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Abstract Quasi-elliptic cohomology is a variant of Tate K-theory. It is the orbifold
K-theory of a space of constant loops. For global quotient orbifolds, it can be expressed
in terms of equivariant K-theories. In this paper we show how this theory is equipped
with power operations. We also prove that the Tate K-theory of symmetric groups
modulo a certain transfer ideal classify the finite subgroups of the Tate curve.
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1 Introduction

An elliptic cohomology theory is an even periodic multiplicative generalized cohomol-
ogy theory whose associated formal group is the formal completion of an elliptic curve.
It is an old idea of Witten, as shown in [17], that the elliptic cohomology of a space
X is related to the T-equivariant K-theory of the free loop space LX = C>®(S!, X)
with the circle T acting on LX by rotating loops.

It is surprisingly difficult to make this precise, especially if one wishes to consider
equivariant generalization of this construction. In this case the loop space LX with
the natural rotation action is a rich orbifold. In this paper we offer a new formulation
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between the loop space and Tate K-theory via a new theory which we call quasi-elliptic
cohomology.

Tate K-theory is the generalized elliptic cohomology associated to the Tate curve.
The Tate curve Tate(q) is an elliptic curve over SpecZ((g)), which is classified as the
completion of the algebraic stack of some nice generalized elliptic curves at infinity. A
good reference for Tate(q) is Section 2.6 of [1]. We give a sketch of itin Sect. 6.1. The
relation between Tate K-theory and string theory is better understood than for most
known elliptic cohomology theories. The definition of G-equivariant Tate K-theory
for finite groups G is modelled on the loop space of a global quotient orbifold, which is
formulated explicitly in Section 2, [10]. Its relation with string theory and loop space
makes Tate K-theory itself a distinctive subject to study.

The idea of quasi-elliptic cohomology is motivated by Ganter’s construction of
Tate K-theory. It is not an elliptic cohomology but from it we can recover the Tate
K-theory. This new theory can be interpreted in a neat form by equivariant K-theories,
which makes many constructions on it easier and more natural than those on the Tate
K-theories. Some formulations can be generalized to other equivariant cohomology
theories. In addition, quasi-elliptic cohomology provides a method that reduces facts
such as the classification of geometric structures on the Tate curve into questions in
representation theory.

1.1 Loop space

Quasi-elliptic cohomology is modelled on a version of equivariant loop space. For
background on orbifolds and Lie groupoids, we refer the readers to Sections 2, 3,
[18,23].

For any compact Lie group G and a manifold X with a smooth G-action, there is
a Lie groupoid X /G which is explained in detail in Chapter 11, [6]. Smooth unbased
loops in the orbifold X / G carries a lot of structure: on the one hand, it includes loops
represented by smooth maps y : R — X suchthaty (r+1) = y(t)g forsome g € G;
other than the group action by the loop group LG := C*(S', G), the loop space also
has the circle action by rotation. Lerman discussed thoroughly in Section 3, [18] that
the strict 2-category of Lie groupoids can be embedded into a weak 2-category whose
objects are Lie groupoids, 1-morphisms are bibundles and 2-morphisms equivariant
diffeomorphisms between bibundles. Thus, the free loop space of an orbifold M is the
category of bibundles from the trivial groupoid S' /x to the Lie groupoid M. We will
write

Loop1 (X)) G) = Bibun(Sl//*, X/G),

which is discussed in Definition 2.2. In Definition 2.3, we extend Loop(X/G) to a
groupoid Loop{*' (X / G) by adding rotations as morphisms.

Especially we are interested in the ghost loops groupoid GhLoop (X G), which
is defined to be the full subgroupoid of Loop{*' (X /G) consisting of objects (1, f)
with the image of f contained in a single G-orbit. Ghost loops are introduced by Rezk
in his unpublished manuscript [26]. Another reference is Section 2.1.3, [12]. This
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Quasi-elliptic cohomology and its power operations 717

groupoid has several good properties. They are computed locally in X. For instance,
if X = U UV where U and V are G-invariant open subsets, then

GhLoop(X)G) = GhLoop(UJG) UGhLoop((UNV) ) G) GhLoop(V ) G).

So it satisfies a kind of Mayer—Vietoris property. In addition, if H is a closed sub-
group of G and X is the quotient space G/H, GhLoop(X/G) is equivalent to
GhLoop(pt/ H). In other words, it has the change-of-group property.

When G is finite, Gh Loop(X J G) is isomorphic to the full subgroupoid A (X / G) of
Loop$*' (X J G) consisting of constant loops. This groupoid A (X / G) can be regarded
as an extended version of the inertia groupoid 7 (X / G). Please see Definition 3.7 for
inertia groupoid.

1.2 Quasi-elliptic cohomology

For any compact orbifold groupoid G, the orbifold K-theory K,,;(G) is defined to be
the Grothendieck ring of isomorphism classes of G-vector bundles on G. In particular,
Kop(X)G) is Kg(X). A reference for orbifold K-theory is Chapter 3, [3] and a
reference for equivariant K-theory is [27].

Quasi-elliptic cohomology Q Ell*(X / G) is defined to be the orbifold K-theory of
a subgroupoid A (X G) of GhLoop(X J G) consisting of constant loops. When G is
a finite group, Q EII7;(X) can be expressed in terms of the equivariant K-theory of X
and its subspaces as

G
QEIE(X) := Kopp(GhLoop(X)G) =[] Koo)X = ( I1 K;{G(G)(X")> ,
0€Geonj oeG
(1.D
where Go,j is a set of representatives of G-conjugacy classes in G. The group
Ag(0) := Cg(0) xR/{(o, —1)) acts on the fixed point space X° by [g, t]-m = g-m.
In a coming paper by the author [13], we will present the construction of Q EIIf;(X)
for any compact Lie group G.
QEll;(X) has the structure of a Z[qi]-algebra. We have

QEIlG(X) ®z14%1 Z((q)) = (K7 410)6 (X). (1.2)

We formulate the Kiinneth map, restriction map, change of group isomorphism
and transfer for Q Ell. In general, if H* is an equivariant cohomology theory, then the
functor

X/ G+~ H*(GhLoop(X | G))

gives a new equivariant cohomology theory. Moreover, for each global cohomology
theory, we can formulate a new global cohomology theory via the ghost loops.
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1.3 Power operation

One significant feature of quasi-elliptic cohomology is that it has power operations,
which was first observed by Ganter, as shown in [10,11]. In Sect. 4 we construct
the total power operation of quasi-elliptic cohomology. It satisfies the axioms for
equivariant power operations that Ganter gave in Definition 4.3 in [9]. For more details,
please see Theorem 4.12.

The power operation {P,},>0 mixes the power operation in K-theory with the
natural operations of dilating and rotating loops. The key point of the construction of
the power operation is an intermediate groupoid d(g,»)(X) with (g,0) € G X, It

is constructed from A (X /G) and isomorphic to (XX")(E’”)//AGEH (g, o). For more
details of the construction, please see Sect. 4.2. -

We illustrate what this power operation looks like by examples. Let G be the trivial
group and X a space. Let (—); denote the rescaling map defined in (4.11).

When n = 2, ]P)(l,(l)(l))(x) = x X x and P(L(IZ))(X) = (x)z.

When n = 3, P(L(l)(l)(]))(x) =xXxKX X, P(L(IZ)(I))(X) = (x)2 X X, and
P, 123) (x) = (x)3.

In these cases, the number of factors corresponds to the number of cycles in the
permutation and the rescaling map corresponds to the length of each cycle. For more
examples please see Example 4.13.

For any equivariant cohomology theory {H;(—)}c with an Huo-structure in Gan-
ter’s sense, we can formulate a power operation for the equivariant cohomology
theories

= [T Hio )

Uchon_/

in the same way.

In addition, we can formulate the total power operation for the orbifold quasi-
elliptic cohomology in the sense of Definition 3.9, [11]. The construction of the power
operation is shown in Sect. 5.3.

1.4 Classification of the finite subgroups of the Tate curve

Though the general formulas for the power operations in Q Ellg are complicated, to
understand it, it is useful to consider special cases. It is already illuminating to consider
the case that X is a point and G is the trivial group, the power operation has a neat
form, as shown in Example 4.13. It has a natural interpretation in terms of the Tate
elliptic curve.

In Sect. 6.3 applying the power operation we prove that the Tate K-theory of sym-
metric groups modulo the transfer ideal classifies the finite subgroups of the Tate
curve, which is analogous to the principal result in Strickland [28] that the Morava
E-theory of the symmetric group X, modulo a certain transfer ideal classifies the
power subgroups of rank n of the formal group Gg.
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Quasi-elliptic cohomology and its power operations 719

The finite subgroups of the Tate curve are classified by

[Tz«@)a'1/a? - 4.

d|N
First we prove the parallel conclusion for quasi-elliptic cohomology.
Theorem 1.1

QENY, (/T2 =[] Zlg*1lq'1/ ¢ — '), (1.3)
d|N

where Ith” is the transfer ideal defined in (6.4) and q' is the image of q under the
power operation Py.

Then applying the relationship between Q Ell* and Tate K-theory, we obtain the
main theorem.

Theorem 1.2 The Tate K-theory of symmetric groups modulo the transfer ideal I 5‘” ¢
defined in (6.3) classifies finite subgroups of the Tate curve. Explicitly,

8=

(KD u)zn o)/ 154 = [T 20D 1g"1/ (g — 4’

d|N

) (1.4)

where q' is the image of q under the power operation PT%'¢ constructed in Definition
5.10, [10].

Moreover, via the isomorphism in Theorem 1.1, we can define a ring homomor-

phism

Py 1QElG(X) 25 QEllgs, (X*N) 25 QEllg, 5y (X*V)
diag*
% QElGyzy (X) = QEllG(X) ®gy+ QEllz, (pt)
—> QEIllG(X) ®g4+) QElls, (p0 /T,

as shown in Proposition 6.5. Under the identification (1.2), it extends uniquely to the
ring homomorphism

Pstring - (Krare)6(X) —> (KTare)6(X) ®7((q)) (KTate) sy (pt)/ 1L

constructed in Section 5.4, [10]. ln [14] we construct the universal finite subgroup of
the Tate curve via the operation P y.
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2 Models for orbifold loops and ghost loops

To understand Q Ell g (X), it is essential to understand the orbifold loop space. In this
section, we will describe several models for the loop space of X /G. In Definition 2.2
we discuss Loop1 (X / G) and introduce another model Loop, (X /G) in Definition 2.4.

The groupoid structure of Loop(X ) G) generalizes Map(S', X)/ G, which is a
subgroupoid of it. Other than the G-action, we also consider the rotation by the circle
group T on the objects and form the groupoids Loop$* (X /G) and Loop5™ (X G).
The groupoid Loop§™ (X / G) has a skeleton

LX)G) =] 1L XJLYG % T,
8

where each 1 £, X = Mapy,;7(R/IZ, X) with [ the order of g is equipped with an
evident Cg (g)-action. L(X / G) has the same space of objects as the groupoid L(X / G)
discussed in Definition 2.3, [21], from which equivariant Tate K-theory is defined. It
has richer morphisms. The circle group T acts on R//Z by rotation, and so in principle
on the orbifold | £, X.

The key groupoid A (X / G) in the construction of quasi-elliptic cohomology is the
full subgroupoid of £(X /G) consisting of the constant loops. In order to unravel the
relevant notations in the construction of Q EIIf;(X), we study the orbifold loop space
in Sects. 2.1.2 and 2.1.3.

In Sect. 2.1.1 we define Loopi(X/G). In Sect. 2.1.2 we interpret the enlarged
groupoid Loop{* (X /G) and introduce a skeleton £(X/G) of it. In Sect. 2.1.3 we
show the construction of quasi-elliptic cohomology by ghost loops. In Sect. 3.1 we
show the representation ring of Ag(g). In Sect. 3.2 we introduce the construction
of quasi-elliptic cohomology first in terms of orbifold K-theory and then equivariant
K-theory. We show the properties of the theory in Sect. 3.3.

2.1 Loop space
2.1.1 Bibundles

A standard reference for groupoids and bibundles is Sections 2 and 3, [18]. For each
pair of Lie groupoids H and G, the bibundles from H to G are defined in Definition
3.25, [18]. The category Bibun(H, G) has bibundles from H to G as the objects and
bundle maps as the morphisms.

Example 2.1 (Bibun(S' Jx, )/ G)) According to the definition, a bibundle from S' //x
to x/ G with G a Lie group is a smooth manifold P together with twomaps 7 : P —>
S1 a smooth principal G-bundle and the constant map » : P —> . So a bibundle
in this case is equivalent to a smooth principal G-bundle over S!. The morphisms in
Bibun(S' /%, %/ G) are bundle isomorphisms.

Definition 2.2 (Loop(X /G))Let G be aLie group acting smoothly on a manifold X .
We use Loopi (X / G) to denote the category Bibun(S' J*, X J G), which generalizes
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Quasi-elliptic cohomology and its power operations 721

Example 2.1. Each object consists of a smooth manifold P and two structure maps
P = S asmooth principal G-bundle and f : P — X a G-equivariant map. We
use the same symbol P to denote both the object and the smooth manifold when there
is no confusion. A morphism is a G-bundle map « : P —> P’ making the diagram
below commute.

st p_J . x

PN

P/

Thus, the morphisms in Loop;(X/G) from P to P’ are bundle isomorphisms.

Only the G-action on X is considered in Loopi(X/G). We add the rotations by
adding more morphisms into the groupoid.

Definition 2.3 (Loop{*' (X G)) Let Loop$§*' (X G) denote the groupoid with the
same objects as Loop (X / G). Each morphism consists of the pair (¢, o) where t € T
is a rotation and « is a G-bundle map. They make the diagram below commute.

ster _p_t ., x

L7

Ste——p'

g
The groupoid Loopi (X / G) is a subgroupoid of Loop{* (X G).
2.1.2 Another model for orbifold loop space

We give an equivalent description of the groupoids discussed in Sect. 2.1.1. The new
models Loop> (X / G) and Loop$*' (X / G) are more practicable to compute. We give
a skeleton £(X / G) of Loop5™ (X / G) when G is finite in Proposition 2.7.

Definition 2.4 (Loop>(X/G)) Let Loop>(X/ G) denote the groupoid whose objects
are (o, y)witho € Gandy : R — X acontinuous map suchthaty (s+1) = y(s)-o,
forany s € R. A morphismea : (o, y) —> (¢, ') isacontinuous mapo : R — G
satisfying y'(s) = y (s)a(s). Note that «(s)o’ = oa(s + 1), for any s € R.

Moreover, we can extend the groupoid Loop, (X /G) by adding the rotations.

Definition 2.5 (Loop$ (X G))

Let Loops™ (X G) denote the groupoid with the same objects as Loops(X/ G).
A morphism (o, y) —> (0’,y’) consists of the pair («, 1) witha : R — G a
continuous map and ¢ € R satisfying y'(s) = y (s — t)a(s — ). Note that (a, t + 1)
and («xo’, t) are the same morphism and each morphism can be represented by a pair
(a, t) withr € [0, 1).

Loop>(X/ G) is a subgroupoid of Loop5™ (X G).
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Lemma 2.6 The groupoid Loopf”(X J G) is isomorphic to a full subgroupoid of
LoopS™ (X G).

Proof Define a functor
F : Loop{™ (X G) —> Loop$* (X G)

by sending an object

st P——X

to (0, ) with y(s) := f([s, e]) and o = y(0)~'y (1) and sending a morphism

st p_J . x

|7

Ste——pP’
big

to (o, 1) : (0, y) —> (o', y) with a(s) := F([s, e])~".
F is a fully faithful functor but not essentially surjective. O

Therefore, the groupoid Loop5™(X/G) contains all the information of
Loop$* (X G). Next we will show a skeleton of this larger groupoid when G is
finite. Before that, we introduce some symbols.

Let k > 0 be an integer and g an element in the compact Lie group G. Let L’gG
denote the twisted loop group

r :R— GlyGs+h) =g"y()g)- @1
The multiplication of it is defined by
(8-8)@) =8(t)8'(t), foranys, s € L';G, andr € R. (2.2)

The identity element e is the constant map sending all the real numbers to the identity
element of G. We extend this group by adding the rotations. Let L’;,G x T denote the

group with elements (y, t), y € L’g,G and ¢ € T. The multiplication is defined by

. 0) - )= yE)y s+, +1). (2.3)

The set of constant maps R — G in L’;,G is a subgroup of it, i.e. the centralizer

Cg(g). When G is finite, L G = Cg(g).
When G is finite, the objects of Loop,(X/ G) can be identified with the space

]_[ 1£gX

geG
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where
kLoX = MapZ/,Z(R/klZ, X), 2.4)

and/ is the order of the element g. The cyclic group Z/ [Z is isomorphic to the subgroup
kZ/klZ of R/klZ. The isomorphism Z/17Z —> kZ/klZ sends the generator [1]
corresponding to 1 to the generator [k] of kZ/klZ corresponding to k. kZ/kIZ acts
on R/ klZ by group multiplication. Thus, via the isomorphism, Z/IZ acts on R/ klZ.
Z./ 17 is also isomorphic to the cyclic group (g) by identifying the generater [1] with
g. So it acts on X via the G-action on it.

1£gX//L;,G is a full subgroupoid of Loop;(X J G). Moreover, 1£gX//L;G x T is

a full subgroupoid of Loop$* (X / G) where L’S‘,G x T acts on L, X by

§-(y,t) ==(sr—>8(s+1) -y(s+1)), forany (y,1) € LZ,G x T, and § € Ly X.
(2.5)
The action by g on ;L X coincides with that by k € R. So we have the isomorphism

LYG x T = LiG xR/((g. —k)). (2.6)
where g represents the constant loop T — {g} € G.
In fact we have already proved Proposition 2.7.
Proposition 2.7 Let G be a finite group. The groupoid

LX)G) =] ]1L,X/L}G % T
lg]

is a skeleton of Loop§™' (X || G), where the coproduct goes over conjugacy classes in
70G.

Next we show the physical meaning of L},G . Recall that the gauge group of a
principal bundle is defined to be the group of its vertical automorphisms. The readers
may refer [22] for more details. For a G-bundle P —> S!, let L pG denote its gauge

group.
We have the well-known facts below.

Lemma 2.8 The principal G-bundles over S' are classified up to isomorphism by
homotopy classes

[S', BG] = 710G /conj.

Up to isomorphism every principal G-bundle over S' is isomorphic to one of the forms
P, —> S witho € G and

Py =R xG/(s+1,8) ~ (s,08).

A complete collection of isomorphism classes is given by a choice of representatives
for each conjugacy class of moG.
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For the gauge group L p, G we have the conclusion below.

Proposition 2.9 For the bundle Py —> S', Lp, G is isomorphic to the twisted loop
group L (1, G.

Proof Each automorphism f of the bundle P, —> S' has the form

[s,gl—>[s,y7(s)gl
p, —=— 1 p,

l l 2.7)

st — !

for some yy : R — G. The morphism is well-defined if and only if y/(s + 1) =
o~y (s)o. So we get a well-defined map

F:Lp,G—> LLG, f > ys.

Itis a bijection. Moreover, by the property of group action, F sends the identity map to
the constant map R — G, s = e, which is the trivial element in L}, G, and for two
automorphisms f1 and f at the object, F'(f10 f2) = v, - ¥f,.So L p, G is isomorphic
toLlG. O

2.1.3 Ghost loops

Let G be a compact Lie group and X a G-space. In this section we introduce a
subgroupoid GhLoop(X J G) of Loop{*' (X G), which can be computed locally.

Definition 2.10 (Ghost loops) The groupoid of ghost loops is defined to be the full

subgroupoid Gh Loop(X | G) of Loop{*' (X | G) consisting of objects steprx
such that 6(P) C X is contained in a single G-orbit.

For a given o € G, define the space
GhLoops (X[ G) :=1{8 € 1L X|8(R) C G&(0)}. 2.8)

We have a corollary of Proposition 2.7 below.

Proposition 2.11 GhLoop(X ) G) is equivalent to the groupoid

A(X)G) =] ] GhLoops(X)G)JL,G % T
[o]

where the coproduct goes over conjugacy classes in moG.

Example 2.12 If G is a finite group, it has the discrete topology. In this case, LG
consists of constant loops and, thus, is isomorphic to G. The space of objects of
GhLoop(X/ G) can be identified with X. For 0 € G and any integer k, Lf‘,G can
be identified with Cg(0); L’;G XT = Cg(o) xR/ ((o, —k)); and GhLoops (X G)
can be identified with X°.
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Unlike true loops, ghost loops have the property that they can be computed locally,
as shown in the lemma below. The proof is left to the readers.

Proposition 2.13 If X = U U V where U and V are G-invariant open subsets, then
GhLoop(X ) G) is isomorphic to the fibred product of groupoids

GhLoop(UJG) UGhLoop(UNV) )/ G) GhLoop(V ) G).

Thus, the ghost loop construction satisfies Mayer—Vietoris property. Moreover, it has
the change-of-group property.

Proposition 2.14 Let H be a closed subgroup of G. It acts on the space of
left cosets G/H by left multiplication. Let pt denote the single point space with
the trivial H-action. Then we have the equivalence of topological groupoids
between Loop$* ((G/H) /[ G) and Loop$*' (pt) H). Especially, there is an equiva-
lence between the groupoids GhLoop((G/H) ) G) and GhLoop(pt)H).

Proof First we define a functor F : Loop$*' ((G/H)/ G) — Loop{* (pt/ H) send-

ing an object §' « P 4 G/H to S' « Q — {eH} = pt where Q —> eH is the
constant map, and Q —> S' is the pull back bundle

Q —— {eH}

|

P——G/H.

It sends a morphism

PP——P—G/H

L

st——s!
to the morphism

Q' —— Q0 ——{eH)

R

PP——P—+G/H

|

sl— ¢!

where all the squares are pull-back.
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Inaddition, we can define a functor F’ : Loop{™ (pt/ H) —> Loop§*' ((G/H)/ G)
sending an object ' <~ Q — ptto S' <« G xy Q — G xypt = G/H and sending
a morphism

Q' —— 0

[

R —
to

GxgQ ——GxygQ——=>Gxygpt=G/H

| J

st— > st

F o F' and F’ o F are both identity maps. So the topological groupoids
Loop$* ((G/H)/ G) and Loop{™ (pt/ H) are equivalent.

We can prove the equivalence between GhLoop((G/H)/G) and GhLoop(pt) H)
in the same way. O

Remark 2.15 In general, if H* is an equivariant cohomology theory, Proposition 2.14
implies the functor

X/) G+~ H*(GhLoop(X /) G))

gives a new equivariant cohomology theory. When H* has the change of group iso-
morphism, so does H*(GhLoop(—)).

3 Quasi-elliptic cohomology Q EIl;

Unless otherwise indicated, we assume G is a finite group and X is a G-space in the
rest part of the paper. The main references for Sect. 3 are Rezk’s unpublished work
[25] and the author’s PhD thesis [12]. The construction of the theory QEllzk; for any
compact Lie group G will be shown in the paper [13]. In Sect. 3.2 we define QEII{;

and prove some of its main properties. Before that we discuss in Sect. 3.1 the complex
representation ring of

Ag(g) == Li,G X T =Cg(g) x R/((g, —1), (3.1
which is a factor of Q EII;(pt). We assume familiarity with [5,27].
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3.1 Preliminary: representation ring of Ag(g)

Letg : T — U(1) be the isomorphism 7 + ¢**'!. The complex representation ring
RT is Z[g*].
We have an exact sequence

I — Co(g) — Ag(e) => T —0
where the first map is g — [g, 0] and the second map is
(g, 1]) = ¥ (3.2)

The map 7* : RT —> RAg(g) equips the representation ring R A g (g) the structure
as an RT-module.

There is a relation between the complex representation ring of Cg(g) and that of
AG(g), which is shown as Lemma 1.2 in [25] and Lemma 2.4.1 in [12].

Lemma 3.1 The RT-module RAg(g) with the action defined by n* : RT —>
RAG(g) is afree module.

In particular, there is an RT-basis of RAG(g) given by irreducible representations
{Vi}, such that restriction Vy — Vj|cg(g) to Cc(g) defines a bijection between { V) }
and the set {1} of irreducible representations of Cg(g).

Proof Let [ be the order of g. Note that Ag(g) is isomorphic to

Cg(g) x R/IZ/{(g, =1)).

Thus, it is the quotient of the product of two compact Lie groups.

Let A : Cg(g) — GL(n,C) be an n-dimensional Cg(g)-representation with
representation space V and n : R — GL(n, C) be a representation of R such that
A(g) acts on V via scalar multiplication by n(1). Define a n-dimensional Ag(g)-
representation A O¢ 1 with representation space V by

A Oc n([h, t]) == A(M)n(2). (3-3)

Any irreducible n-dimensional representation of the quotient group Ag(g) =
Cg(g) x R/((g,—1)) is an irreducible n-dimensional representation of the prod-
uct Cg(g) x R. And any finite dimensional irreducible complex representation of the
product of two compact Lie groups is the tensor product of an irreducible representa-
tion of each factor. So any irreducible representation of the quotient group A (g) is the
tensor product of an irreducible representation A of C;(g) with representation space
V and an irreducible representation n of R. Any irreducible complex representation n
of R is one dimensional. So the representation space of A O¢ n is still V. n(l)l =1.

We need n(1) = A(g). Son(l) = eznlilk for some k € Z. So

2mi(k+im)t
1

ni) =e
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Any m € Z gives a choice of 7 in this case. And 7 is a representation of R//Z = T.
Therefore, we have a bijective correspondence between

1. isomorphism classes of irreducible A (g)-representation p, and
2. isomorphism classes of pairs (X, ) where A is an irreducible C¢ (g)-representation
and 1 : R — C* is a character such that A(g) = n(1)I. A = plcg(e)-

Then as a corollary, the RT-module RA ;(g) with the RT-action defined by 7* :
RT — RAG(g)
7% : RT — RAg(g) exhibits RAg(g) as a free RT-module. O

Remark 3.2 We can make a canonical choice of Z[g¥]-basis for RA(g). For each
irreducible G-representation p : G —> Aut(G), write p(c) = e*"“id forc € [0, 1),
and set x,(t) = e27ict Then the pair (p, x,) corresponds to a unique irreducible
A (g)-representation

0 Oc xp([h, t]) := p(h) x,(1). (3.4

Example 3.3 (G = Z/NZ) Let G = Z/NZ for N > 1, and let 0 € G. Given an
integer k € Z which projects to o € Z/NZ, let x; denote the representation of Ag (o)
defined by

, kt—a)/N
[a,t]—[(kt—a)/N] R/Z =T q U).

(3.5)

Ag(o) = (Z x R)/(Z(N, 0) + Z(k, 1))

RAg (o) is isomorphic to the ring Zlg*, )ck]/(xliv —gh).

Example 3.4 (G = ¥3) G = X3 has three conjugacy classes represented by 1, (12),
(123) respectively.

As,(1) = X3 x T, thus, RAx,(1) = R¥3 ® RT = Z[X, Y]/(XY - Y, X2 —
LY2—X—-vY— H® Z[qi] where X is the sign representation on X3 and Y is the
standard representation.

Cx,((12)) = ((12)) = X», thus, Ax,((12)) = Ax,((12)). So we have

RA3,((12)) = RA, ((12) = ZIg*. x11/(x? — q) = Zlg*7].

Cx,(123) = ((123)) = Z/3Z, thus, Ax;((123)) = Az3z(1). So we have

RA5,((123) = ZIg*, x11/ (] — @) = ZIg*3].

Moreover, we have the conclusion below about the relation between the induced

representations Ind|j\\fl((‘;;(—) and Ind|gfl((‘{’7))(_),

Lemma 3.5 Let H be a subgroup of G and o an element of H. Let m denote [C (o) :
Cp(0)]. Let V denote a A (0 )-representation A\Oc x with A a C g (0)-representation,
x a R-representation and Oc defined in (3.4).

6

Ag(o)

C
resy 7 (h Oc 1) = (rescS (o)1) Oc 1. (3.6)

H
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(ii) The induced representation

A
Indy\%%) (1 Oc X)

is isomorphic to the Ag(0)-representation

C
(Indg o)1) Oc X

Their underlying vector spaces are both VO™,
Thus, the computation of both Ind//\\gg;(k Oc x) and resﬁgg;(k Oc n) can be
reduced to the computation of representations of finite groups.

The proof is straightforward and left to the readers.
Let k be any integer. Next we describe the relation between

AG(g) == LEG x T = Cg(g) x R/((g. —k)) 3.7

and A (g), which gives the relation between their representation rings.
There is an exact sequence

1 —— Colg) L8 Ak (o) — s R/KZ —— 0

where the second map 7 : AK.(g) — R/KZ is m([g, t]) = ™.
Let q% : R/kZ — U (1) denote the composition

t

=z q
R/ kZ R/Z U(l).

The representation ring R(R/kZ) is Z[qi% ].
Analogous to Lemma 3.1, we have the conclusion about RA]E; (g) below.

Lemma 3.6 The map ) : R(R/kZ) — RA]é(g) exhibits it as a free Z[qi%]-

module. There is a Z[qi%]-basis of RAIE;(g) given by irreducible representations
{or} such that the restrictions pilcg () of them to Cg(g) are precisely the Z-basis of
RCg(g) given by irreducible representations.

In other words, any irreducible AkG (g)-representation has the form p O¢ x where
p is an irreducible representation of C(g), x : R/kZ — GL(n,C) such that
x (k) = p(g), and

p Oc x([h, 1]) == p(h)x (1), for any [h. 1] € Al (g). (3.8)

RA]E; (g)isa Z[qi]-module via the inclusion Z[qi] — Z[qi%].
By Lemma 3.6, we can make a Z[qi%]-basis {p Oc xpk} for RA]é (g) with each
p 1 G —> Aut(G) an irreducible G-representation and x, x(f) = AT with ¢ €
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[0, 1) such that p(o) = ¢*"¢id. This collection {p O¢ Xp.k} gives a Z[qi%]—basis of
RAK ().

There is a group isomorphism oy : A’E;(g) —> Ag(g) sending [g, f] to [g, %].
Observe that there is a pullback square of groups

A (g) — Ag(e) (3.9)

Jﬂk J/n
1=

R/ k7 —— R/Z
So we have the commutative square of a pushout square in the category of A-rings.

RAG(8) ¢+ RAG(9) (3.10)

]

R(R/kZ) +——— RT

It gives a canonical isomorphism of A-rings RAg(g) — RA’& (g) sending g to qﬁ.
A good reference for A-rings is Chapters 1 and 2, [29].

3.2 Quasi-elliptic cohomology

In this section we introduce the definition of quasi-elliptic cohomology QEII{; in
terms of orbifold K-theory, and then express it via equivariant K-theory. We assume
familiarity with [27]. The reader may read Chapter 3 in [3,23] for a reference of
orbifold K-theory.

When G is finite, quasi-elliptic cohomology is defined from the ghost loops in
Definition 2.10. By Proposition 2.11 and Example 2.12, we can see the groupoid
GhLoop(X/JG) is equivalent to the disjoint union of some translation groupoids.
Before describing this equivalent groupoid A (X / G) in detail, we recall what inertia
groupoid is. A reference for that is Section 4, [20].

Definition 3.7 Let G be a groupoid. The inertia groupoid 7(G) of G is defined as
follows.

An object a is an arrow in G such that its source and target are equal. A morphism
v joining two objects a and b is an arrow v in G such that

voa=>bouv.

In other words, b is the conjugate of a by v, b =voaov!.

Let X a G-space.
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Example 3.8 The inertia groupoid I (X / G) is the groupoid with
objects: the space ]_[geG X8
morphisms: the space | |,
g} CG.
Forx € X8 and (0, g) € Cg(g, g') x X8, (0,8)(x) =0x € X8

0eG Ca(8, 8) x X8 where Cg(g, g') = {0 € Glg'o =

Definition 3.9 The groupoid A(X/G) has the same objects as /(X /G) but richer
morphisms

[] Ace g x x¢
8.8'eG

where A (g, g') is the quotient of C; (g, g') x R under the equivalence
(x,0) ~ (gx,t —1) = (xg’,t —1).

For an object x € X¢ and a morphism ([0, 1], g) € Ag(g, g') x X8, ([0, 1], g)(x) =
ox € X8 . The composition of the morphisms is defined by

[o1, ][0, 2] = [o102, 11 + 12]. (3.11)

Definition 3.10 The quasi-elliptic cohomology QEIIf,(X) is defined to be
K, (GhLoop(X ) G)) = K}, (A(X/ G)).

orb

We can unravel the definition and express it via equivariant K-theory.
Let 0 € G. The fixed point space X° is a Cg (o )-space. We can define a A (0)-
action on X by

[g,t] - x =g x.

Then we have

Proposition 3.11
G
0en(0 = T Kigo @ = ([T Kr®9) . G12
gEGcon_j gGG

where Gcopj 1S a set of representatives of G-conjugacy classes in G.

Thus, for each g € Ag(g), we can define the projection
g QEIG(X) — K}"\G(g)(Xg).
For the singe point space, we have

QEN (pt) = ]‘[ RAG(9). (3.13)

gchnnj
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We have the ring homomorphism

ZIgF] = K2pt) == K2 ()P — Ko (X)

where m : Ag(g) —> T is the projection defined in (3.2) and the second is via the
collapsing map X — pt. So Q EII{;(X) is naturally a Z[q*)-algebra.

3.3 Properties

In this section we discuss some properties of Q Ell., including the restriction map,

the Kiinneth map on it, its tensor product and the change-of-group isomorphism.
Since each homomorphism ¢ : G —> H induces a well-defined homomorphism

éa : Ag(t) — Ap(¢(r))foreach  in G, we can get the proposition below directly.

Proposition 3.12 For each homomorphism ¢ : G —> H, it induces a ring map
¢* : QEll};(X) — QEII5(9*X)
characterized by the commutative diagrams
QEI(X) —2— QEI%L@*X)
o0 l ml (3.14)
Pa
KXH@(I))(X(I)(T)) Kj\c(f)(X¢(r))
forany T € G. So QEIIY, is functorial in G.

Moreover, we can define Kiinneth map of quasi-elliptic cohomology induced from
that on equivariant K -theory.

Let G and H be two finite groups. X is a G-space and Y is a H-space. Leto € G
and t € H. Let Ag(o) X1 Apg(t) denote the fibered product of the morphisms

Ag(0) = T <— Ap(z).
It is isomorphic to Agxp (o, T) under the correspondence
([, 2], [B, t]) = o, B, 1].

Consider the composition below

res

T :Kpgo) X)) @ Knym)(YT) —> Kago)xan@ (X7 x YT —

KAG(n)xTAH(f)(XO x YT) —> Kag,yo.m) (X x Y)(o,r))’
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where the first map is the Kiinneth map of equivariant K-theory, the second is the
restriction map and the third is the isomorphism induced by the group isomorphism
AGxu(o, 1) = Ag(0) XT Ag(T).

For any g € G, let 1 denote the trivial line bundle over X¢ and let ¢ denote the line
bundle 1 ©¢ g over X&. The map T above sends both 1 ® ¢ and ¢ ® 1 to ¢. So we get
the well-defined map

K} o)X @261 K5, iy (YD) — Kng(o.0) (X x ¥V)OD), (3.15)

Definition 3.13 The tensor produce of quasi-elliptic cohomology is defined by

QEII(X) ®zpyt) QEl (Y) = ]_[ K} (o) (X7) ®z4%1 K () (V).
0€Geonj, T€Heonj
(3.16)
The direct product of the maps defined in (3.15) gives a ring homomorphism

QEIIL(X) @14+ QEIG(Y) — QEILG, (X x Y),

which is the Kiinneth map of quasi-elliptic cohomology.

By Lemma 3.1 we have
QEIIG; (pt) ®zpq+) QEI (pt) = QEILG, 1 (pt).

More generally, we have the proposition below.

Proposition 3.14 Let X be a G x H-space with trivial H-action and let pt be the
single point space with trivial H-action. Then we have

QEllgxu(X) = QElG(X) Qz4=) QElUH (ph).
Especially, if G acts trivially on X, we have
QEllg(X) = QEI(X) ®z14+) QEllG(p1).
Here QEII*(X) is QEllE‘e}(X) = K3(X).
Proof

QElGxn(X) = [[ KacenemXE™ = [ KagwxeanmX9)

8€Gconj 8€G conj
heHeonj h€Hconj
= 1_[ Kag)(X®) ®zig%) Kaym (Y = QEllG(X) ®zi4=) QElln (pY).
8€Gconj
hGHw,,j

O

@ Springer



734 7. Huan

Proposition 3.15 If G acts freely on X,

QEII%(X) = QEII*(X/G).

Proof Since G acts freely on X,

X0 — @, ifo #e;
X, ifo=e.
Thus, QEIIL(X) = [ Kj G(U)/CG(U)(X /Cg(0)) = K (X/G).
0eG conj
Since T acts trivially on X, we have K3.(X/G) = QEIl;(X/G) by definition. It
is isomorphic to K*(X/G) ® RT. O

We also have the change-of-group isomorphism as in equivariant K -theory.

Let H be a subgroup of G and X a H-space. Let ¢ : H —> G denote the inclusion
homomorphism. The change-of-group map pg : QEllzk; (G xg X) — QEIl};(X)
is defined as the composite

0S5 T QEILL(G xy X) LN QEIl}(G xy X) AN QEIl;(X) (3.17)

where ¢* is the restriction map and i : X — G xpy X is the H-equivariant map
defined by i (x) = [e, x].

Proposition 3.16 The change-of-group map
C L QEIL(G xy X) —> QEIl(X)

defined in (3.17) is an isomorphism.
Proof For any T € Hcopj, there exists a unique o; € Geoyj such that T = groc g, 1
for some g; € G. Consider the maps

[[a,1],x)>[a,x] [u.x1—>[g7 'u

L6 xy X

(3.18)
The first map is A (7)-equivariant and the second is equivariant with respect to the
homomorphism ¢,, : Ag(o) —> Ag(7) sending [u, t] — [g,ug,_l,t]. Taking a
coproduct over all the elements T € H,,,; that are conjugate to o € Gopj in G, we
get an isomorphism

AG(T) XAy XT (G xpg X)*

o | [Ac(D) xapm XT — (G xu X)°
T

which is A (0)-equivariant with respect to cg, . Then we have the map

l_[ Yo 1_[ Kio(0)(G xu X)7 — 1_[ K} oo) (]_[AG(T)XAH(r)X>

‘TEGmuj UEGcanj ("EGconj
(3.19)
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It is straightforward to check the change-of-group map coincide with the composite

QEILG xu X) > [] Kize (]_[Ag(t)xAH(o Xr>—> [T ki &
T

0€Gonj TE€Hconj

= QEII;(X)

with the second map the change-of-group isomorphism in equivariant K -theory. O

4 Power operation

In Sect. 4.2 we define power operations for equivariant quasi-elliptic cohomology
QEIIE(—). We show in Theorem 4.12 that they satisfy the axioms that Ganter estab-
lished in Definition 4.3, [9] for equivariant power operations.

The power operation of quasi-elliptic cohomology is of the form

P, = I1 P(g.o) :

(&CT)E(G?En)conj

QEIlG(X) — QEllg,s (X™") = [1 K ngs, (g.0) (X&),
(g’J)E(GZZn)cnnj

where P, maps a bundle over the groupoid
A(X)G)
to a bundle over
AXT (G Ep)),
and each P(g,o) maps a bundle over
A(X/G)

to a Az, (g, 0)-bundle over the space (XX")(E’”)//AG@” (8,0).
We construct each P, ) as the composition below.

U* Of
QEUEX) —> Kpp (Mg o)(X)) —> Kjpp (A (X)) (4.1)

*

2 K (i (X)) 22 K XM (@) 42
- Orb( (5»0)( )) - AG?Zn(E’G)(( ) )’ ( . )

where k € Z and (i1, .. . i) goes over all the k-cycles of . We explain the first three
functors in detail in Sect. 4.2. In Sect. 4.1 we construct the isomorphism f, ) between
the groupoid B
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A" (G L Ep))

and the groupoid d((X / G) X,) constructed in Definition 4.5. With it, it is convenient
to construct the explicit formula of the power operation.

4.1 Loop space of symmetric power
4.1.1 The groupoid d(X ) G)  Z,)

For an introduction of actions of wreath product G : ¥,, on X *" and symmetric power
G X, of a groupoid G, we refer the readers to Section 4.1, [10]. The symmetric power
(X/G) 1%, is isomorphic to X*" (G ).

Before introducing the groupoid d((X/G) : ¥,), we need to introduce several
ingredients.

Definition 4.1 (A* (X/ G)) The groupoid AK (X / G) has the same objectsas A (X / G)
but different morphisms

[ AGe g x x¢
8.8'€G

where A]‘G (g, g') is the quotient of C; (g, g’) x R under the equivalence
(x,0) ~ (gx,t —k) = (xg', 1 — k).

For an object x € X¢ and a morphism ([o, ], g) € A’E;(g, g) x X8, ([o,1], 9)(x) =
ox € X¢ . The composition of the morphisms is defined by

[o1, ti][o2, 2] = [o102, 11 + 12]. (4.3)

Definition 4.2 (Fibred wreath product) The groupoid A¥(X ) G) i T is defined to
be the subgroupoid of the symmetric power A¥(X/G): =y with the same objects but
only those morphisms

(([b]5t]]a [vatNL T)vx)

with all the #;s having the same image under the quotient map R/kZ — R/Z.
The isotropy group of each object in ]_[iv X8 is A]‘G(g) T XN

Let Y be an H-space.
Definition 4.3 (Fibred product and fibred coproduct) The groupoid

(AM(X)G) B, x1 (AR (Y JH) o7 T,)
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is defined to be the subgroupoid of A¥ (X/G) ir Ty, x AR (Y JH) ir Ty, with the
same objects but only those morphisms

(g1, t11) - Lgny tin 1 o), %), (([hs 12,11 - - [, 228,15 02), )

with all the #; j; s having the same image under the quotient map R/ k;Z — R/Z, for
i=1,2and j; =1,...N;.
The isotropy group of each object in 1—[{\/1 X8 ]_[iv2 Yhis

(A5 @) =w) x1 (A2 () 2r ).

We can define the fibred coproduct (A1 (X/G) i1 Ty,) L1 (AR (Y /H) ir Zy,)
in the same way.

Leto € X, correspond to the partitionn = ), kNg,i.e.ithas Ny k-cycles. Assume
that for each cycle (i1, ...ix) of o, i] <iz--- < ig.

For (g, 0) € G X, we consider the orbits of the bundle G x n —> n under the
action by (g, o). The orbits of n under the action by o corresponds to the cycles in
the cycle decomposition of . The bundle G x n —> n is the disjoint union of the
G-bundles B B

| ] G x it ie} — fir. .. ik}

(i1.-ik)

where (i1, ...ix) goes over all the cycles of o. Each bundle G x {iy,...iy} —
{i1, ...ix} is an orbit of G x n —> n under the action by (g, o).

Let Cg(g, g') denote {x e_G|gx = xg’}. Two G-subbundles
G x {i1,...ig} — {i1,...ix}and G X {j1, ... jm} —> {J1, .- jm}

are (g, o)-equivariant equivalent if and only if k = m and C (giy - -- &i\» &ji - - - &j1)
is nonempty. For each k-cycle i = (i1, ...i) of o, let W denote the set of all
the G-subbundles G x {ji,...Jjm} —> {J1,---jm} that are (g, o)-isomorphic to
G x {iy,...ix} — {i1,...ix}. There is a bijection between Wlf’_and the set

{j =01 g0 | Gr, ... Jjrx) is ak-cycle of o and CG(gi; - - - &y » &jj - - - &) 1s nonempty}.

Let le’ denote the size of the set Wi". Let a‘i, aé, . ajw denote all the elements of
1

the set Wi". Obviously, i = (i, ...ig) isin Wi”. So we can assume it is ai.

For any k-cycle i and m-cycle j of o, if k = m and Cg(giy --- &i\» &ji - -- &jy) 1S
nonempty, W7 and WJ‘.’ are the same set. Otherwise, they are disjoint. The set of all
the k-cycles of o can be divided into the disjoint union of several Ws. We can pick a
set of representatives 6 of k-cycles of o such that the set of k-cycles of o equals the
disjoint union
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[Twr.

€6k

Definition 4.4 (d(; (X)) The groupoid d(z »)(X) is defined to be a full subgroupoid
of [T ]_[iegquAk(X// G) i1 Xy with objects the points of the space

H l_[ X8ik-8ir |
ko (iy,..1k)
where the second product goes over all the k-cycles of o.

Definition 4.5 (d((X/G) t X,)) The groupoid d((X/G) 1 X,,) is defined to be

[rdg.ox)
(g,0)

where (5, o) goes over (G 2 Zp)con;-

Proposition 4.6 Each d(g ) (X) is isomorphic to the translation groupoid

1—[ l—[ X8t | g HT HTAIE;(aj)ZTEMj’

ko (iy,...ik) k  j€b

where aj = gj, ... gj with j = (j1, ... Ji)-

The proof is straightforward.
To study Korp(d(g,0) (X)), we start by studying the representation ring of the wreath
product B

[TITAG@) 2w

k jebk

Theorem 4.7 gives all the irreducible representations of a wreath product. It is Theorem
Theorem 4.3.34 in [15].

Theorem 4.7 Let { pk}iv be a complete family of irreducible representations of G and
let Vi be the corresponding representation space for py. Let (n) be a partition of n.
(n) = (n1,...nn). Let D, be the representation

p1®n1 ® ®p1%nN

of G*N on V1®”l R ® VS"N. Let Ty = Ty, X =+ X Ty
Let (D(n))~ be the extension of D) from G*" to G 2 X, defined by

(D) (81,1, - &lnys - &N s - - ENony’ T))
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V1 ® Qv @ - QUNI®- - QUNy)
N

= @ P (8D 51 1) © - @ P8k )V 5 (>

where 0 = 01 X -+ X oy Wwith each oy € %,,.
Let Dy with T € RXy,) be the representation of G * L) defined by

DT((gl,lllv"'gN,nN;U)) =1(0). 4.4

Then,

GEy
{Ind|Gz):(n

tgoes over all the irreducible representations of ¥ ,).}

)(D(n))N ® D;|(n) = (n1,...nyN) goes over all the partitions;

goes over all the irreducible representations of G @ X, nonrepeatedly.

The proof of Theorem 4.8 is analogous to that of Theorem 4.7 in [15], applying
Clifford’s theory in [7,8]. Note that

{p1 ®z14%71 - ®7z14*] on | Each p; is an irreducible representation of Ag (o).}
goes over all the irreducible representations of the fibred product
Ag(o) XT -+ X1 A (0).
Theorem 4.8 Let {,Ok}llv be a basis of the Z[qi]—module RAG (o) and let Vi be
the corresponding representation space for pg. Let (n) be a partition of n. (n) =

(ni,...ny). Let DT be the A (o)™ -representation
(n)

+n BzqE1IN

® 1
P ®ppgr - Qrigt) Py

on the space V1®”1 R - ® VI(\?"N' Let $(ny = Sy, X -+ X Ty

Let (Da))w be the extension of D, from Ag(0)*™ to Ag(0) i1 L(n) defined by

(Do)~ (811211, - (81 1, - [8N.1 1], - [Ny 115 0))
W1® Uiy @  QUNI® @ UNy)

= ®Z[qi]rok([8k,l, 1DV ot (1) ®Bzig*) +* Bzig*) Pkl8kimis 1DV 51y

where k is from 1 to N and o = o1 x --- x oy with each oy € 2y,.
Let D? with T € RX,) be the representation of Ag (o) T X(y) defined by

DE(([g1.n, 1), - [gNny» 1]; 0)) i= T(0). (4.5)
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Then,

{Ind|ﬁG(f7)?’]1‘Zn

6 ENT T (Dgl;l))N ® D;JT | (n) = (ny,...nyN) goes over all the partitions;

T goes over all the irreducible representations of ).}
goes over all the irreducible representation nonrepeatedly of AG (o) i1 Xy

From Theorem 4.7, the representation ring of each A](‘; (@) X M9 isa Z[qi%]-

module. Thus, the representation ring of each A’é (@j): X M9 is a Z[qi]-module via
the map '

i%_

1
Zlg*] — ZIg**], g+ g

The representation ring

RIT [T AG@) 1 2un) = Q) Q) RAG @)t Sug)

k jebg ko jebk

is a Z[g*]-module. So is R([Tr [T 1A% (@) Zue).
k  jebk
Moreover, Krp(d(g,6)(X)) is a Z[qi]—module via the map

R{[Tr [TrAG@) w Ehg | = Koy digoy D) —> Kop(dig.o)(X)). (4.6)
k  jebk

which is induced by X — pt.
4.1.2 The isomorphism f(g o)

Before we show in Theorem 4.10 that the groupoids A(X ™" /(G 1Z,)) and d((X ) G)2
¥,) are isomorphic, we recall some properties of Cg,x, ((g, o), (g', o).

(h, ) is in Cgyx, ((g,0), (¢', ")) if and only if 0’ = ot and g (r(iyle) =
ht(g/(i))gt’,,(i), Vi. We can reint_erpret these two conditions. Since v € Cx, (0,0'), T
maps ak-cyclei = (i1, ...ig) of o’ toak-cycle j = (ji, ... jx) of o. 7 will still used to
denote its map on the cycles, such as 7(r) = s. Foreach [/ € Z/kZ, let T(i;) = jitm,
where m; depends only on t and the cycle i. Then, the second conditions can be

expressed as
VIl € Z/KZ, gjhj_, = hj,g;,fml_. 4.7)

From this equivalence, we can induce that the element

/—1 =1 -1 _ -1 -1 .
h-/kgilfmi e gik*lg[k - g]l e gjmih]m

i
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maps gj, ... &, 0 g, ...g; by conjugation. In other words,
ht =1 r—1 _7—1
'Bjsi T h]kgil—ml- U gik*lgik (48)
is an element in Cg(gj, ...8j; glfk ...&). Thus, Cg(gj ...gjl,gl(k g s
nonempty.

First we show each component (X xny(g0) /AGs, (g, o) is isomorphic to the
groupoid d(, +)(X). We construct a functor

figo) : (XED NG5, (g.0) —> d(g.o)(X).
It sends a point

x = (x1,...x) € (X&)

to
[T IT =
ko (iy,...ir)
Note that Xip, = Xi &y = " = Xiy_18ir—y -~ &8iy-

Let [(h,7),1] € Az, (8, 0). Let T send the k-cycle i = (i1, ...ix) of o to a
k-cycle j = (j1,...jx) of o and T(i1) = ji4m;. We have

foor@ 1o o) =T TT ximhin =11 TT x84

ko (i,...ix) k (iy,...i;)

where ﬂjﬁ.f is the symbol defined in (4.8). So f(&g) maps the morphism [(%, T), t] to

h, h,
Xk Xieby ([,3;(13,17 my+1],... LB;(:VI?),M[.“’ mpyy +1], 7:|Wi")

where 7|wo denotes the permutation induced by 7 on the set W = {a’i , aé, e ocjw 1,

t=1(}) is short for r_l(ozj.) and t(ji1) = T(J)i4m;-
It sends the identity map [(1, ..., 1, Id), O] to the identity

Xk Xi€9k ([1’ 0]9 e [17 O]’ Id)’

and preserves composition of morphisms. So it is well-defined.

Theorem 4.9 The two groupoids (XX")(E’”)//A@):” (g, 0) and d(g »)(X) are isomor-
phic. Thus, this isomorphism induces a Acx, (g, 0)-action on the space

1_[ 1_[ X 8k +8iy

ko (i1,..0k)
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Proof We construct the inverse functor
Jg.o)  dig.o)(X) — (X ED JAGs, (8. 0)

of f(&g). For an object Xy X;eq, Vi x in d(&g)(X), J(&U)(xk Xiepy Vik) = {vm}'l' with

Vi, = Viklo,11 and v; (¢) == v; k(s + t)gi_]1 ...gi—l

Let

s

[T mD), whmi), ... wye . miyo). €F)

k i€b;

be a morphism in d(g o)(X). Let t be a representative of the image of m’li in R/Z.

Then, each m_:= mj, — t is an integer.

When we know how T € Cy, (o) permutes the cycles of o, whose information is
contained in those Ql e X M and the numbers m* 1 .m! Mo we can get a unique 7.
Explicitly, for any number j, = 1,2...n,if j, isin a k- cycle (J1, ... jx) of o and it
is in the set W7, then T maps j, to Qf‘ ( B, - i.e. ther + m -th element in the cycle
of (j) of 0.

Forany a € W7, Vk and i, we want u = ,B for some 4. Thus,

r(a) a

Boay, = 8a - 8a ;- (4.9)

i
1—myg

By (4.7) we can get all the other A (q); -

It can be checked straightforward that J(, ) is a well-defined functor. It does not
depend on the choice of the representative ¢.

Jig,0) © flg.0) =1d; fig.0) © J(g.0) = Id. So the conclusion is proved. O

Then by Proposition 4.6, we get the main conclusion in Sect. 4.1.
Theorem 4.10 The two groupoids A((X ) GNZ,) andd (X ) G)1Z,,) are isomorphic.

The last conclusion in this section is some properties of the functor f( o).
Proposition 4.11 (i) Ifo = (1) € Xy, the morphism f(g (1) is the identity map on

X8 JAG ().
(i1) Let (5’ o) e G1X, and (h, 1) € G Z,,. The groupoids

X&) J Az, (8. 0) xT (XD [ NGy, (b, T)
and
(XX AT YA G5 (80 0T)

are isomorphic.
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(iii) f(g,0) preserves Cartesian product of loops. The following diagram of groupoids
commutes.

XM [ Agys, (8, )X ED J Agys (, T) ———3 (XXM @Iy (o h o)

f(yn)xf(/m)l Jf(w.m)

d(g.0)(X) X1 d(p7) (X) dig.hov)(X)

Proof (i) is indicated in the proof of Theorem 4.9.
(i1) We can define a functor ® from

XMED J Az, (8. 0) x1 (XD NGy, (b, 7)

to (XX(”J“’"))(&@”//AGZ;"M (g, h, oT) sending an object (x1, x2) to (x1, x2) and a
morphism ([e, ], [B, t]) to [«, ,3_,t]. Itis straightforward to check @ is an isomorphism
between the groupoids.

(iii) The proof is left to the readers. O

4.2 Total power operation of QEIl,

In this section we construct the total power operations for quasi-elliptic cohomology

and give its explicit formula in (4.17). We show in Theorem 4.12 that they satisfy the

axioms that Ganter concluded in Definition 4.3, [9] for equivariant power operation.
We explain each map in the formula (4.1) and (4.2). The functor U : A ég,a) (X)) —

A(X ) G) is defined in (4.10). The pullback ( ),1(\ is defined in (4.12). The external
product X is explained in (4.16). The fourth is the pullback by f(¢ ).

The Functor U

For each (& o)e G, r €Z,let Afg 0)(X) denote the groupoid with objects

]_[ L[ X 8ix8iy

ko (iy,...ix)

where (i1, .. .i) goes over all the k-cycles of o, and with morphisms

]_[ L[ Ag(gik...gil,gjk...gjl)Xngk“'gil,
ko (nyeei)  Gts e i)

where (i1, ...i) and (Ji, ... jk) go over all the k-cycles of o respectively. It may not
be a subgroupoid of A" (X / G) because there may be cycles (i1, . .. ix) and (ji, . . - jm)
such that
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i -+ 8ir = Ejm -8

Let
U: A}gm(X) — A(X)G) (4.10)

denote the functor sending x in the component X8k 811 to the x in the component
X881 of A(X/G), and send each morphism

([A, t], x) in AG(gik - 8is 8 - - gjl) x X8ik--8h

to
([h, 1], x) in AG(giy - - - 8iy» &)y - - &jy) X XSS,

Inthe casethatg;, ... g, and gj, ... g}, areequal, ([, t], x) is an arrow inside a single
connected component.

The Functor ()i
For each integer k, there is a functor of groupoids ( ) : AKX )G) — AX)G)
sending an object x to x and a morphism ([4, o], x) to ([, 1 x). The composition

(O)r = Okr-

The functor ( )i gives a well-defined map
Korp(A(X ) G)) —> Korp(A*(X ) G))

by pullback of bundles. We still use the symbol ( )i to denote it when there is no
confusion. For any A (X / G)-vector bundle V, S! acts on (V) via

gt 1 R/KZ —> U(1)

2mia

ar»e k .

If V has the decomposition V = @jez quj, then

Wi = P vjat. @.11)

JEZ

The Functor ()

Let Az’;’g) (X) be the groupoid with the same objects as A% ¢.0)(X) and morphisms

k i 8i
]_[ L[ AG(g,-k...gil,gjk...gjl)Xng S,
ko (i1yeig), (oo jik)

where (i1, ...ix) and (ji, .. . jx) go over all the k-cycles of o respectively.
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We can define a similar functor

Of T Al (X) — Ag&g)(X) 4.12)

that is identity on objects and sends each [g, t] € A"G(g,-k - 8is & -8 o8, %] €
Ag(g,-k .8 &ji - - - &j1)- We use the same symbol ( ),‘{\ to denote the pull back

Korb (Mg o (X)) —> Korp (A2, (X)), (4.13)

The external product X

Let Y an H-space, (g,0) € Gt X, and (h, 7) € G X,
Each K;“rb(d(g (X)) is a Z[qi]—algebra, as shown in Sect. 4.1.1. The exter-
nal product in the theory Korb(d(gm(_)) is defined to be the tensor product of
Z[q*]-algebras. The fibred product d(g,0)(X) XT d(,)(X) has the same objects as
d(g.h,07)(X) and is a subgroupoid of it.

So we have the Kiinneth map

K (dig,0) (X)) @714 K (din,0) (X)) —> K5 (dig,0) (X) XT d(1,1) (X)) (4.14)

It is compatible with the Kiinneth map (3.15) of the quasi-elliptic cohomology in the
sense that the diagram below commutes.

orb(d(g O’)(X)) ® ]Korb(d(ﬁ,o)(x)) - K:rh(d(&n)(x)X'IFd(}ba)(X))

S0 ®z10%1 (o) l Tigm.o l

(ymyho)y g

ny\((g,h),0)
A(mezz,,((g;h),g)((X x ¥)m)U&n).

(4.15)

(Xn)(g U)) ® K

*
KA sz, Azl

where the horizontal maps are Kiinneth maps.

If we have a vector bundle E = [ ] ]_[ Eg .g;, over Al

@ 0)(X ), the external
k (i)

product
& Kiy.,...ix) Egik---gil

is a vector bundler over d(&o) (X). This defines a map

Korb(A(g.0)(X)) —> Korp(d(g. (X)) (4.16)

Composing all the functors as in (4.1) and (4.2), we get the explicit formula of
Pg,o)
Pg.oy V) = Fig.on Ok By i) Vg i 0)- (4.17)

P(¢,0) is natural. If (g, 0') and (h, 7) are conjugate in G2 Ep, Py 5)(V) and P, 1) (V)
are isomorphic. B
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Theorem 4.12 The family of maps

P, = I1 Pg.0) : QEIE(X) — QElGs (X7,
(gva)e(Gzzn)con_/

satisfy

(i) Py =Id, Py(x) = 1.
(i1) Letx € QEllz";(X), (g, o) e G1X, and (h,t) € G Xy,. The external product
of two power operations

NGz n (8150T)

P(&”)(x) NP () = reslAGzzn (8:0)XTA G5y, (h.T)

P(g,ﬁ;ar) (x).

(iii) The composition of two power operations is

NGz, (h,(z,0))
IP>((h 7); J)GP)m(x)) = res|A(GzZm)zEn (h.7); U)P(h (z, U))(x)

where (h, ) € (G2 X)), ando € X,. (t,0) is in Ty, 2 Xy, thus, can be viewed
as an element in T,

(iv) P preserves external product. For (g, h) = ((g1, h1), ... (gn, hn)) € (G x H)™",
o€ Xy,

Gizy (8:0)XTAH 3, (h,0)
P((g.n).0)(x K y) = res IA(GLH)@,, (o) Peo)@ BPeo) ().

Proof We check each one respectively.

(1) When n = 1, all the cycles of a permutation is 1-cycle. ( ); and the homeomor-
phism f, (1)) are bothidentity maps. Directly from the formula (4.17), P1 (x) = x.

(i1)
P(g,o)(x) W P(p,7) (x)
= f(z,a) (X IZ'(i],..‘ik) (xgik"'gil)k) X f(z,t) (x] |X|(r1’mrj) (xhrj~-~hr1 )])

AGisy gy (8 hi0T) %
=7€S|p s (g.0)xm Ay, (1) (g o0 (B B i) (Xgy g 1)

XX Ky, Gy by ) )
where (i1, ...i;) goes over all the k-cycles of o and (rq,...7;) goes over all
the j-cycles of T and () is the map cited in (4.11). The second step is from
Proposition 4.11 (iii).

f(zh;m)((@k By, i) (g, oongiy i) B (B By ) (xhrj...hrl)j))
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is exactly

P(&Q;Ur) ().

(iii) Recall that for an element (t, o) = (11, ...Ty, 0) € Zpup, it acts on the set with
mn elements

{G, DIl <i<n1=<j<m}
in this way:
(z,o)- (G, )= (o), o (/)

That also shows how to view it as an element in %,,,,,.

Then for any integer ¢,

(z, o) -, j) = (09(0), To4(i)Toa-1i) - - - To i) (J))- (4.18)
To find all the cycles of (z, o) is exactly to find all the orbits of the action by (z, o).
If i belongs to an s-cycle of o and j belongs to a r-cycle of 745 (i) Tys—1;) - - - To (i), then

the orbit containing (i, j) has sr elements by (4.18). In other words, (i1, ...i) is an
s-cycleof o and (ji, ... jr)isar-cycleof r := 1, ... 1; if and only if

((i17 T Gr—1) G2, Tiy Ty Gr—1)) - - - (s, Jir)

(1, T, Gr—2)) G2, Tiy Ty (r—2)) - - - (s Jr—1)

(i1, Ty G G2, Ty Ty (G1)) - - - U J2)

(i1, Ty Gr)) (2, Ty Ty () - - - (s, j1)>

is an sr-cycle of (z, o).
P((h,v);0) Prm (X))
= f(*@i);g)[@k By B, i)y 71) k]
= St B M) Uy iy, iy & By O le

= f(?g):@"}( [1 Sty ity iy | Bstini) B i) Ot i)
NUPIY)

= f(Z(LU))[gk,(il,.“ik) B () CH D ir]
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where
it iy - P gy~ )

Hil =h
h

2Py oy - P i) o)

h

ik,jrhik,l,rizl(j,) T hil,(rzku-rfz)"(jr)
= hik,jlhik—l‘fik,l~--Ti2Ti1(jI) S hilyfil Gr)
hig jphis_y i ootz Go) - - iy G

Bi o Pi_y tiy iy iy G =+ - iy G

where (i1, ...i) goes over all the k-cycles of o € %, and (ji, ... j,) goes over all
the r-cycles of 7;, ... 7;; € ¥,. The last step is by Proposition 4.11 in [10].

f@,@,g))[@k,(il,...ik) By i) K ier]
is the same space as P(;, (z,0))(x), but the action is restricted by

AGisp (h(1.0))

r .
es |A(Gz):m)z):n ((h,7);0)

(iv)We have
Piig.m).o) 0 BY) = filg.y.o @k By, i) (B Y) gy, iy iy i) )1
= Slley.o) @k By i) Ky iy e B8 gy i i)
= File.y.o) @k Baiy i) gy i, 6 B By Gy ey ) )

NGz, (8:0)XTA Mz, (h,0)
=718l o e (eho) Sl X Loy @ By, i) gy iy 1)
b9 (X IZ(rl,...rj) (Yh,j.‘.hr] )j)
AGizy (8:0)XTAHy, (h,0)
= reslA(GxH)zEn((g»h)aU) f(z)(y) [ X’(il,.‘.ik) (xgik...gil k]

X o) [ By, Ok, ey 1,
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where (i1, ...i) goes over all the k-cycles of o and (r1,...7r;) goes over all the
j-cycles of o. It equals to

Ay, (8:0)XTA M, (h,0)

res |A(GxH)zz,, (g.0)

P(&a)(x) X P(h,d)(y)-

O

Example 4.13 Let G be the trivial group and X a space. Let 0 € X,. Then
QEI(X) = K3(X). The functor f(1, 5 gives the homeomorphism

xmto =TT T x.

ko (i1,...ix)

where the second direct product goes over all the k-cycles of o. By (4.17), the power
operation is

P10y () = B Wiy Ok

When n = 2, ]P)(l,(])(l))(x) = x X x and P(L(IZ))(X) = (x)z.

When n = 3, ]P’(L(D(l)(]))(x) =xXKxKX X, P(L(lz)(l))(x) = (x)2 X X, and
P, 123y (x) = (x)3.

When n = 4, P(L(l)(l)(l)(l))(x) =xKxXxX X, P(L(lz))(x) = (x)2 Xx X X,
P, a23)(x) = ()3 B x, Pi,1234)) (x) = (x)4, and P(1,(12)34))(x) = (x)2 X (x)2.
Note that there is a ¥»-action permuting the two (x)2 in P(q,(12)34)) ().

Remark 4.14 We have the relation between equivariant Tate K-theory and quasi-
elliptic cohomology

QEllg(X) ®zjq+) 2((q)) = (K1a1e)6(X). (4.19)

It extends uniquely to a power operation for Tate K-theory
QEllG(X) ®zjq+1 Z((q)) —> QEllG, (X™") ®zj4+1 Z((q))

which is the stringy power operation P, 18 constructed in Definition 5. 10, [10]. It is
elliptic in the sense of [2].

5 Orbifold quasi-elliptic cohomology and its power operation

The elliptic cohomology of orbifolds involves a rich interaction between the orbifold
structure and the elliptic curve. Ganter explores this interaction in the case of the Tate
curve in [11], describing K74, for an orbifold X in terms of the equivariant K-theory
and the groupoid structure of X.

In Sect. 5.1 we give a description of orbifold quasi-elliptic cohomology. In Sect. 5.2
we discuss the inertia groupoid of symmetric power and the groupoids needed for the
construction of the power operation in Sect. 5.3.

@ Springer



750 7. Huan

5.1 Definition

We have two ways to define orbifold quasi-elliptic cohomology. The first one is moti-
vated by Ganter’s definition of orbifold Tate K-theory in Section 2, [11]. The other
one is a generalization of the definition of quasi-elliptic cohomology in Sect. 3.2.

We consider the category of groupoids G pd as a 2-category with small topological
groupoids as the objects and with

IHom(X, Y) = Fun(X,Y).
This 2-category is different from that in Section 3 [18]. Let Gpd““" denote the 2-

category of centers of groupoids defined in Section 2, [11]. Ganter constructed in
Example 2.3 [11] a 2-functor for any k € Z

gpd_) gpdcen
X (I(X), &5

where &F is the center element of the inertia groupoid 7 (X) sending (x, g) to (x, gh.
We use & to denote &!.
Let pt/R x1~¢ I(X) denote the groupoid

(pt/R) x 1(X)/ ~
with ~ generated by 1 ~ &.

Definition 5.1 For any topological groupoid X, the quasi-elliptic cohomology
QEIl*(X) is the orbifold K-theory

K* ., (ptR x1~g 1(X)). 5.1

orb

In other words, for a topological groupoid X, Q E/I(X) is defined to be a subring
1
of Koprp(X) [[qi@]] that is the Grothendieck group of finite sums

> Vag®

acQ
satisfying:

for each a € Q, the coefficient V, is an gria

— eigenbundle of &.
In the global quotient case,

QEII*(X)G) = QEII5(X).
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In addition, for any topological groupoid X, we can also consider the category
Loop(X) := Bibun(S' J*, X)

and formulate Loop{*' (X) by adding the rotation action by circle, as the construction
ext

in Sect. 2.1.2. Afterwards we can construct the subgroupoid A(X) of Loopi*'(X)
consisting of the constant loops, which is isomorphic to pt/R x~¢ 1(X). So in this
way we give an equivalent definition of orbifold quasi-elliptic cohomology.

5.2 Symmetric powers of orbifolds and its inertia groupoid
In this section we introduce the groupoids necessary for the construction of the power
operation. In Lemmas 5.3, 5.4 and 5.5 we show the relation between them.

For groupoids like pt/R x;~¢ X, instead of the total symmetric power (Definition
3.1, [11]) S(pt/R x~g X), we consider a subgroupoid

SE(PLY/R X~ X)
of it.
Definition 5.2 (The groupoid S® (pt/R x;~¢ X)) Let
Pk PR xpge X — pt)(R/Z)
be the functor sending all the objects to the single point, and an arrow
lg. 1]

to

t mod Z.

Let xr(pt/R xi~¢g X) denote the limit of the diagram of groupoids

PR xpme X 2 pt)(R/Z) 2 ptJR xpee X .
Let
Xp(Pt/R X~z X)
denote the limit of » morphisms pgs. It inherits a ,,-action on it by permutation from

that on the product (pt/R xg~g X)*".
Let S,f (pt/R x~g X) denote the groupoid with the same objects as

X%(pt//R X k~g X)
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and morphisms of the form ([g1, 1], . . . [gn, tn]; o) With ([g1, 1], . . . [gn, tn]) @ moT-
phism in X (pt/R X~z X) and o € X,,. This new groupoid SR (pt/R Xp~g X)is a
subgroupoid of

(pt//R Xf~g X) x,.

Define
SROUR e X) == [ [ SRR xpg X). (5.2)

n>0

The triple

(SRR xp~e X), %, ()

is a symmetric monoid where * is the concatenation and the unit ( ) is the unique object
in X1 2o. SR (pt/R x k~¢ X) is the symmetric product that we will use to formulate
the power operation.

Lemma 5.3 Let (X) denote the groupoid in Definition 3.3, [11], and ¢y €
Center(®y) denote the restriction of Sx(§) to ®y. For each integer k > 1, there is an
equivalence between

PHIR X 1~g, Pp(X)

and the groupoid pt /R ><1 S% I(X)[S%] which identifies ¢y with S%. Here 5% is an
added element such that the composition of k %'%S is&.

Proof We can define a functor
1
At PUR X1gy ®u(X) — pUYR x| 1 T(X)[EH]

by sending an object (x, g, (12...k)) to (x1, gk ... &1) and sending a morphism
[A, (12...k)", t] to

-1 -1 -1
(heg _, - 818 »m +1].
Recall hkgl__lm e gk__llgk_1 conjugates gy . . . g1 to itself. It is the element

h1d
'8(12...k),(12...k)

defined in (4.8). The functor Ay is an isomorphism, as implied in the proof of Theo-

rem 4.9. O
Let ®(X) := [] ®x(X). Let ¢ := ][ ¢ € Center(®P) denote the restriction of
k=1 k=1
S() to @.

Theorem 4.9 can be reinterpreted as Lemma 5.4.
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Lemma 5.4 The groupoid SR (1Ipt/R ><l S% I(X)[é%]) is equivalent to
- ~

PR Xi~ge) 1(S(X)).
The proof is similar to that of Theorem 4.9.

Lemma 5.5 We have an equivalence of groupoids
Q"+ SEPt/R x1~p P(X)) —> pt/R x1~s566) 1(S(X)),
which is natural in X and satisfies
0" st (@) = 50"
Proof Let I be the inclusion
Pt/R X1~y P(X) —> pt/R Xi~s6) 1(S(X)).
Let € be the counit of the adjunction (S, *, ( )) - forget. Let Q denote the composition

S(Pt/R X1~y P (X)) B sepyr X1~ 1(S(X)) = pt/R X 1~s6) [(S(X).

Let QR be the restriction of Q to the subgroupoid S¥(pt/R x i~y ®(X)), i.e. the
composition
R . R SR R
Q% : ST(PR X1~ P(X)) —> ST (PR x1~5¢6) 1(S(X)))
restriction of
=7 PR X s 1(S(X)).

The essential image of I consists exactly of the indecomposable objects of
pt/R xi~s@) 1(S(X)), thus, both Q and QR are essentially surjective.

Q is not fully faithful but QX is. This is why we need the product S¥ instead of
S. O

5.3 Power operation for orbifold quasi-elliptic cohomology

In this section we construct the total power operation for the orbifold quasi-elliptic
cohomology

PEL . QEII(X) — QEII(SX)
in (5.6), which satisfy the axioms that Ganter formulated in Definition 3.9, [11] for

power operations for orbifold theories. The power operation we constructed in Sect. 4.2
is a special case of it for G-spaces.
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Example 5.6 We can construct Atiyah’s power operation for orbifold quasi-elliptic
cohomology.
Let V be an orbifold vector bundle over the orbifold

pt/R x1~¢ 1(X),
thus, V represents an element in Q E/I(X). Then
Po(V) := V®zig=)"
is an orbifold vector bundle over
SRR x1g 1(X)) = pt)R x1~g SI(X).

So P,(V)isin QEII*(S(X)).
P = (Py)n>0 satisfies the axioms of a total power operation.

Before the construction of the power operation of Q Ell, we introduce several maps
necessary for the construction of the power operation.
Let X be an orbifold groupoid and k > 1 an integer. We define the map

sk Korb (PR X1~ 1(X)) —> Korp (Pt/R Xj~g 1(X)) (5.3)
(> Vag"] = [3- vaat] (5.4)

and

[ sk Kors®UR x 16 1(X)) —> Korp (| [GUR xpe 1(X)).  (5.5)
k k

The functor

Ok # Aoy (X) —> Afy 5)(X)

defined in (4.11) is a special local case of s, when X is a G-space and (g, o) is fixed.
Let 0 : QFEI(X) — Korp(pt)/R x 1~y ®(X)) be the additive ope_ration whose
k-th component is A} o s, where Ay is the equivalence defined in Lemma 5.3.
Now we are ready to define the total power operation PE/ of Q Ell* as the com-
position below:

QEUX) —"— Korp (/R X1~p D(X)) —— Korp(SRPL/R X1~ P(X)))

J(QR*)"

QEII(SX).
(5.6)
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Theorem 5.7 PE! satisfies the axioms of a total power operation in Definition 3.9
[11].

Proof From the definition of PEI we can see it is a well-defined natural transforma-
tion QFEIl = QEIl o S and is a comodule over the comonad (—) o S.
In addition, the functor 6 has the property of additivity

0:QENXUY) — QEI(®(X)U d(Y))
(a,b) = (0(a), 0(b)).

The power operation P defined in Example 5.6 has the exponential property. Therefore,
PE! has the exponential property. So PE! is a total power operation. O

Remark 5.8 Let X /G be a quotient orbifold. The power operation we construct in
Sect. 4.1 for quotient orbifolds is in fact the one below.

L sk
P: QEI(X)G) *— Koy ([ [pt/R x| 1X)G)EE])
k

Koy (S (LIPYE x| T GIER) > QEI'(S(X/G)) where J is con-
' -

structed from the functors J(g ) in the proof of Theorem 4.9.

For global quotient orbifolds, PEY

diagram

and P are the same up to isomorphism. The

QEI*(X)G) QEI*(S(X)G))
0 (QR*)—I
Koo @R X 1(@(X[G)) ——— Kors(S" @R x @(X/G))

LI Af SRA1AD
k k

Kors (LI pt/R xll(X//Gns%DLKM(SRGEIpt//R x 1(X/G)IEH)
I~Ek 1~gk

commutes. The vertical maps [[, A} and S®([[, A}) are both equivalences of
groupoids. The horizontal maps are the power operation defined in Example 5.6.

6 Finite subgroups of the Tate curve

Strickland showed in [28] that the quotient of the Morava E-theory of the symmetric
group by a certain transfer ideal can be identified with the product of rings [ ;- Rk
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where each Ry, classifies subgroup-schemes of degree p* in the formal group associated
to E°C P, In this section we prove similar conclusions for Tate K-theory and quasi-
elliptic cohomology. The main conclusion for Sect. 6 is Theorem 6.4.

6.1 Background
In this section we introduce the Tate curve and its finite subgroups. The main references
are Section 2.6, [1] and Sections 8.7, 8.8, [16].

An elliptic curve over the complex numbers C is a connected Riemann surface, i.e.
aconnected compact 1-dimensional complex manifold, of genus 1. By the uniformiza-
tion theorem every elliptic curve over C is analytically isomorphic to a 1-dimensional
complex torus, and can be expressed as

with g € Cand 0 < |¢| < 1, where C* is the multiplicative group C\{0}.
The Tate curve Tate(q) is the elliptic curve

Eq :y2+xy:x3+a4x+a6

whose coefficients are given by the formal power series in Z((g))

1
ar==5% n’q"/(1=q")  ag=—7;> (In°+50°)g" /(1 - ¢").
n>1 n>1

Before we talk about the torsion part of Tate(q), we recall a smooth one-
dimensional commutative group scheme 7" over Z[gT]. It sits in a short exact sequence
of group-schemes over Z[g*]

0—G, —>T— Q/Z— 0.

The N-torsion points T[N] of it is the disjoint union of N schemes Tp[N], ...
Tn_1[N], where

Ti[N] = Spec(ZIg™1x]/(x" — ¢).
It fits into a short exact sequence
0 — un Y TINT 2% 7/NZ —> 0,

The canonical extension structure on 7'(N) is compatible with an alternating paring
of Z[qi]-group schemes ey : T(N) x T(N) — uy in the sense that

en(ay(x), y) = x"NO) for any Z[g~] — algebra R and any x € un (R).
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We have the conclusion below, which is Theorem 8.7.5, [16].

Theorem 6.1 There exists a faithfully flat Z[q™)-algebra R, an elliptic curve E /R,
and an isomorphism of ind-group-schemes over R

Trorsion Rz[g*] R —> Eiors,

such that for every N > 1, the isomorphism on N -division points T[N]® R — E[N]
is compatible with ey -pairings.

Thus, we have the unique isomorphism of ind-group-schemes on Z((q))
Trorsion ®z[g*] 7.((q)) — Tate(q)tors-

The isomorphism is compatible with the canonical extension structure: for each
N > 1,

0 N T[N] Z/NZ — 0

T

0—— uy —— Tate(q)[N] —— Z/NZ —— 0

Therefore, Tate(q)[N] is isomorphic to the disjoint union

N-1

[ [ Spec@(@)ix1/™ — g%).

k=0

In addition, we have the question how to classify all the finite subgroups of T ate(q).
As shown in Proposition 6.5.1, [16], thering Oy, that classifies subgroups of T'ate(q)
of order n exists. To give a description of it, first we describe the isogenies for the
analytic Tate curve over C.

Let (d, e) be a pair of positive integers such that N = de and ¢’ a nonzero complex
number such that g¢ = ¢’¢. The map

Y : C* /g% — C*/q""

xr—)xd

is well-defined since ¥4(¢%) € ¢'%. The kernel of ¥, is
(uyq '« g%in.m € 7}

1
where 114 is a d-th primitive root of 1 and g ¢ is a e-th primitive root of g. Its order is
N. In fact

{Keryr4| d divides N and d > 1}
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gives all the subgroups of C*/¢% of order N.

Proposition 6.2 For each pair of number (d, e), there exists an isogeny
Wy : Tate((q)) —> Tate((q))

of the elliptic curves over Ogyp, such that its kernel is the universal subgroup.

We have

Osur, ® C= [ CltgNig"1/iq" — q").
N=de

Moreover, we have the conclusion below.

Proposition 6.3 The finite subgroups of the Tate curve are the kernels of isogenies.

6.2 Formulas for induction

Before the main conclusion, we introduce the induction formula for quasi-elliptic
cohomology. The induction formula for Tate K-theory is constructed in Section 2.3.3,

[11].
Let H € G be an inclusion of finite groups and X be a G-space. Then we have the
inclusion of the groupoids

j:X/H — X/G.

Let ' = [l,en,,; ao be an element in QElp(X) = [lyep,,, Kape)(X7)
where o goes over all the conjugacy classes in H. The finite covering map

fAG xy X)G) — AX)G)

is defined by sending an object (o, [g, x]) to (o, gx) and amorphism ([¢’, ¢], (o, [g, x]))
to ([¢’, t], (gx, 0)). The transfer of quasi-elliptic cohomology

7% : QElly(X) — QEllG(X)

is defined to be the composition

QElly(X) —> QFEllG(G xy X) — QEllg(X) 6.1)
where the first map is the change-of-group isomorphism and the second is the finite

covering.
Thus

G
IH(a/)g = Zr ’ ai/‘—lgr

r
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where r goes over a set of representatives of (G/H)#, in other words, r ! gr goes over
a set of representatives of conjugacy classes in H conjugate to g in G.

Indjtc (aé) if g is conjuate to some element /2 in H;

IG5, = H (6.2)

if there is no element conjugate to g in H.

There is another way to describe the transfer, which is shown in Rezk’s unpub-
lished work [25] for quasi-elliptic cohomology. The transfer of Tate K-theory can be
described similarly.

6.3 The main theorem

Theorem 6.4 gives a classification of finite subgroups of the Tate curve and a similar
conclusion for the quasi-elliptic cohomology. We prove it in this section by representa-
tion theory. We assume the readers are familiar with the transfer ideal /;, of equivariant
K-theory. References for that include Chapter II, [19] and Section 1.8, [24].

Let N be an integer. Analogous to the transfer ideal /;,- of equivariant K-theory, we
can define the transfer ideal for Tate K-theory

=" Image[lg‘fizj  Krare(pt) Zi X £j) —> Krare(pt/Zn)]1 (6.3)

i+j=N,
N>j>0

where Ig is the transfer map of K7, along H — G defined in Proposition 2.23,
[11], and the transfer ideal for quasi-elliptic cohomology

72M = 3" ImagelZ3Y s : QEU(MY/ D x X)) — QEUMY N1 (6.4)
i+j=N,
N>j>0

with Ig the transfer map of Q Ell along H — G defined in (6.1).

Theorem 6.4 The Tate K-theory of symmetric groups modulo the transfer ideal I,C“’ ¢
classifies the finite subgroups of the Tate curve. Explicitly,

(K7ate) sy (pt) /114 = Z(@)g'1/{q" = "), (6.5)
N=de

where q' is the image of q under the power operation PT%¢ constructed in Definition
3.15, [11]. The product goes over all the ordered pairs of positive integers (d, e) such
that N = de.

We have the analogous conclusion for quasi-elliptic cohomology.

QElls, (pn /T2 = T zlg* a1/ — ), (6.6)
N=de
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where q' is the image of q under the power operation Py constructed in Sect. 4.2. The
product goes over all the ordered pairs of positive integers (d, e) such that N = de.

We show the proof of (6.6). The proof of (6.5) is similar.

Proof of (6.6) We divide the elements in X into two cases.

Case I
The decomposition of o has cycles of different length. For example, the element

(12)34)(56)(78910)(11 1213 14)(15 16 17) € =17

is in this case and (1 2)(34)(5 6), (1234 5)(67 89 10) are not.
Most elements in Xy belong to Case I. o is not in this case if and only if it consists

of cycles of the same length, such as (1 2)(34), (123),1,(123)(456).

Asy (©)

For those o that belong to Case I, Ax, (0) = As, xxy_,(0), 50 IndAZ s (o
r X 4N —f

)is

y (@)

5 x5y, (0) Kay, <y, (@) (pt). Thus,
the summand corresponding to o in Q Ell(pt/ X ) is completely cancelled.

A
the identity map, so K Axy (o) (pt) is equal to Ind ,

Case 11

o consists of cycles of the same length. In other words, it consists of d e-cycles
with N = de.

The centralizer Cxy (o) = C, X4, where C, = Z/eZ is the cyclic group with
order e. We have

Asy(0) = Ax,(12...e) 1 Xy
is the subgroup of Ay, (12...e) ;4 with elements of the form
([ay, t], [az, t], ... [aq, t]; T), withay,...a; € C., T € Xy, t € R.

Ky, @) (pt) is the representation ring RAy, (o). According to Theorem 4.8, as a
Z[qi]-module, it has the basis

Az, (12..e0rZq , UL @ d o @ id
Undy 15 sy @ )52 @gpg2) - @z (q «)“417 @ Dy |

(d) = (d1, d>, ...d,) is a partition of d.

ai,ay,...ararein {0,1,...e — 1}. T € RXy) is irreducible.}

a
e

where foreacha € Z, g : Ac,((12...e)) — U(1) is the map

a
e

G112, ), 1]) = e2mia’st 6.7)

Namely, it is the map x{ in the sense of Example 3.3.
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For each partition (d) of d, if it has more than one cycle, Xy is a subgroup of
some X4, X X4—g, for some positive integer O < d; < d. So for each

Ax,(12...enT Xy

A\ @y, d LN P
IndA):e(lz"'e)lTE(d) (g o) Ha~] ! Rz[g*] - Bzlg*] (g ¢)°21" @ Dy

with » > 2, it is equal to

Asx,(12...epTXy
As, (12...e)7(Zg; X Zg—a;)

Aze(ll..e)lqr(zdl de_dl

), U @, )
Ind (IndAze(IZ...e)zTE(d) (g )2 ®zig*]

- gty (q ) ®HH” @ D)
by the property of induced representation. Note that
AEE(IZ ...e)r (Edl X Ed—dl) = AEdleX):N—dle(a)'

So

Az, (12,001 (Zay X Ba-a)) , U\ @, 1d @ @ Ld
IndA):e(lz...e)zT):(d)l V(g ) Hen ®z1g%] *+* Oz (g ¢ ) 41 @ Dy

isin K Azdleszidle((,)(pt), Thus, each base element with r > 2 is contained in the

transfer ideal.
When r = 1, consider

(¢ HH®u1? @ D,

with T € RX;. As indicated in Proposition 1.1 and Corollary 1.5 in [4], each 7,
except the trivial representation of X4, can be induced from a representation t’ in
some R(X; x X4_;) withd > i > 0.

Claim The representation

Ay, (12...ep7XZy

IndAZe(lz...e)Zﬂ‘(E[ X Bq—i)

(g #)Puatr ®2ig*] (¢ P14 g p,
is isomorphic to

a d
()P @D 5, .
Ind):fx):d_’,

T
which is
(qa%)@’zmi]d ® D;.

To prove this, we consider a set {7y }aes, /5 x5, ; Of coset representatives. Then

d—i

(N == (1, ... 1, te)}aex, /5 xSys
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is a set of coset representatives of

(As,(12...0) a7 Zq)/(Ax,(12...€) a7 (Bi X Tg—i)).
Let W be a representation space of Ay, (12...¢e) 7 (¥; x £4—;), Then

Ay, (12...ep 17Xy

I”dAEg (12..enT(5i X Tg—i)

is the direct product of [X,; : X; x X _;] copies of W. For any element
H=1(g1,...84:B) € Ax,(12...e) i1 Xy,
andeacha € T4/ %; x X4, there is a unique &’ € X;/%; X T4—; and a unique
Jo = (81,83 V) € Az, (12.. )2 (T X Byg—;)
such that Hny = 1y Jo. Note that

/

/
gl""gd

is a permutation of

81, ---8d-

a d a d .
So (g )®u1 (g, ... g = (q)®U*1%(gy, ... g4). In addition, BTy = To' Ve
Let

[Twe
o
be an element in

Aze(lz...e)l'ﬂ‘zd

IndAze(]Z...e)er(Zide—i) :

We have

As,(12...epTXy 91.® 1 a4.® d—i
(IndAze(lzmem-(z,.dei)(q e )zlg*)! ®714%1 (G <) 2197 @ Dr’>(H) (H U)a>
o
a d
= [[Vews =@ )% 1, ... 20 D (1, ... 1; ) (wpa)
o o

= (@ (g1, ) [ 7/ o) (wpa)
= (qQTI)®Z[qud(g1, .. gd)(lndgidxzd_ir/)(ﬂ) (l—[ wa>

@ Springer



Quasi-elliptic cohomology and its power operations

763

a d
= (q)®u*1 gy, ... g4 ’B)Dlndi—:.”xzd .T,(gl, ... 845 B) (l_[ wa)
1 -l o

et -gai B) (]_[ wa)

U\ @y tqd
=((g) @D, =
TixZg_i

So the claim is proved.
Since

{ndg’ s v |7 € R(Zi x Bg-)andi=1,2,...d—1}

contains all the irreducible representation of X.; except the trivial representation, which
is corresponding to the partition (d), thus, by the claim, K oy (o) (pt) modulo the image

of the transfer, is a Z[¢*]-module generated by the equivalent classes represented by

(%251 |a=0,1,...e — 1).

(6.8)

For any a, (q¢)®za*19 is (q%)®Z[qi]d to the a-th power. Note that, by (4.17),

(g)®z1? is
q =P (q).
To get the isomorphism (6.6), consider a map

W2 ZigF ] — Ky, o) 00/

by sending ¢ to ¢ and x to ¢’, which is a well-defined Z[¢™]-homomorphism.
Since ¢’¢ = ¢7, KAEN(U)(pt)/IgE” is a Z[g*]-module generated by

So any element in it can be expressed as

e—1
> fila)g”

j=0

where each f(g) is in the polynomial ring Z[g™T]. It is the image of

e—1
ij(fI)xj
=0

in Z[qi][x]. So W is surjective.
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Then we study its kernel. If

e—1

Fi=) fi@q”

j=0

is in I,gE”, then it is in Z[qi]. So we can assume F = 0.
For each element [(ay, . ..aq; B), t]in Ax, (o) with (ay, ...aq; B) € Cxy (0),

q(lar, ...aq: p).1]) = &, 6.9)
2mi(ay +...ag+dt)

g (a1, ...ag; B). 1) =e ¢ . (6.10)
e—1

F(l(ar,..az; B), 1) =Y fi(9)q" (a1, ... aa; B), 1))

j=0

e—1
. 2mij(aytag+do)
_ Z fj(ez””)e%

J=0

e—1
. 2rijdt  2mijaj+-+ag)
:ij(ezj”t)e < e ¢ :
j=0
Let
2mijdt

Fj(t) := fj(e™")e™ ¢

. . 2ni
be the complex-valued function in the variable 7. Let o denote the number e ¢ . The
integers

(a1 +---+aq)

goover0, 1,...e — 1. Consider the e equations

e—1
> Fitye/* =0,fork=0,1,...e—1.
Jj=0
In other words,
I 1 1 oo 1 Fo(t)
1l « > o a! Fi(t)
1 o? ot ... 2D R | —o
1 ¢! g2l=D ... gl=D? Fo_1(t)
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The determinant of the Vandermonde matrix

1 1 1 e 1
1 « a? e @ed
1 o2 ot I )
1 =l 2D ... a(e—l)z
is
e—2 e—1

]_[ ]_[ (o« — o). 6.11)

j=0k=j+1

2mi FIN .
When o = e%, each («F — &/) in the product (6.11) is nonzero, so for any e, the
determinant is nonzero and the matrix is non-singular. So we get F;(t) = 0 for any

teRand j =0,1,2,...e — 1.
So each f;(q) in F is the zero polynomial.
The kernel of W is the ideal generated by ¢’¢ — ¢¢.

O

From the power operation of quasi-elliptic cohomology, we can construct a new

operation for quasi-elliptic cohomology.

Proposition 6.5 The composition

res

—_ P

Py :QEllG(X) —> QEllgsy(X*N) =5 QEllgys, (X*N)
diag*
& QElGyxzy(X) = QEllG(X) g4+ QEllz, (p1)
—> QEIlG(X) ®gpy=) QEllx, (pn/TE"!

= QElG(X) @74+ || Zlg* a1/ (q" — 4°)
N=de

defines a ring homomorphism, where res is the restriction map by the inclusion
GXXy—>Gi1Xy,(g,0)— (g,...8;0),
diag is the diagonal map
X — XN x> (x,...%)

and the last map is the isomorphism (6.6).

Proof Let V.= [[ V, € QEllg(X). Apply the explicit formula of the power

gerranj
operation in (4.17), the composition diag* o res o Py sends V to

1

1_[ Qk Biy,...ir) Vekq*
gchnnj
UEENconj
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where (i1, ...i) goes over all the k-cycles of o, and the tensor products are those of
the Z[qi]-algebras. Then, as shown in the proof of (6.6), after taking the quotient by
the transfer ideal I,g E”, all the factors in diag™* o res o Py (V) are cancelled except
those corresponding to the elements in Xy ,,; With cycles of the same length. For
the factor corresponding to the element o € Xy ,,; with d e-cycles and de = N, the

® —1,d
nontrivial part is Vge ¢ ®z4+ 9;; , Where Ve 4 is the fixed point space of Vgez["‘q g
by the permutations X4 and g, , = P, (q) = (q%)®Zlqvq’lld.
Thus, _
Py = [T Vera Oz 4. 6.12)
gEGmnj
N=de

Let V, W be two elements in QEll;(X). We have

(Ve W)ge,d = Vge,d &) Wge’d and (V ® W)ge’d = Vge,d ® Wge’d.

PyvvVew)= [] (Ve W)ed @z q).,
gEGcon_/
N=de
= < 1_[ Vee.a ®zig* ‘lc/l,e) & ( H Wee a @71+ qél,e)
gEGconj gEGcmzj
N=de N=de
=Pn(V)® Py(W).
Similarly,
- /
Py(Vew)= [] (V& Wea @z ay,
gEGconj
N=de
= ( l_[ Vee.d ®zig*1 qé,e) ® ( l_[ Wee.d ®z1q) q(/i,e)
ger‘onj gEGz‘onj
N=de N=de

=Pn(V)® Py (W).
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