where every object is fibrant, C is the class of cofibrant objects, and W = C⊥ is
the class of trivial objects. In other words, (C, C⊥) is a projective cotorsion pair in
Ch(Ch(R)).

5 The Gorenstein AC-projective model structure on complexes

Our goal now is to proveTheorem1.2. So throughout this sectionwewill letGP denote
the class of Gorenstein AC-projective chain complexes, and setW = GP⊥. The goal
is to show that (GP,W) is a projective cotorsion pair in Ch(R). The idea is that we
just constructed the double complex version of this cotorsion pair in Corollary 4.3, and
we use the functor X �→ X0/B0X to pass the cotorsion pair down to one on Ch(R).
Again, this is just a double complex version of the original approach in [2], though a
few simplifications are made in our Lemmas 5.3 and 5.4.

Lemma 5.1 W ∈ W if and only if Sn(W ) ∈ C⊥ for any n. In particular, a chain
complex W ∈ W if and only if it is trivial when viewed as a double complex in the
AC-acyclic projective model structure of Corollary 4.3.
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Proof For any abelian category A, object W ∈ A, and exact chain complex C ∈
Ch(A), we have an isomorphism Ext1Ch(A)

(C, Sn(W )) ∼= Ext1A(Cn/BnC,W ) [11,
Lemma 4.2]. Since Cn/BnC ∼= Zn−1C, the lemma follows immediately from this
isomorphism and definitions. �
Lemma 5.2 W = GP⊥ is a thick class and contains all the projective chain com-
plexes.

Proof Thickness is immediate from Lemma 5.1 since C⊥ is thick. For the projective
complexes, note it follows immediately from Definition 1.1 that ExtnCh(R)(X, L) = 0
for any Gorenstein AC-projective chain complex X and level chain complex L . In
particular, Ext1(C, Sn(P)) ∼= Ext1Ch(R)(Zn−1C, P) = 0 wheneverC is an AC-acyclic
complex of projective complexes and P is a projective complex. So P ∈ W for any
projective complex P , by Lemma 5.1. �

We need one more lemma concerning the trivial objects.

Lemma 5.3 Suppose Y is a double complex with HiY = 0 for i > 0 and Yi level for
i < 0. Then Y is trivial in the AC-acyclic projective model structure of Corollary 4.3
if and only if Y0/B0Y ∈ W .

Proof We first note that any bounded above complex of level complexes is trivial, and
any bounded below exact complex of complexes is trivial. Indeed using the definition
of an AC-acyclic complex of projective complexes, one verifies that for any level chain
complexes L , the double complex Sn(L) is trivial in the AC-acyclic projective model
structure. That is, Sn(L) ∈ C⊥, and so any bounded above complex of level complexes
must also be trivial, according to Lemma 2.3. On the other hand, one verifies that for
any chain complex X , the double complex Dn(X) ∈ C⊥ too. So Lemma 2.3 tells
us that any bounded below exact complex of complexes is trivial in the AC-acyclic
projective model structure.

Now the given Y has a subcomplex A ⊆ Y, where A is the shown bounded below
exact complex of complexes: · · · −→ Y2 −→ Y1 −→ B0Y −→ 0. As noted above, this
complex is trivial, so the givenY is trivial if and only if the quotientY/A is trivial. We
note that this quotient is the complex 0 −→ Y0/B0Y −→ Y−1 −→ Y−2 −→ · · · , which
in turn has another obvious subcomplex 0 −→ 0 −→ Y−1 −→ Y−2 −→ · · · . This is a
bounded above complex of level complexes and thus also trivial. So we deduce thatY
is trivial if and only if the corresponding quotient complex, which is S0(Y0/B0Y), is
trivial. Now looking at Lemma 5.1 this happens if and only if Y0/B0Y ∈ W . So we
have proved the lemma. �

On the other hand, we will need lemmas concerning the class GP of Gorenstein
AC-projective chain complexes.

Lemma 5.4 Again let GP denote the class of Gorenstein AC-projective chain com-
plexes.

(1) GP is closed under direct sums.
(2) GP is projectively resolving in the sense of [19, Definition 1.1].
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(3) GP is closed under retracts (direct summands).

Proof It is easy to prove (1) straight from Definition 1.1.
For (2), let us first recall [19,Definition 1.1].Aclass of R-modules, or chain complex

of R-modules, such as GP , is called projectively resolving if it contains the projectives
and if for any short exact sequence 0 −→ X ′ −→ X −→ X ′′ −→ 0 with X ′′ ∈ GP , the
conditions X ′ ∈ GP and X ∈ GP are equivalent. The class of all Gorenstein AC-
projective R-modules was shown to be projectively resolving in [2, Section 8]. To
extend this to the class GP , of Gorenstein AC-projective chain complexes, we use the
characterization of Gorenstein AC-projective complexes from [1, Theorem 4.13]: A
chain complex X is Gorenstein AC-projective if and only if each Xn is a Gorenstein
AC-projective R-module and the external Hom, Hom(X, L), is exact whenever L is a
level complex. Now given a level complex L , we apply Hom(−, L) to the above short
exact sequence. We note that Hom(−, L) certainly takes all right exact sequences to
left exact sequences and it in fact preserves short exact sequences for which X ′′ is
level. Indeed referring to Sect. 2.3 we see that in each degree n, we have the exact
sequence

∏

k∈Z
HomR(Xk, Lk+n) −→

∏

k∈Z
HomR(X ′

k, Lk+n) −→
∏

k∈Z
Ext1R(X ′′

k , Lk+n) = 0.

The last product is 0 because we have Ext1R(M, N ) = 0 whenever M is a Gorenstein
AC-projective R-module and N is a level R-module. So now

0 −→ Hom(X ′′, L) −→ Hom(X, L) −→ Hom(X ′, L) −→ 0

is a short exact sequence withHom(X ′′, L) an exact complex. SoHom(X ′, L) is exact
if and only if Hom(X, L) is exact. We proved (2).

Finally, Holm shows in [19, Proposition 1.4] that an Eilenberg swindle argument
can be used to conclude (3) from both (1) and (2). It is clear that the argument given
there, for R-modules, holds for classes of chain complexes as well. �

We can now prove the main Theorem 1.2 stated in the Introduction.

Proof of Theorem 1.2 Again, GP denotes the class of all Gorenstein AC-projective
chain complexes, and W = GP⊥. By Lemma 5.2 we know that W is thick and
contains all projective chain complexes. So byProposition 2.1wewill have a projective
cotorsionpair oncewe show that (GP,W) is a complete cotorsionpair.Before showing
(GP,W) is a cotorsion pair we first will show that for a given chain complex X , we can
find a short exact sequence 0 −→ W −→ P −→ X −→ 0with P GorensteinAC-projective
and W ∈ W . Indeed letting S0(X) be the double complex with X concentrated in
degree 0, we can use the complete cotorsion pair (C, C⊥) of Corollary 4.3 to first
obtain a short exact sequence of double complexes

0 −→ Y −→ C −→ S0(X) −→ 0
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with C an AC-acyclic complex of projective complexes and Y ∈ C⊥; so Y is trivial in
the AC-acyclic projective model structure. By the snake lemma, we get a short exact
sequence

0 −→ Y0/B0Y −→ C0/B0C −→ X −→ 0.

Of course C0/B0C ∼= Z−1C is Gorenstein AC-projective by definition, but also
Y0/B0Y is in W by Lemma 5.3, since Yi is projective (so level) for all i �= 0 and
HiY = 0 for all i �= −1.

So we have shown that for any chain complex X we can find a short exact sequence
0 −→ W −→ P −→ X −→ 0 with P ∈ GP and W ∈ W . From this and the fact that GP
is closed under retracts (Lemma 5.4), a standard argument will show that (GP,W) is
indeed a cotorsion pair, and of course it has enough projectives. But then the so-called
“Salce-trick” applies and tells us that the cotorsion pair also has enough injectives,
and so it is a complete cotorsion pair.

The cotorsion pair (GP,W) is cogenerated by the set of all Gorenstein AC-
projective complexes with cardinality less than κ , where κ is chosen as in Theorem 3.6
(with A as in Lemma 4.2). Indeed given any Gorenstein AC-projective complex X , we
have X = Z0C for someAC-acyclic complex of projective complexesC. Theorem 3.6
shows that C has a filtration C = ∪α<λQα where each Qα,Qα+1/Qα are also AC-
acyclic complexes of projective complexes and |Qα|, |Qα+1/Qα| < κ . It follows that
X = ∪α<λZ0Qα is also a filtration of X by the Gorenstein AC-projective complexes
Z0Qα (with κ-bounded cardinality). �

The following corollary describes the homotopy category of the Gorenstein AC-
projective model structure. It follows from [15, Lemma 5.1].

Corollary 5.5 For any ring R, the homotopy category of theGorenstein AC-projective
model structure onCh(R) is equivalent to the category of all Gorenstein AC-projective
complexes modulo the usual chain homotopy relation.

We now relate the main theorem to the existence of certain precovers in Ch(R)

that are of interest. First, by referring to Definition 1.1, we note that by loosening
the requirement “for any level complex L” to only requiring “for any flat complex
F” (resp. “for any projective complex P”) we reproduce the definition of the Ding
projective complexes of [31] (resp. Gorenstein projective complexes of [9]).

Corollary 5.6 We have the following statements concerning existence of Gorenstein
AC-projective, Ding projective, and Gorenstein projective precovers in Ch(R).

(1) Every chain complex over any ring has a special Gorenstein AC-projective pre-
cover.

(2) If R is a (right) coherent ring, then every chain complex has a special Ding
projective precover.

(3) lf R is any ring in which all level modules have finite projective dimension, then
every chain complex has a special Gorenstein projective precover.
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ln particular, (3) says that if R is a (right) coherent ring inwhich all flat (left)modules
have finite projective dimension (called left n-perfect), then every chain complex has
a special Gorenstein projective precover. This was also recently established in [8,14].
The same results of Corollary 5.6, but for R-modules, are proved in [2].

Proof The first statement is clear from the Definition given in Sect. 2.1. For the second
statement, if R is a (right) coherent ring, then a chain complex of (left) R-modules
is level if and only if it is flat [1]. So in this case Gorenstein AC-projective coincides
with the notion of Ding projective.

For the last statement, suppose all level modules have finite projective dimension.
Since level modules are closed under direct sums there must be an upper bound on
the projective dimensions. Using the characterization of level complexes from Propo-
sition 2.5 one can argue that all level complexes also have finite projective dimension
(and with the same upper bound on their dimensions). So if L is a level complex then
we can take a finite projective resolution

0 −→ Qn −→ · · · −→ Q2 −→ Q1 −→ Q0 −→ L −→ 0.

Now if we let P◦ denote an exact complex of projectives as in Definition 1.1,
we can apply HomCh(R)(P◦,−) to the above resolution of L and argue that if
HomCh(R)(P◦, Q) is exact for any projective chain complex Q, thenHomCh(R)(P◦, L)

is also exact for L . So the notion of Gorenstein AC-projective coincides with the usual
notion of Gorenstein projective in this case. �

In fact, most rings encountered in practice are (one-sided) Noetherian or at least
(one-sided) coherent. Andwe refer the reader to [14, Page 892] for a lengthy discussion
of the many rings satisfying the property that every flat module has finite projective
dimension. So for most rings encountered in practice the three notions appearing in
Corollary 5.6 coincide. This is also true for the Ding-Chen rings considered in the next
section, though over such rings a flatmodule need not have finite projective dimension;
see the Remark at the end of Sect. 6.

6 The case of Ding-Chen rings

Themodel structurewe just constructed in Sect. 5 is a cofibrantly generated, hereditary,
abelian model structure. As such it is known that its homotopy category is a well-
generated triangulated category in the sense of [25]. We now show it is in fact a
compactly generated category in the case that R is a Ding-Chen ring in the sense
of [12]. Such a ring is, by definition, a two-sided coherent ring in which R R and RR

each have finite absolutely pure (FP-injective) dimension. The two-sided Noetherian
Ding-Chen rings are precisely the Gorenstein rings of Iwanaga [22,23]. The main
result here is Theorem 6.4. The compactly generated part of the theorem may be
viewed as a chain complex analog to a result of Stovicek [28, Prop. 7.9], though our
proof is entirely different.

Again, Theorem 1.2 shows that for any ring R, we have the projective cotorsion pair
Mpr j = (GP,GP⊥), which induces the Gorenstein AC-projective model structure
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on Ch(R). But we also have the injective cotorsion pairMin j = (⊥GI,GI), inducing
the Gorenstein AC-injective model structure on Ch(R); see [1, Theorem 3.3].

Lemma 6.1 For any ring R, the identity functor is a left Quillen functor fromMpr j =
(GP,GP⊥), the Gorenstein AC-projective model structure, to Min j = (⊥GI,GI),
the Gorenstein AC-injective model structure.

Proof It is clear that the identity functor takes cofibrations (resp. trivial cofibrations)
in the Gorenstein AC-projective model structure, which are monomorphisms with
Gorenstein AC-projective (resp. categorically projective) cokernels, to cofibrations in
theGorensteinAC-injectivemodel structure,which aremonomorphismswith any cok-
ernel (resp. trivial cokernel). Note that a categorically projective complex P certainly
is trivial in the Gorenstein AC-injective model structure because Ext1Ch(R)(P, X) = 0
for any Gorenstein AC-injective complex X . Since the identity functor is a left adjoint
(to itself) and preserves cofibrations and trivial cofibrations it is a left Quillen functor
by definition. �
Lemma 6.2 Let R be a Ding-Chen ring. That is, a two-sided coherent ring in which
R R and RR each have finite absolutely pure dimension. ThenGP⊥ = ⊥GI. This class,
denoted W , consists precisely of all chain complexes having finite flat (equivalently,
absolutely pure) dimension. A chain complex W is in W if and only if it is exact and
each cycle module ZnW has finite flat (equivalently, absolutely pure) dimension in
R-Mod.

Proof Since R is coherent, a level complex is the same as a flat complex, and so a
Gorenstein AC-projective complex is exactly a Ding projective complex in the sense
of [31, Section 3]. (Similarly, the Gorenstein AC-injectives coincide with the Ding
injective complexes.) The result now follows from [31, Theorem 4.5]. �
Lemma 6.3 Let R beaDing-Chen ring. That is, a two-sided coherent ring inwhich R R
and RR each have finite absolutely pure dimension. Then the class GP of Gorenstein
AC-projective complexes coincides with the class of (usual) Gorenstein projective
complexes, and these are precisely the complexes X having each component Xn a
Gorenstein projective R-module (in the usual sense of [6]). Similarly, the class GI
of Gorenstein AC-injectives coincides with the class of (usual) Gorenstein injective
complexes, and these are precisely the complexes X having each component Xn a
Gorenstein injective R-module.

Proof Again since R is coherent, Gorenstein AC-projective coincides with Ding pro-
jective and Gorenstein AC-injective coincides with Ding-injective. The result now
comes from [16, Theorem 1.1/1.2]. �

We are now ready to prove the main result concerning Gorenstein AC-projectives
in the case that R is a Ding-Chen ring.

Theorem 6.4 Let R be a Ding-Chen ring. That is, a two-sided coherent ring in which
R R and RR each have finite absolutely pure dimension. Then the identity functor is
a Quillen equivalence from Mpr j = (GP,W), the Gorenstein AC-projective model
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structure, to Min j = (W,GI), the Gorenstein AC-injective model structure. The
associated homotopy category is compactly generated and equivalent to the chain
homotopy category of all chain complexes X having each component Xn a Gorenstein
projective R-module (in the usual sense of [6]). This in turn is equivalent to the chain
homotopy category of all chain complexes X having each component Xn a Gorenstein
injective R-module.

Proof Lemma 6.1 tells us the identity is a left Quillen functor between the two model
structures. Lemma6.2 tells us that the class of trivial objects in the twomodel structures
are equal. It follows that the two homotopy categories are equal and the identity functor
becomes a Quillen equivalence in this case [7, Lemma 5.4]. Lemma 6.3, along with
Corollary 5.5, (resp. [15, Lemma 5.1] in the injective case), give us the description
of the homotopy category as the chain homotopy category of all complexes X having
each Xn a Gorenstein projective (resp. Gorenstein injective) R-module.

It is left to show that we have a compactly generated homotopy category. For this,
suppose the dimension of the Ding-Chen ring R is d. Let S = { 
d F } be a set of
dth syzygies on a set (of isomorphism representatives) of all finitely presented chain
complexes F . Then, arguing similarly to the proof of [21, Theorem 8.3], we can argue
that X ∈ S⊥ if and only if X has FP-injective (absolutely pure) dimension ≤ d.
Referring to Lemma 6.2 this means S⊥ = W , and so S cogenerates the cotorsion pair
in this case. Note that since R is coherent, the class of finitely presented complexes is
closed under taking kernels. So each 
d F can be taken to be finitely presented (f.g.
projective complexes are automatically finitely presented.) Now as in the proof of [21,
Theorem 9.4], we get from a general theorem [20, Corollary 7.4.4] that the set

I = { 
d+1F ↪→ Pd } ∪ { 0 ↪→ Dn(R) },

where 0 −→ 
d+1F −→ Pd −→ 
d F −→ 0 is a short exact sequence taken with
Pd a finitely generated projective, provides a set of (finite) generating cofibrations.
J = { 0 ↪→ Dn(R) } is the set of (finite) generating trivial cofibrations. So the model
structure is finitely generated and hence its homotopy category is compactly generated.

�
Remark We continue the remarks made at the end of Sect. 5. For the Ding-Chen rings
considered in this section, we again have Gorenstein AC-projective = Ding projective
= Gorenstein projective. But we note that a flat module over a Ding-Chen ring may not
have finite projective dimension. Indeed any von Neumann regular ring is Ding-Chen
and such a ring may have infinite global dimension. A particular example is obtained
by using the free Boolean rings of [26, Section 5]. A Boolean ring is a ring satisfying
the identity x2 = x ; such a ring is commutative and von Neumann regular. Let Fα be
the free Boolean ring on ℵα generators. Pierce computes its global dimension in [26,
Cor. 5.2]; it is dim(Fα) = n + 1 if α = n < ω, and dim(Fα) = ∞ if α is infinite.
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28. Šťovíček, J.: On purity and applications to coderived and singularity categories. arXiv:1412.1615
29. Trlifaj, J.: Ext and inverse limits. Ill. J. Math. 47(1/2), 529–538 (2003)
30. Weibel, C.A.: An Introduction to Homological Algebra, Cambridge Studies in AdvancedMathematics,

vol. 38. Cambridge University Press, Cambridge (1994)
31. Yang, G., Liu, Z., Liang, L.: Model structures on categories of complexes over Ding-Chen rings.

Commun. Algebra 41, 50–69 (2013)

123

http://arxiv.org/abs/1405.5768
https://doi.org/10.1017/S0308210517000385
http://arxiv.org/abs/1508.04173
https://doi.org/10.1112/blms/bdw051
http://arxiv.org/abs/1412.1615

	Gorenstein AC-projective complexes
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Cotorsion pairs and precovers
	2.2 Projective and injective cotorsion pairs
	2.3 Chain complexes on abelian categories
	2.4 Grothendieck categories
	2.5 Disks and spheres and cotorsion pairs
	2.6 The modified Hom and Tensor complexes
	2.7 Finitely chain complexes and projective chain complexes
	2.8 Absolutely clean and level complexes; character duality

	3 Projective model structures on double complexes
	4 The AC-acyclic projective model structure on double complexes
	5 The Gorenstein AC-projective model structure on complexes
	6 The case of Ding-Chen rings
	References




