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Abstract Application of an experimental design based on blocking of homogeneous experimental units is an objective

approach to reduce experimental error. Often, the experimental design and analysis efforts are considered to be executed

satisfactory as long as the coefficient of variation is estimated to be below 10 %, say for yield, as a generally accepted

guide for a well-run trial. Most of the statistical analyses of data are based on the assumption of a homogeneous variance of

plot errors. In field plot experimentation, the question of heterogeneity of error variances has been addressed here. This

study introspects a set of four such supposedly well-run trials in lentil and chickpea conducted in lattice designs. The

presence of, in fact, heterogeneous error variances exhibits a distribution of coefficient of variation as opposed to a single

index to measure heterogeneity of a field. This further suggests that it is more realistic to view the distribution of the

heritability of a trait and its genetic advance due to selection, when assessing them, even in a single field. Objectives of the

study were to examine the possibility of heterogeneous error variances, identify the associated experimental units and

estimate the predicted means of the genotypes and gain due to selection. We show that accounting heterogeneous variances

allows a significant increase in the efficiency of genotypic comparisons and the power of genotypic discrimination, higher

heritability and genetic advance. Thus, it is likely to help shorten the breeding cycle for an expected genetic gain, and is in

principle relevant to all experiments that use replications, involving crops or not.

Keywords Heterogeneity of experimental error variances � Experimental design � CV � Efficiency over RCB �
Spatial analysis

Introduction

In field experimentation, the evaluation of treatment

effects, for example, in crop variety trials, the effects of

genotypes of a crop, is carried out against the experimental

error variability, which arises due to a contribution of

several factors such as local soil fertility, moisture profile,

microbial activities, landscape variations, etc. Various

standard approaches are followed to control the field var-

iability by means of experimental design and statistical

analyses. Commonly-used experimental designs, often

practiced by the crop improvement programmes, are based

on anticipated, though often not confirmed, homogeneous

blocks of suitable sizes (incomplete blocks) [2, 4, 6, 10].

Coupled with the incomplete block design, the possibility

of accounting for any possible correlation between the plot

errors, particularly auto-correlations along rows and col-

umns, has been found useful in enhancing the efficiency of

crop variety trials [3, 5, 12, 13]. These experimental

designs and analysis led to higher efficiency for genotypic

comparisons and genetic gain over analyses based on

complete blocks. Similar advantages were found in

chickpea trials [8, 12]. These analysis approaches were

based on the assumption of homogeneous error variances.

Singh et al. [14] argued that the probably more common

situation is that field heterogeneity is present amongst plot
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errors with different (heterogeneous) error variances. These

errors need not have any obvious structured spatial pattern.

Such skewed situations arise in experimental stations or on

farms, where the residual effects of the crop genotypes may

last for more than two crop seasons, making the inter-

experimental cover-cropping less effective, or the presence

of pests and diseases might create the heterogeneity.

The heterogeneity of a given field is often expressed in

terms of the coefficient of variation (CV, in %), where the

variation is due to residuals after accounting for any sys-

tematic factors such as block differences. Those field trials,

which have CV less than 10 % are generally considered

well-run trials, the analysis of which cannot be further

improved. The findings are normally accepted, including in

ISI peer-reviewed journal articles, as long as the CV is less

than 10 % as it appears that no substantial precision can be

gained by further exploring the plot residuals. Since there

is no such theoretical limit on CV arising from the exper-

imental plot errors, the aim of this study is to show that

statistical analyses of such supposedly well-run trials can,

in fact, be further improved and sharpened by identifying

and partitioning such heterogeneities. This study also raises

another basic question on the limitation to a single index in

terms of CV for describing the heterogeneity of the entire

field of multiple plots. The concept of a single homoge-

neous CV for all plots is based on the assumption of an

equal error variance over all plots. It is argued that since

plot error variances are most likely to be heterogeneous,

field heterogeneity will be better described by calculation

of CVs over individual plots. Its distribution summary

could include an average of the CVs over the plots, with

minimum, maximum, or various quantiles. We address the

heterogeneity issue in trials, which are otherwise accepted

as well-run and precise in practice, and illustrate the pro-

cedure, while discussing the case using legume crop trials.

Crop variety trials are generally conducted as multi-envi-

ronment trials where plot error variances are expected to

vary with the environment as per the response scale in

those environments. In these cases, a homogeneous error

variance is still assumed over all experimental plots in a

given environment. However, estimating heterogeneous

variances in a single experiment is limited and is being

addressed here.

Two legume trials each in lentil and chickpea, where the

CV under the randomised complete block (RCB) analysis

model was found to be less than 10 % for each trial (i.e. a

‘well-run’ experiment), were studied with the objectives to:

(1) explore the un-assumed presence of heterogeneous

error variances, (2) identify the groups of experimental

units where error variances vary with the group, (3) esti-

mate the standard error of differences of genotype effects

and compare the efficiency of the design-analysis methods

over the RCB analysis and (4) estimate gain due to

selection. Computational details are presented for one of

these trials.

Materials and Methods

We consider a set of four trials selected to cover a range of

genetic material, comprising F7 and F8 generations in

lentil, genotypes suited for winter and spring planting in

chickpea in three locations, Tel Hadya and Breda in Syria

and Terbol in Lebanon, over the years 1998, 2002, 2004

and 2009. The statistical models for analysing data from

RCB design and lattice design will be referred to as RCB

model and lattice model, respectively. These trials had CV

values of less than 10 % when analysed by means of the

RCB model. The CV values were even lower under the

lattice model.

Lentil Trials

Lentil-Yield Trial (YT)

Sixteen lentil genotypes were evaluated in a yield trial (F7

generation) conducted in a triple lattice at Tel Hadya,

Syria, in 2004 in a 3 9 16 rectangular layout. Tel Hadya is

located at 36�010N, 36�560E and at an altitude of 284 masl

with a long-term average annual rainfall of 334 mm. The

harvested plot size was 3 m2 (2 m 9 5 rows 9 0.3 m

inter-row distance), and the CV for seed yield was 6.4 %

when analysed by means of either the lattice model or the

RCB model. We refer to this experiment as Lentil-YT.

Lentil-Advanced Yield Trial (AYT)

An AYT was conducted in 2002 at Breda in Syria

(35�560N, 37�100E, at an elevation of 300 masl, long-term

average annual rainfall of 266 mm) to evaluate 25 lentil

genotypes of an F8 generation in a triple lattice in a 9 9 10

rectangular layout with buffer plots. The harvested plot size

was 4.8 m2 (2 m 9 8 rows 9 0.3 m inter-row distance).

The CV was 9.4 and 9.9 % under lattice and RCB models,

respectively. We refer to this trial as Lentil-AYT.

Chickpea Trials

Chickpea-Winter Planting (WP)

An experiment was conducted to evaluate 49 genotypes of

winter habit chickpeas in a simple lattice on a 4 9 25

(rows 9 column) layout in 1998 in the winter season at

Terbol (33�490N, 35�590E), in the Beqaa valley in Lebanon,

which has an elevation of 950 masl and a long-term

average annual rainfall of 515 mm. The harvested plot size
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was 2.45 m2 (4 m 9 4 rows 9 0.35 m inter-row distance:

only middle 2 rows of 3.5 m harvested). The CV for grain

yield was 5.8 and 6.5 % under lattice and RCB models,

respectively. We refer to this trial as Chickpea—WP.

Chickpea-Spring Planting (SP)

A final experiment was conducted at Tel Hadya during the

2009 winter season to evaluate 36 spring habit genotypes of

chickpea in a simple lattice. The harvested plot size was

2.45 m2 (4 m 9 4 rows 9 0.35 m inter-row distance). The

CV for yield was 7.8 % under the lattice model and 9.3 %

under the RCB model. We refer to this trial as Chickpea—SP.

Statistical Method

Here, we first describe the method used by Singh et al. [14],

and then illustrate its application with an example of a

Lentil-YT with 16 genotypes.

Consider an experimental design used for generating the

response (data) and a model for the data analysis. The data

analysis model might have been selected out of a set of

candidate models using a certain criterion e.g. an Akaike

information criterion (AIC; [1]. Then, plot residuals are

obtained by fitting the selected model.

Step 1 (K-Means Clustering)

Based on the data as the squared residuals, the experi-

mental plots are clustered by means of K-means clustering

and the criterion which maximizes between group sum of

squares. Since variance components are based on the

squares of residuals, the clustering is based on squared

residuals. The K-means clustering method requires the

number of groups or clusters to be set a priori. We varied

the number of groups from k ¼ 2; . . .; 10. Then, the mod-

els, in terms of block effects and any other spatial corre-

lation structure for plot errors, were fitted, while allowing

different error variances varying with the cluster/group for

each of k ¼ 2; . . .; 10. For a given k, the error variance for

the plots of group i and the number of plots in it are

denoted by ri
2 and ni,, respectively, where i ¼ 1; 2; . . .; k.

For example, if the experimental units were grouped into 3

clusters (k = 3), then the fitted model will produce esti-

mates of the 3 error variances: r1
2 on n1 plots, r2

2 on n2 plots

and r3
2 on n3 plots. The model fitting is assessed in terms of

maximum likelihood of the data for the fitted model.

Genstat software [11] was used for computation in this

study and expresses the maximum likelihood as restricted

maximum likelihood (REML) [9]. The REML value is

displayed as a quantity called deviance, which is defined as

‘minus twice the logarithm of REML value’, ignoring a

constant, which depends on the fixed terms in the model. It

also produces a residual degree of freedom, which varies

with the number of error variance components associated

with the number of clusters. By means of a clustering

method on squared residuals, clusters/groups of plots can

be determined. Furthermore, the plots with similar squared

residuals would be within a cluster; the error variances

arising from different groups of plots could be expected to

be different. Two questions arise: how many (heteroge-

neous) groups are present within plot errors, and whether

the error variances are heterogeneous for a selected group

of the clusters, that is, for a pre-specified value of k.

Suppose that we want to compare two groups of clusters

of the experimental plots, say one group has J clusters

(Group J), i.e. with J heterogeneous variances, and another

J0([J) clusters (Group J0). If the Group J0 is nested within

Group J, then the change in the deviance can be used as a

Chi-square test with J0–J degrees of freedom (d. f.) to test the

hypothesis that the error variances in the nested group

(Group J0) of units are the same as those of Group J. How-

ever, in general, one group of clusters with J0 variances is not

necessarily nested within the other group of J variances, in

which situation, the model selection can be carried out using

a criterion such as AIC (Akaike Information Criterion). AIC

has been written in terms of the deviance, AICD = devi-

ance ? 2 9 number of variance–covariance parameters

[13, 17].

Then, based on the AICD values for the model fitted

using a constant variance (k = 1, say) and heterogeneous

variances for k ¼ 2; . . .; 10, select that value of k, say k*,

for which the AICD is lowest. Suppose that based on the

selected group of k* clusters of plots the estimated variance

components are denoted by r̂2
i ði ¼ 1; 2; . . .; k�Þ. This Step 1

does not indicate that the variances are all different or

whether there is no scope to merge the clusters with vari-

ances close by. Then follows Step 2, checking whether the

two clusters with the closest variance estimates could be

merged and reduced to a new group of clusters, resulting in

a reduction down to just one cluster.

Step 2

Let Dk be the deviance for the model fitted with k* groups

selected by the AICD criterion. Then, merge the two

clusters, which have the nearest error variance estimates. In

this case, the group with larger number of clusters is nested

within the group with the merged smaller number of

clusters. The model is fitted again, and error variances and

deviance, Dk*-1, are computed. If Dk*-1 - Dk* is greater

than the critical values for Chi-square at 1 d. f. at a chosen

significance level, then the merging is not accepted and the

k* heterogeneous groups are considered final and the pro-

cess is stopped. Otherwise, the two clusters are merged into

one, and the model is fitted with the newly formed group of
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k* - 1 clusters and the associated AICD value is com-

puted. With this group of k* - 1 clusters, repeat the above

step. If merging continues, one needs to proceed until all

the units are in one group, which is the (relatively rare)

case of homogeneous error variances.

Step 3

Having decided on the clusters of heterogeneous variances,

the model is then used to compare genotypes effects and

the efficiency of the design. With multiple error variances

arising in a single experiment, there will be several CVs

based on these variances. The field heterogeneity can then

be expressed in terms of the distribution of the CVs, or at

least in terms of minimum, maximum, and mean on a plot

basis. The mean will be the weighted mean of the CVs,

with weights equal to the number of plots within the

clusters.

Furthermore, the heritability and genetic advance (gain)

due to selection were estimated by fitting the model where

the genotypic effects are treated as independent random

variables. We obtain estimates of the genotypic variance

component and of the heterogeneous error variances, which

are likely to differ from that of the model when genotype

effects are assumed fixed. Heritability estimates vary with

the environmental variance. Thus, for a given trait, if rg
2

stands for genotypic variance component and ri
2 the

experimental error (environmental variance for a single

trial), for the i-th cluster of plots, the heritability on a plot

basis is given by h2 = rg
2/(rg

2 ? ri
2) ði ¼ 1; 2; . . .; kÞ.

Considering a 20 % selection intensity, the genetic gain,

GA (20 %), will be given by

%GAð20%Þ ¼ 100Cðr2
g=

�YÞ=ð r2
g þ r2

i =rÞ1=2

where for a general p = intensity of selection (0 \ p \ 1),

C ¼ 1

p
ffiffiffiffi

2p
p e�z2

p=2, the truncation point zp in the standard nor-

mal distribution is given by the equation
R1

zp

1
ffiffiffiffi

2p
p e�x 2=2dx ¼

1� p , �Y is the trial or location mean and r is the number of

replications. For p = 20 %, C = 1.4 [7].

An Illustration

Consider the dataset for Lentil-YT. In an earlier analysis,

the best model identified, under the assumption of homo-

geneous error variances, was ‘randomized complete blocks

with a separable first order autoregressive structure along

rows and along columns’ (RCBArAr). Further details on

such models’ descriptions and notations are given in Singh

et al. [13]. We attempted fitting heterogeneous error

structures based on the clusters obtained from the residuals

under RCBArAr, but convergence of the restricted maxi-

mum likelihood procedure did not take place. Therefore,

we used the residuals under the lattice design and analysis

model with constant variance. The K-means clustering

approach, which maximizes the between group sum of

squares, was applied on the squared residuals. Clusters of

the experimental units were obtained for the groups of k ¼
2; . . .; 10 clusters. In Table 1, row k = 1 stands for no

grouping having occurred, taking all the units as a single

group. For each of these groups of clusters, the mixed

linear model was fitted to the data by means of the REML

procedure of Genstat. The model was described in terms of

random effects for replications, blocks within replications

and plot errors having variances varying with the clusters

of a given group k ¼ 1; . . .; 10. Some of the key directives

in fitting the mixed linear models in this case were:

VCOMPONENTS½Fixed ¼ Geno�Repþ Rep:Blk

þ f:Rows:Cols; CONSTRAINTS ¼ POSITIVE

VSTRUCTURE½TERM ¼ f:Rows:Cols� MODEL ¼ diag;

Factor ¼ fREML½PRINT ¼ m; c;w;mean; d� Yield

where Rep, Blk, Geno, f, Rows, Cols and Yield stand for

the factors/variate representing plot-wise assignment to

replication, blocks within replications, genotypes, grouping

factor from the cluster analysis, row and column position

on the layout, and yield response, respectively. After fitting

these models, we obtained the ‘deviance’, reflecting the

departure of the model from the data (Table 1).

We note that in Table 1, using a k = 3 cluster group

results in the lowest AICD value. Thus, there could be

three heterogeneous groups. The estimates of the variances

for the three groups were obtained as follows: r̂2
1 ¼ 5443

on 28 plots/experimental units, r̂2
2 ¼ 8018 on 11 plots and

r̂2
3 ¼ 23247 on 9 plots. Of these, estimates of the first two

variances r1
2 and r2

2 are closest as their difference is the

Table 1 The residual degrees of freedom, number of random terms,

deviance and Akaike Information Criterion expressed as deviance

(AICD) when variances were allowed to vary over various clusters

No. of clusters (k) Residual d.f. Random terms Deviance AICDa

1 29 3 341.8 345.8

2 27 5 327.6 335.6

3 26 6 316.1 326.1

4 25 7 315.8 327.8

5 24 8 312.6 326.6

6 23 9 313.7 329.7

7 22 10 312.8 330.8

8 21 11 312.5 332.5

9 20 12 312.2 334.2

10 19 13 312.6 336.6

a AICD = deviance ? 2 9 number of variance–covariance param-

eters where the deviance = -2 ln (REML value), ignoring a constant,

which depends on the fixed terms in the model
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smallest of all the paired differences. They were, therefore,

merged to form a total of just two groups with

28 ? 11 = 39 and 9 plots. Here, the three cluster group is

nested within the two cluster group. The mixed model with

these two groups was fitted, and the deviance was calcu-

lated as D2 = 327.6 (d.f. = 27).

When compared with deviance D3 (316.1, d.f. = 26,

Table 1) for the group with three clusters, we find a change

in the deviance, D2 - D3 = 327.6 - 316.1 = 11.5,

which, compared against the Chi-square on 27 - 26 = 1

d.f., has a p value of 6.81 9 10-04, which is less than the

5 % level of statistical significance. Thus, the two clusters

of the three cluster group should not be merged. Therefore,

we conclude that the plot error variances fall into three

heterogeneous groups, with variance estimates as above.

The positions of the plots with the three cluster group are

shown in the layout, as in Table 2.

Using this heterogeneous structure, with factor ‘f’

standing for the three cluster groups in the above direc-

tives, one can obtain the best linear unbiased estimates

(BLUEs) of the genotype means and an estimated average

standard error of the differences of the genotypes effects. In

order to compute the heritability and genetic advance due

to selection, the first directive in the above codes can be

modified as:

VCOMPONENTS Repþ Rep:Blkþ Geno

þ f:Rows:Cols; CONSTRAINTS

¼ POSITIVE

The other two lines of codes that follow remain

unchanged. After running Genstat with these directives,

one would arrive at estimates of the variance components

due to genotypes (rg
2) and due to heterogeneous error

variances rk
2 (k = 1, 2, 3) that are likely to be different

from those when genotype effects were assumed fixed. The

Genstat codes required to carry out the analysis presented

here are available from the authors on request.

Results

CV, Efficiency and Genotypic Significance

Following the method described above, clusters of plots

associated with heterogeneous variances were identified,

and estimates of their variances, mean CVs per plot,

average SED (standard error of differences of genotype

effects) and efficiencies of the genotypic comparison were

computed. The statistical test of significance of genotypic

effect (based the hypothesis of equality of genotype means)

is given in terms of a Chi-square distribution based Wald

statistics in Genstat [11] and the associated p values for the

test of significance are given in Table 3. Table 3 also

shows results for RCB and lattice models for comparison.

Lentil-YT

In this trial, the lattice design did not show any improvement

over RCB. However, a spatial model with first order

Table 2 Field layout of the Lentil-PYT and the plot positions of the

three (1–3) heterogeneous error variances (1:28 plots with r̂2
2 ¼ 5443;

2:11 plots with r̂2
2 ¼ 8018; and 3:9 plots with r̂2

3 ¼ 23247)

Field layout (genotypes in cells)

Rows: 1 2 3

Columns

1 1 10 13

2 16 13 15

3 2 14 9

4 10 8 2

5 5 16 14

6 7 7 7

7 4 15 1

8 13 3 12

9 9 1 8

10 3 5 16

11 12 6 5

12 8 9 11

13 6 2 10

14 15 4 3

15 11 11 6

16 14 12 4

Field layout (variance groups in cells)

Rows: 1 2 3

Columns

1 1 1 3

2 1 3 1

3 2 3 1

4 1 2 1

5 1 1 3

6 2 1 2

7 1 2 3

8 1 2 1

9 1 3 3

10 1 1 1

11 1 2 1

12 1 1 1

13 1 2 1

14 2 2 3

15 1 1 2

16 1 1 3
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autocorrelation structure along rows and columns was found

to be superior using the AICD model selection criterion [13].

This model had an efficiency of 225 % compared with RCB.

Further information on modelling the heterogeneity of

variances is given in the illustration above. When modelled

with lattice blocks, the plot errors showed three heteroge-

neous variances. Improved efficiency in this case was over

500 %. Further, the average SED was much lower when the

variance heterogeneity was accounted for, which is also

reflected in the high value of the Wald test statistic compared

to the other three cases of constant error variances. The per-

plot CV (4.4 %) was much reduced from 6.4 % in RCB/

lattice to 4.8 % under the RCBArAr model (an almost one-

third reduction).

Table 3 Summary statistics on significance of genotypic differences, CV % and efficiency of design–analysis model duo

Design/model Group

number

No. of

plots

re
2 CV% SED

(standard error

of difference)

Efficiency

(%)

Wald

statistic

p-value

(Chi-square)

Lentil-YT: Tel Hadya, 2004; 16 genotypes, 3 replications. Trial mean = 1427 kg/ha

RCB 48 8335 6.40 74.55 172 \0.001

Lattice 48 8335 6.40 74.55 100 172 \0.001

RCBArAra model 48 4765 4.80 49.65 225 912.5 \0.001

Lattice design and heterogeneous plot errors 32.95 512 1595 \0.001

1 28 544.3 1.63

2 11 8018 6.27

3 9 23247 10.68

Mean (per plot) 4.40

Lentil-AYT: Breda, 2002; 25 genotypes, 3 replications. Trial mean = 1771 kg/ha

RCB 75 30745 9.90 145.9 69.48 \0.001

Lattice 75 27935 9.44 144.1 103 73.81 \0.001

RCBArb 75 32139 10.12 130.3 125 87.39 0.006

RCBArb and heterogeneous plot errors 91.92 252 169.7 \0.001

1 8 124614 19.93

2 67 16823 7.32

Mean (per plot) 8.67

Chickpea-WP: Terbol, 1998; 49 genotypes, 2 replications. Trial mean = 2764 kg/ha

RCB 32659 6.54 180.7 100 282.5 \0.001

Lattice 25258 5.75 169.1 114 334 \0.001

Lattice design and heterogeneous plot errors 142.8 160 1368 \0.001

1 28 1225 1.27

2 8 89593 10.83

3 28 9807 3.58

4 20 40676 7.30

5 14 24444 5.66

Mean (per plot) 4.57

Chickpea-SP: Tel Hadya, 2009; 36 genotypes, 2 replications. Trial mean = 1069 kg/ha

RCB 9817 9.27 99.08 364.32 \0.001

Lattice 7023 7.84 90.4 120 461 \0.001

Lattice design and heterogeneous plot errors 77.16 165 3354 \0.001

1 34 349.1 1.75

2 6 39310 18.55

3 22 10842 9.74

4 10 4540 6.30

Mean (per plot) 6.22

a RCBArAr: randomized complete blocks with a separable first order autoregressive structure along rows and columns
b RCBAr: randomized complete blocks with first order autoregressive structure along rows

290 Agric Res (July–September 2012) 1(3):285–294

123



Lentil-AYT

In this trial, the CV for the RCB model was 9.9 %. The

lattice block design was not very effective, as the efficiency

for the lattice design was only 103 % over RCB. The best

model using the AICD criterion, the best model with

constant variance was ‘randomised complete blocks with

plot errors along following first order auto-regression along

rows’ (RCBAr), and the efficiency of this model was

125 % compared to RCB. Although the efficiency was

higher than the lattice design, the autocorrelation along

rows increased the CV only slightly (from 9.9 to 10.1 %).

In this case, residuals from the RCBAr models were used

for identifying heterogeneous groups for error variances.

Except for two clusters, in groups of k ¼ 3; . . .; 10 clusters,

at least one cluster was found of size 1, i.e. one plot stood

out as a plot with a different variance. With poor support to

estimate a variance based on just one observation, we

Table 4 Estimates of variance components, heritability and genetic advance due to 20 % selection intensity

Design/model Group

number (i)
No. of

plots

rg
2 re

2 or ri
2 h2 Genetic

advance (%)

Lentil-YT: Tel Hadya, 2004; 16 genotypes. Trial mean = 1427 kg/ha

RCB 48 29076 8335 0.78 15.98

Lattice 48 29076 8335 0.78 15.98

RCBArAra 48 35352 11461 0.76 17.11

Lattice design and heterogeneous plot errors 33527

1 28 574 0.98 17.89

2 11 8027 0.81 16.98

3 9 22939 0.59 15.51

Mean (per plot) 0.87 17.23

Lentil- AYT: Breda, 2002; 25 genotypes. Trial mean = 1771 kg/ha

RCB 20238 30938 0.40 8.47

Lattice 20923 28961 0.42 8.79

RCBArb 20909 32000 0.40 8.60

RCBArb and heterogeneous plot errors 22502

1 8 128658 0.15 6.04

2 67 16592 0.58 10.14

Mean (per plot) 0.53 9.70

Chickpea-WP. Terbol, 1998; 49 genotypes. Trial mean = 2764 kg/ha

RCB 98 79775 32659 0.71 13.03

Lattice 98 82786 26795 0.76 13.52

Lattice design and heterogeneous plot errors 87867

1 28 1260 0.99 14.96

2 8 73706 0.54 12.60

3 28 9878 0.90 14.61

4 20 48696 0.64 13.29

5 14 23002 0.79 14.12

Mean (per plot) 0.83 14.21

Chickpea-SP: Tel Hadya, 2009; 36 genotypes. Trial mean = 1069 kg/ha

RCB 72 46183 9817 0.82 26.75

Lattice 72 48485 7558 0.87 27.77

Lattice design and heterogeneous plot errors 50318

1 34 362.2 0.99 29.32

2 6 32571 0.61 25.53

3 22 11403 0.82 27.84

4 10 4521 0.92 28.74

Mean (per plot) 0.90 28.47

a RCBArAr: randomized complete blocks with a separable first order autoregressive structure along rows and columns
b RCBAr: randomized complete blocks with first order autoregressive structure along rows
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selected the RCBAr model with two heterogeneous vari-

ances. In this case, the efficiency of genotypes comparison

was 252 % compared to RCB. There was also an increased

statistical significance in terms of the Wald test statistic of

169.7 for heterogeneous variances vs. 87.39 for constant

variance (the RCBAr structure being common). The CV

varied from 7.3 to 19.9 % with still a lower average of

8.7 % per plot.

Chickpea-WP

For the Chickpea-WP trial with 49 genotypes and two

replications, there were five heterogeneous error variances,

with the number of plots per group varying from 8 to 28.

The lattice design had an efficiency of 114 % compared

with RCB (100 %). As can be expected, the lattice model

had a higher power of discriminating between the geno-

types as the Wald statistic value was higher than that for

RCB. When we incorporated the heterogeneous variances,

the efficiency for pairwise genotypes comparisons

increased to 160 % compared to RCB. The CV for RCB

was 6.5 % and 5.8 % for the lattice model. In the case of

heterogeneous variances, the CV varied in the range of

1.3 % (28 plots) to 10.8 % (8 plots), with a mean CV per

plot of 4.6 %, which is less than those for the RCB and the

lattice models. The Wald statistic was 1368, which showed

an enhanced power to discriminate the genotype effects

(Table 3).

Chickpea-SP

Four heterogeneous groups of plots with different variances

were statistically detected. Accounting for the heteroge-

neity, in addition to having used a lattice model, increased

the efficiency to 165 %, and the significance level in terms

of the Wald statistic to 3354 from 461 for the lattice model.

The CV per plot was much lower 6.2 % (range: 1.8 % for

34 plots to 18.6 % for 6 plots).

Effect on Genotypic Variance Component, Heritability,

and Genetic Advance

Table 4 gives the estimates of variance components due to

genotypes and experimental errors, estimates of broad

sense per-plot heritability and genetic advance/gain due to

selection at 20 % intensity and their mean per-plot basis.

Lentil-YT

There was an increase in genotypic variance from the RCB

or lattice model to the spatial model, and the models with

heterogeneous plot errors. The spatial model gave the

highest genotypic variance component value of the four

models. The heterogeneous model involved a lattice model,

but not the spatial error autocorrelation structure. Herita-

bility was nearly the same for all the models, except in the

case of heterogeneous variances where it varied from 59 to

98 %. A high heritability of over 95 % for seed yield in

lentil was also reported by Sarker et al. [12] in a lattice

model. The genetic advance values were slightly higher on

average by 1 % (from 16 to 17.2 %) over the RCB/lattice

models.

Lentil-AYT

There was an increase in genotypic variance under the

heterogeneous error variance model over the other three

models: RCB, lattice and RCBAr. The average heritability

per plot of 53 % (range: 15–58 %) showed a considerable

increase over the other three models. The genetic advance

increased on average by nearly 1 % (from 8.5 to 9.7 %).

Chickpea-WP and Chickpea-SP

In the case of the two chickpea trials, winter and spring

planting, a similar trend as in the case of the two lentil

trials was observed. Accounting for the heterogeneity of

plot error variance led to a net increase in genotypic var-

iance of 10 % in the Chickpea-WP and 9 % in the

Chickpea-SP trials when compared with RCB, while in the

case of lattice models, these values were 3.8 % for the

Chickpea-WP and 5 % for the Chickpea-SP. There was on

average a 10 % increase in heritability over RCB, and a net

increase in genetic advance of more than 1 % (14.2 % for

the heterogeneous variance model vs. 13 % in RCB for the

Chickpea-WP; 28.5 % under the heterogeneous variance

model vs. 26.8 % under RCB for the Chickpea-SP).

Discussion and Conclusions

In field trials, crop scientists focus on separating the

genotypic differences or variation as precisely as possible

from the factors inherent in the field, even after accounting

for such known factors as replication, blocks within repli-

cations, and any other factors accounting for local fertility

trends, or structural parameters such as autocorrelation

between plot errors. The magnitude of the CV of plot errors

provides a guide to the researchers on how far one should

intensify the experimental design and analysis of data

aspects to achieve the highest precision level. In orthogonal

designs such as complete blocks, the CV and the number of

replications determine the precision for comparisons

amongst genotypes. In incomplete block (balanced or

unbalanced) designs, the autocorrelated plot errors also

determine the precision of genotype differences. In the
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usual context of data analysis from field experiments, the

common assumption is that the plot errors have a homo-

geneous variance. However, due to the presence of many

factors creating different degrees of interference, effects on

a plot due to residual effects over years or due to within-

plot interference due to diseases, pests or competition

between and within crop rows [15] such an assumption

may not be tenable. Errors in the methodology applied in

data collection and entry may also be reflected in extreme

residual values, which can be examined for the presence of

outliers, or else such errors might be confounded with plot

heterogeneity. Often, plot scores such as percentage plant

stand (after emergence and at harvest) are taken to explain

the heterogeneity, but such variables actually depend on

the genotype and should not be used as covariates for plot

heterogeneity. Even after accounting for various systematic

factors, the pattern of the residuals was found to have a

non-constant variance; for example, its spatial structure

was found to reflect an exponential variogram model in

lentil [12] and a spherical model in herbage plant trials

[16].

In the four ‘well-run’ (i.e. CV values of less than 10 %)

trials studied, we noticed considerable improvement in

efficiency for genotype comparisons and the standard error

of differences when lattice blocks and spatial autocorrela-

tions were compared with an RCB model (Table 3). An

examination of the graphs (or the table of deviance)

established that in all four cases, there was a presence of at

least two heterogeneous variances of plot error, as detected

by a statistically significant difference in the deviances,

when compared with the homogeneous variance model

(Table 5). Singh et al. [14] provided a systematic approach

for exploring the number of heterogeneous variances. The

effect of accounting for the heterogeneity of variances has

demonstrated a substantial gain in efficiency of the

experimental design, and the enhanced analysis method

used in all four trials led to reduced SED values, and hence

increased the power of genotypic discrimination. Singh

et al. [14] listed examples of high CV values under RCB

models where genotypes’ effects were found to be non-

significant under a homogeneous error variance model.

But, by bringing heterogeneous variances into the model,

the genotypic difference became apparent. Therefore, some

genotypes which were not significantly different from a

best check in a homogeneous error variance analysis might

become significant in the heterogeneous model or vice

versa. While one expects a gain by such an attempt in

highly heterogeneous fields, this study showed that

improvement in precision can be brought about even in

trials considered ‘well-run’, that is to say, with CV values

of less than 10 %.

There were cases where various groups of heteroge-

neous variances could not be fitted, while retaining a

spatially autocorrelated error structure along rows as well

as along columns. This happened in a specific case because

of convergence failure in the model fitting. In the case of

Lentil-YT, even when sacrificing the autocorrelation

structure and introducing heterogeneity of error variances,

this led to a substantially higher efficiency (SED = 49.65

for the RCBArAr model vs. SED = 32.95 for the lattice

model with three heterogeneous error variances).

The groups of plots with heterogeneous variances

identified as mentioned in the Materials and Methods

section were further used to estimate the genotype variance

component and genetic advance. This process also resulted

in a general increase in genotypic variance. This implies

that the estimates of heritability and genetic advance in

reality could be higher. The presence of multiple error

variances, however, does pose a controversial/inconvenient

issue of having to deal with multiple indices for heritability

and genetic advance. But, the multiple indices offer a more

satisfactory explanation of reality than having to compro-

mise on a single value of heritability or genetic advance. In

the present four trials, the number of heterogeneous vari-

ances varied from 2 to 5. Therefore, it is more realistic to

report the distribution of heritability and genetic advance

rather than mean values. The mean of genetic advance over

the plots gave an additional 1 % gain in each of these

cases. Realizing the fact that we are analysing trials with

relatively low CV values, this proposed procedure appears

to still capture heterogeneous variances, which could help

shorten the breeding cycle further by achieving the

expected genetic gain sooner and thus increasing breeding

efficiency. Modelling has shown that homozygosity can be

achieved quicker if we know allele status, which is as

expected. In fact, a fully homozygous individual can be

identified as early as in the F2, if population size is large

enough to accommodate all the loci segregating, which is

pure Mendelian genetics. An extension of this study could

be to allow the plot error variance to vary with the geno-

type and evaluate the precision of the predicted means of

Table 5 Comparing the case of at least two heterogeneous variance

groups

Trial Number of

groups (k)

Residual

d.f.

Deviance

Lentil-YT 1 29 341.8

2 27 327.6

Lentil-AYT 1 44 572.1

2 43 544.4

Chickpea-winter planting 1 46 589.9

2 44 574.4

Chickpea-spring planting 1 33 390.5

2 31 374.7
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the genotypes, and will be addressed separately. Further-

more, alternative approaches for formation of groups of

homogeneous variances clusters may be explored and

compared.

This study was conducted to explore the possibility of

the role of heterogeneous variances of plot errors in field

experiments, and the study supports that heterogeneous

error variances are a reality even in ‘well-run’ trials. The

method of analysis proposed by Singh et al. [14] has been

described and illustrated here for such ‘well-run’ trials.

Modelling of heterogeneous variances, in addition to

accommodating the effects of systematic factors and

autocorrelations between plot errors, has added substantial

value to the trials in terms of a significantly higher effi-

ciency of the experimental design and analysis model, a

higher power of genotypic discrimination, a lower average

CV and a higher genetic advance. This new analysis

approach is recommended for adapting the analysis of field

trials, but is also relevant to many other experiments

(including outside of agricultural research) permitting more

precise examination of the experimental residuals and

improved precision of conclusions drawn.
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