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Abstract
More than half of the world’s population are colonized with H. pylori; however, the prevalence varies geographically with 
the highest incidence in Africa. H. pylori is probably a commensal organism that has been associated with the development 
of gastritis, ulcers, and gastric cancer. H. pylori alone is most probably not enough for the development of gastric carcinoma, 
but evidence for its association with the disease is high and has, therefore, been classified by the International Agency for 
Research on Cancer as a Class 1 carcinogen. Bacteroidetes and Fusobacteria positively coexisted during H. pylori infection 
along the oral–gut axis. The eradication therapy required to treat H. pylori infection can also have detrimental consequences 
for the gut microbiota, leading to a decreased alpha diversity. Therefore, therapy regimens integrated with probiotics may 
abolish the negative effects of antibiotic therapy on the gut microbiota. These eradication therapies combined with probiotics 
have also higher rates of eradication, when compared to standard treatments, and are associated with reduced side effects, 
improving the patient’s compliance. The eradication therapy not only affects gut microbiome but also affects the oral micro-
biome with robust predominance of harmful bacteria. However, there have been reports of a protective role of H. pylori in 
Barrett’s esophagus, esophageal adenocarcinoma, eosinophilic esophagitis, IBD, asthma, and even multiple sclerosis. There-
fore, eradication therapy should be carefully considered, and test to treat policy should be tailored to specific communities 
especially in highly endemic areas. Supplementation of probiotics, prebiotics, herbals, and microbial metabolites to reduce 
the negative effects of eradication therapy should be considered. After failure of many eradication attempts, the benefits of 
H. pylori eradication should be carefully balanced against the risk of adverse effects especially in the elderly, persons with 
frailty, and intolerance to antibiotics.
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Background

H. pylori is a commensal organism associated with the 
development of gastritis, ulcers, and gastric cancer. The 
organism as well as eradication remedies can modulate gut 
microbiota in humans. Other non-H. pylori microbial species 
may colonize the same milieu, but H. pylori are regarded as 
a human pathogen [1]. Interactions between H. pylori and 
other members of the microbiome, the host, and the envi-
ronment influence the clinical consequence and may lead to 
either disease or possible protective effects. Considering the 
beneficial effects on the host by regulating gastrointestinal 

microbiota, eradication of H. pylori can produce various 
adverse effects and alter the gastrointestinal microbiota. 
Gastrointestinal microbiota are defined as the entire com-
munity of microorganisms dwelling in the gastrointestinal 
tract, and it is dominated substantially by bacteria [2]. Gut 
microbiota composition varies between ethnic groups due to 
the different dietary, hygienic, and genetic factors in addition 
to the use of antibiotics. Its homeostasis plays a critical role 
in maintaining host health. Dysbiosis of the gut microbi-
ome may produce multiple diseases and bacterial infections 
in addition to compromising human alimentation [3]. This 
review aims to discuss the relationships between H. pylori 
alone and in combination with oral and gut microbiota in the 
development of GI disease.
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General characteristics of H. pylori

H. pylori colonization affects more than half of the popu-
lation worldwide [4] with the highest incidence in Africa 
(79.1%) [5]. Despite this high prevalence, the majority of 
the infected population are asymptomatic. Acquisition of 
H. pylori occurs in early childhood (30%–50%), while dur-
ing early adolescence, it reaches over 90% in developing 
countries [6]. The consequence of infection varies either 
from no clinical symptoms or continuing throughout his 
life with superficial chronic gastritis [7, 8] or developing 
peptic ulcers, 25% even experience ulcer complications, 
and 1% will advance to gastric cancers (GC) [9].

The main transmission route of H. pylori is not known. 
However, the intrafamilial transmission of the pathogen 
is the most significant route. This may be facilitated by 
close personal contacts, the unified socioeconomic status 
of the family members, and the genetic predisposition to 
H. pylori persistence [10, 11].

Children < 5 years of age have high infection rates, after 
which infection declines at school age when less time is 
spent at home. In Egypt, 33% of children < 6 years are 
infected [12]. The disease development is influenced by 
several factors such as host genetics, environmental fac-
tors related to diets, lifestyle habits, and pathogens [13].

Once entering the stomach, H. pylori produces urease 
to convert urea to ammonia which neutralizes hydrochlo-
ric acid, then after, uses mobile flagella to spread over 
the surface of the gastric epithelium forming microbial 
biofilms. Gastric persistence is determined mainly by bac-
terial adhesion [14]. The adhesion of H. pylori is facili-
tated by the gastric epithelium α1,2-Fucosylated glycans 
[15]. Both virulence factors; cytotoxic-associated gene, 
(CagA) and vacuolating cytotoxin A (vacA), have direct 
damaging impact on the gastric mucosal epithelium [16, 
17]. The initial host Th1 cell immune response intended to 
eradicate the microorganisms is opposed by H. pylori vacA 
immunosuppressive effect [18]. A Th2 cellular pathway 
facilitates H. pylori colonization in infancy and leads to 
the development of immune tolerance resulting in a symbi-
otic relationship between the microbe and the host [19]. H. 
pylori influence host immune responses and the microbiota 
of both the stomach and distal organs [20].

The persistence of H. pylori in the stomach is asso-
ciated with the development of gastroduodenal diseases, 
such as chronic gastritis, peptic ulcer disease (PUD), gas-
tric adenocarcinoma, and gastric MALT lymphoma, and 
colorectal carcinoma [21–23]. A significant relationship 
between H. pylori detection and pancreatic cancer has 
also been reported [23–25]. H. Pylori had been impli-
cated in the pathogenesis of extra-gastric diseases such 
as ischemic brain injury [26], Alzheimer’s disease [27, 

28], Parkinson’s disease [29], atherosclerotic vascular 
lesions, a higher risk of coronary heart disease [30–33], 
hypertension [34], endothelial dysfunction [34], vitamin 
B12 and folic acid malabsorption [35, 36]. Psoriasis [37, 
38], lichen ruber planus, scabies, rosacea, Sweet’s syn-
drome, Behcet’s disease, and Schönlein-Henoch purpura 
[39] The mechanism of this extra gastric affection is not 
confirmed; however, H. pylori generates local inflamma-
tion in the stomach and can spread systemically by the 
release of cytokines establishing low-grade and chronic 
inflammation throughout the body [40].

In contrast to the harmful effects, H. pylori found to have 
a protective effect against many pathological conditions such 
as IBD [41, 42], asthma [43–47], esophageal adenocarci-
noma [48], eosinophilic esophagitis [49], and GERD and 
Barrett’s esophagus [50, 51].

Helicobacter pylori and oral microbiota

H. pylori detected in both the mouth and gut. The oral–gut 
axis microbiota has a dominant effect in H. pylori’s colo-
nization, infection, and pathogenicity [52]. The number of 
H. pylori in the mouth is lower than in the stomach. It con-
stitutes 42%–97% of the total gastric bacterial community 
[53]. The oral and gastric milieus are affected by saliva and 
digested food. The oral microbiome is the dominant source 
of gastric microbes, so, it is accused for the infection and 
transmission of H. pylori [54, 55].

The interplay between H. pylori and oral microbiome 
may take one or further of three main forms: co-aggrega-
tion, symbiotic biofilm formation, and endosymbiosis [56]. 
Fusobacterium nucleatum and Porphyromonas gingivalis are 
crucial bacteria in periodontal infection. The aggregation 
with H. pylori promotes oral to gastric colonization by oral 
bacteria [57]. Biofilms are surface bacterial communities 
embedded within an extracellular matrix. They contribute to 
an infection becoming chronic or recurrent, promote inflam-
mation, and can make bacterial colonies resistant to antibiot-
ics and the immune system [58].

The major cariogenic bacterium, Streptococcus mutans, 
forms a symbiotic biofilm with H. pylori prolonged its sur-
vival in the unsuitable atmosphere of the mouth [59]. H. 
pylori can anchor on the surface and/or enter C. albicans to 
form a mixed biofilm in the oral cavity and vagina [60, 61].

The interaction between and H. pylori members of the 
oral microbial community yields different results according 
to oral or gastrointestinal complaints in H. pylori-positive 
people. P. gingivalis has been established as a pathogenic 
agent of periodontitis and positively associated with H. 
pylori, indicating that H. pylori infection may promote peri-
odontal disease [62]. The inter-transmission between oral 
and gut microorganisms can affect the ecosystem in both 
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territories and hence regulate the pathogenesis of different 
diseases [63].

Gastric bacterial microbiome profile

The gastric core microbiome is mainly formed from five 
major phyla, including Firmicutes, Bacteroidetes, Actino-
bacteria, Fusobacteria, and Proteobacteria [64, 65]. Numer-
ous oral bacteria such as Neisseria, Veillonella, Fusobacte-
rium, Streptococcus, and Hemophilus, are enriched in the 
lower digestive tract and can be significantly found in gastric 
biopsy too [66]. A healthy gut microbiome is characterized 
by high gut microbial diversity [67]. The co-occurrence 
interactions were stronger in intestinal metaplasia (IM) 
than superficial gastritis (SG) [68] and among genera in IM 
which then decreased in intraepithelial neoplasia (IN) of gas-
tric biopsies with gastritis progression suggesting that the 
bacteria tend to co-occur to form a specific micro ecology 
before the occurrence of neoplasia [69]. Several factors can 
affect the gastric microbiome such as diet, aging, geographic 
area of residence, and medications like PPI and antibiotics 
[70, 71]. A reduced number of Bacteroidetes and elevated 
numbers of Firmicutes and Proteobacteria were observed in 
patients with gastritis as compared with healthy individuals 
[72] (Fig. 1).

Gut microbiota and Helicobacter pylori infection

H. pylori infection disturbs commensal bacterium equilib-
rium in the gastric mucosa in addition to the disturbance 
of microbial changes in the human gut [73–76]. H. pylori 
mainly influences the microbial composition and diversity 
in gastric mucosa rather than both gastric juice and stool 
[69] H. pylori infection results concerning bacterial diversity 
have been controversial as has been found with other spe-
cific groups of gut bacteria [77, 78]. Lactobacillus species 
abundance was higher in H. pylori-infected patients than in 
non-infected persons [79] , protecting the human gut from 
bacterial colonization through gut barrier preservation 
[80]. Iino et al. in 2018 [79] found that H. pylori-positive 
patients displayed reduced amounts of L. acidophilus and 
an increased proportion of L. salivarius in comparison with 
non-infected subjects due to the suppression of gastric acid 
secretion by H. pylori infection. He reported a higher abun-
dance of Lactobacillus in H. pylori-positive patients with 
severe atrophic gastritis compared to infected patients with 
mild atrophic gastritis or without gastritis denoting affec-
tion of gastric microbiota according to symptom severity. On 
the other hand, gut bacteria might also influence the bacte-
rial colonization of other gastrointestinal regions, including 
H. pylori in the stomach. Nitrospirae phylum can be seen 
only in H. pylori-negative personnel with minimal values in 

Fig. 1  Gastric micro ecological imbalance and gastric diseases. 
Despite the differences among individuals, there are five dominant 
bacterial phyla in the healthy stomach, and their common dominant 
bacterial genera are summarized (green). The gastric microbiota is 
dynamically balanced and affected by many factors, such as Helico-
bacter pylori infection, probiotics, gut microbiota, drugs, diet, and 

age. Although the causal relationship between them is unclear, gas-
tric micro ecological imbalances are associated with various gastric 
diseases (red), and some microorganism-related disorders are listed. 
With permission from Zhang L et  al. published in Front. Microbiol 
2023 “Gastric microbiota dysbiosis and Helicobacter pylori infec-
tion”



292 M. T. Elghannam et al.

1 3

patients with duodenal ulcer and H. pylori infection as nitrite 
has a bactericidal effect against H. pylori [80, 81]. H. pylori 
infection alters the gut microbiota in asymptomatic patients 
by increasing Proteobacteria, Clostridium, Firmicutes, 
and Prevotella in a pediatric population [78] and members 
belonging to Succinivibrio, Coriobacteriaceae, Enterococ-
caceae, and Rikenellaceae in adults [75] compared to non-
infected subjects. Gao et al. in 2018 [72] reported a distur-
bance of fecal microbiota, mainly the phyla Bacteroidetes, 
Firmicutes, and Proteobacteria in H. pylori-induced gastric 
diseases. The relationship between H. pylori and gastric 
microbiota could be mediated through multiple mechanisms, 
such as virulence factors, the modification of gastric acidity, 
host immune responses, and competition [82] (Fig. 2).

H. pylori-resistant strains showed a higher trend of diver-
sity and evenness than the sensitive samples. The abundance 
of resistant strains decreased with increasing cohabitation of 
pathogenic bacteria. There is an increase in the α-diversity 
index among the MDR. The resistance status of H. pylori 
was correlated with the enriched diversity of the gastric 
microbiome composition, where the abundance of non-
pylori pathogens increased, especially in triple-resistant 
strains [83].

Gut microbiota and Helicobacter pylori eradication 
therapy

Antibiotic administration decreases bacterial diversity [84, 
85]. Bacterial diversity was restored in the short and the long 

term after treatment conclusion [86–89]. Still, not all studies 
reported enhancement in bacterial diversity after treatment 
conclusion [90, 91]. Generally, gut microbiota composition 
is restored in most cases at 2 months post-treatment. Pro-
teobacteria phylum is proposed to be partially responsible 
for the development of adverse effects during eradication 
therapy [92]. Probiotic supplementation and the antibiotic 
impose a beneficial gut microbiota profile after eradica-
tion therapy [93]. Niu et al. in 2021 [94] reported a suc-
cess rate of H. pylori eradication 95.5% using the quadruple 
remedy. The majority of phyla in the two groups were the 
same and included Proteobacteria, Bacteroides, Firmicutes, 
Actinomycetes, and Fusobacteria. The microbial diversity 
in the failure group had a lowering fashion and the species 
abundance became extensively reduced compared with the 
success group. The presence of Rhodococcus, Lactobacil-
lus, and Sphingomonas was associated with high rate of H. 
pylori eradication in the successful group. Veronococcus and 
Cilium were enriched in the mucosa of chronic atrophic gas-
tritis cases compared to chronic superficial gastritis cases. In 
both study groups, H. pylori were negatively identified with 
other bacterial groups. They concluded that gastric micro-
biota is the corner stone in the effect of quadruple H. pylori 
eradication therapy. Tawfik et al. in 2023 [95] found oral 
microbiomes more diverse than the gut microbiomes. The 
eradication of H. pylori was associated with a significant 
reduction in the bacterial diversity along the orointestinal 
axis. H. pylori positive patients showed positive correlation 
between Proteobacteria and Fusobacteria. After eradication 

Fig. 2  Main mechanisms mediating the relationship between H. pylori and gastric microbiota. Created with BioRender.com
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therapy, Fusobacterium, Veillonella, Catenibacterium, Neis-
seria and Prevotella enriched significantly. They stress the 
importance of eradication therapy on certain genera espe-
cially, in the oral microbiota.

Helicobacter pylori‑associated diseases

Gastritis and ulcer disease

Only 10% of the population develop clinical manifestations 
latterly in their lives when getting elderly [96]. Seventy per-
cent of people who are established to have the bacterium 
are healthy bacterial carriers, and 5%–10% of those infected 
develop symptoms of gastritis or PUD [97–101]. Absence 
of H. pylori-gastritis had been reported [102, 103] , and 
indeed in severe cases and premalignant conditions, a low 
abundance of H. pylori had been reported [104]. H. pylori-
negative gastritis was found to be 21% in the United States 
[105] and 27% of all cases of gastritis in Indonesia [103]. 
Araújo et al. in 2014 [106] reported that the discovery rate of 
H. pylori infection in cases diagnosed with PUD is the same 
as in the general population and 20–50% of PUD patients 
had idiopathic etiology. The high prevalence rate and low 
incidence of pathological diseases indicate that H. pylori are 
more likely to be an opportunistic or latent pathogen rather 
than a truly pathogenic bacterium. The development of PUD 
is multifactorial and depends on endogenous and exogenous 
factors, which means that the presence of H. pylori infec-
tion may be only one of many factors involved in the gen-
esis of ulcerative disorders. The genotype of H. pylori is a 
determinant factor in producing ulcer disease. Cases with 
a verified diagnosis of PUD had vacA-positive and CagA-
positive genotypes [107, 108]. Our group [109] reported a 
low prevalence of CagA (26.5%). Western type CagA is the 
fundamental kind (62.5%) while the East Asian type was 
not detected and others (37.5%) remain uncharacterized. 
Western-genotype CagA was found in 80% of patients with 
peptic ulcer disease and 40% of patients with gastritis. The 
primary genotype mixture in the studied Egyptian sufferers 
were; vacAs2m2/iceA1, vacAs1m1/cagA, mostly related to 
gastritis, and vacAs1/cagA/icA, mainly in PUD. The much 
less virulent (s2, s2m2) H. pylori genotypes were found in 
cases over the age of 43 years [110]. Lately, there has been 
a progressive increase in the idiopathic forms of PUD with 
a drop in the global frequencies of H. pylori infection. A 
further study demonstrated a significant correlation between 
the isolation of Streptococci and peptic ulcer disease [111]. 
Iijima and his associates [112] reported that 45.9% of cases 
of peptic ulcers of the stomach and 29.6% of those of the 
duodenum were idiopathic. H. pylori-positive ulcer had bet-
ter convalescence rates, better course, more positive prog-
nosis, less hospital stay, less 30 days readmission, and fewer 
recurrence rates [113, 114].

Gastric carcinoma

Gastric carcinoma (GC) develops in H. pylori-infected peo-
ple 1.4–4.2 times more often than within the general popu-
lation [115–117]. Even so, only 1–2% of cases develop GC 
in 50% or more of H. pylori-infected patients [118]. In spite 
of the superiority of H. pylori in Africa and India than in 
the West, the incidence of GC is less frequent than in the 
West [119], which is known as an epidemiologic paradox 
[120]. This decreasing trend of bacterial richness going from 
the normal tissue to peritumoral and tumoral tissues indi-
cated that as the microenvironment of a tumor is altered, 
it becomes unsuitable for colonization with specific bacte-
ria. The low microbial diversity of the upper digestive tract 
was associated with a low serum pepsinogen I/pepsinogen 
II ratio, which has also been associated with gastric car-
cinogenesis [121]. H. pylori virulence factors have not been 
reported to be essential for cancer development [1]. In an 
Egyptian study of the prevalence of H. pylori CagA among 
patients with gastric carcinoma, a total of 34 (56.67%) 
patients have been CagA + ve and 26 (43.33%) patients were 
CagA − ve, with no statistically significant difference regard-
ing sex or age [122]. It is well known that the persistence of 
H. pylori infection is linked to the development of only non-
cardiac carcinoma, while it had a protective effect against 
cancer development in the cardiac area and lower esophagus 
[48]. The decrease in H. pylori infections in Japan is believed 
to have contributed to a decline in gastric cancer cases [123]. 
However, the cause of an increase in gastric cancer in the 
young population in the USA (notably, young Hispanic 
men), where overall the incidence of H. pylori infection is 
also waning, is unexplained [124]. Thus, unknown factors 
likely unrelated to H. pylori infection may be contributing 
to a rise in gastric cancer in specific populations.

Recently, it is accepted that cancer pathogenesis is pre-
cipitated by confounding factors such as high-salt diets and 
other carcinogenic substances that promote the carcinogenic 
pathway in addition to bacterial agents [125]. The multistep 
processes involved in the development of GC are initiated 
by the transition of the mucosa into chronic non-atrophic 
gastritis, which is primarily triggered by infection with H. 
pylori. This gastritis then progresses into atrophic gastritis 
and intestinal metaplasia, and then to dysplasia, and follow-
ing Correa’s cascade, to adenocarcinoma [119].

During the transition from gastritis to GC, a significant 
difference in the gastric microbial community was observed. 
There is an increase in the abundance of non-H. pylori pro-
teobacteria [126] (Fig. 3).

An analysis of gastric microbial communities from differ-
ent stages of gastric cancer development revealed the signifi-
cance of Peptostreptococcus stomatis, S. anginosus, Parvi-
monas micra, Slackia exigua, and Dialister pneumosintes in 
the progression of gastric cancer, as they were found in the 
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precancerous stage [68]. Gastric cancer prevalence varies 
among different regions of the stomach, with cancers aris-
ing in the corpus potentially caused by mechanisms distinct 
from the other regions [127]. Alternatively, physiological 
factors that vary along the length of the stomach and pylorus 
such as differences in oxygen concentration, pH, mucus, and 
nutrient availability could play a part in determining regional 
cancer susceptibility [128].

Ralser and his colleagues in 2023 identified a unique H. 
pylori-driven immune alteration signature characterized by 
a reduction in regulatory T cells in addition to H. pylori 
induction of pro-carcinogenic STAT3 signaling and a loss 
of goblet cells in colonic epithelium, changes that have been 
shown to contribute; in combination with pro-inflammatory 
and mucus degrading microbial signatures, to tumor devel-
opment in the intestinal and colonic epithelium [129].

Metabolites and their interactions with microbiota may 
be involved in Helicobacter pylori-associated gastric lesion 
development. Negative correlations between Helicobac-
ter and glycerophospholipids, glycosylceramide, and tria-
cylglycerol, which were altered by eradication. The char-
acteristic negative correlations between glycosylceramides 
and  Fusobacterium,  Streptococcus, and  Gemella  in  H. 
pylori-positive baseline biopsy specimens were further 
noticed in active gastritis and intestinal metaplasia. This 
helps discriminate high-risk subjects for progression from 
mild lesions to advanced precancerous lesions in short-term 
and long-term follow-up [130].

Antibiotic treatment in H. pylori-infected patients can 
reduce GC progression even if H. pylori is not eradicated, 
suggesting that suppression of other bacteria may serve a 
protective function [131]. Niikura and his colleagues in 2023 
[132] identified potential pathogens; abnormally colonized 

gastric bacteria, particularly Fusobacterium and Neisseria 
spp., play an additional fundamental role in the later stages 
of gastric carcinogenesis. Testing for Fusobacterium and 
Neisseria spp. in gastric mucosal samples as a surrogate for 
gastric dysbiosis could be a next-generation approach for 
screening high-risk patients for GC. In addition, eradication 
of these oncogenic bacteria and/or inhibition of carcinogenic 
bacteria-derived molecules may be a future strategy for pre-
venting GC development, particularly in patients with severe 
atrophic gastritis and intestinal metaplasia.

Clinical implications

H. pylori infection is frequent in developing countries and 
represents an annoying health problem. Eradication rem-
edies had been recommended by all societies for fear of 
malignancy. Eradication remedies are complicated by the 
requirement for several agents such as the use of 2 anti-
biotics and a PPI. These strategies can be complicated by 
antibiotic resistance, high cost on the national level, PPI-
related complications, and not the least microbiota dys-
biosis. Despite the high frequency of H. pylori infection, 
there is a low prevalence of gastric malignancy. H. pylori 
alone is most probably not enough for the development of 
GC. Considering the protective role of H. pylori against 
numerous conditions such as IBD, asthma, multiple sclero-
sis, Barrett’s esophagus, esophageal adenocarcinoma, and 
eosinophilic esophagitis, H. pylori is now considered one 
of the bacteria in the healthy microbiome for the major-
ity of the human population. Therefore, not every case 
should be treated for eradication. A personalized approach 
according to the H. pylori indigenous region, the presence 
of gastrointestinal malignancies among relatives, or the 

Fig. 3  Association of Helicobacter pylori abundance with the dif-
ferent stages of gastric conditions. The presence of H. pylori was 
dominant in the superficial gastritis condition; thus, this domination 
reduced microbial diversity. In atrophic gastritis and intestinal meta-
plasia, the relative abundance of H. pylori began to decrease with the 

introduction of other bacteria, including the incremental of Prevotella 
sp. and Neisseria sp. In the gastric cancer condition, H. pylori started 
to deteriorate with a significantly increased amount other bacteria, 
including oral cavity microbiota, intestinal microbiota, and lactic acid 
bacteria. Published in Gut Pathogens (2022) 14:19 with permission
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impossibility of banning non-modifiable threat factors is 
needed. It should include relatives with high familial risk 
or living in high-risk areas/populations where eradication 
effectively reduces the threat of gastric carcinoma as in 
South East Asia and cases with cancer who are on therapy 
with immune checkpoint inhibitors or vaccine-grounded 
immunotherapy [133].

The supplementation of probiotics, prebiotics, and micro-
bial metabolites to reduce the negative effects of eradication 
should be considered.

Probiotics reduce H. pylori-induced gastric pathology in 
mice, with reduced inflammatory infiltration and precancer-
ous lesion incidence [134], enhance H. pylori eradication 
rates, and reduce side effects in humans [135].

Autoprobiotics refer to indigenous bifidobacteria, lacto-
bacilli, or enterococci isolated from a specific individual, 
intended to restore microbiota and improve health. The 
advantages of autoprobiotics include its safety, high survival 
rate, its unique individual composition and, extended dura-
tion in the gut [136]. Both the quadruple therapy group and 
the H. pylori-negative subjects after probiotic-supplemented 
eradication treatment had nearly the same microbial diver-
sity [137]. The most effective types belong to the Firmi-
cutes (Enterococcus and Lactobacillus) and Actinobacteria 
(Bifidobacterium genus) phyla and Saccharomyces boulardii 
[138, 139]. However, Yang and his colleagues in 2021 [140] 
reported failure to improve the eradication rate of H. pylori 
after supplementation with lactobacillus, but it helped build 
up a beneficial microbial profile and reduced the frequencies 
of abdominal distention and diarrhea.

The potential mechanisms of probiotic action against H. 
pylori include correction of the gut microbiota, immuno-
logical effects such as enhancement of humoral and cel-
lular immunity, and reduction of oxidative stress, direct 
antagonistic effects against H. pylori such as coloniza-
tion resistance and bacteriocin synthesis, and stimulation 
of local immunological protection such as strengthening 
of the mucous protective barrier and reduction of gastric 
mucosa inflammation [141]. As a double-edged sword, the 
use of probiotic-induced adverse effects include higher risk 
of systemic neonates infections throughout their life span 
[142], long-term gut dysbiosis [143], and risk to develop 
Parkinson’s disease mostly due to Desulfovibrio bacteria 
[144, 145]. The oral administration of multi-strain probiotics 
and paraprobiotics were more than single-strain probiotics, 
reducing the incidence of developing metabolic disorders 
[146].

Washing microflora transfer (WMT) is a modified FMT 
method that uses washed preparations. Ye et al. in 2020 
[147] reported that WMT has an overall H. pylori eradica-
tion of 40.6%. No H. pylori transmission was recorded from 
healthy, asymptomatic donors to recipients by oral capsule-
based FMT [148].

H. pylori living in both oral cavity and gut looks to be a 
commensal, occasionally pathogenic. It is not surprising for 
a case to have more than an eradication course. This is harm-
ful to both oral and gut microbiota and may lead to differ-
ent diseases. After multiple failed eradication attempts, the 
implicit benefits of H. pylori eradication should be weighed 
against the liability of adverse effects with repeated high-
dose acid suppression and antibiotic exposure, particularly 
among individuals who are not at an identifiably advanced 
threat of complications from persistent H. pylori infection 
such as, GC or peptic ulcer disease. Similarly, a careful 
decision-making approach should be seriously considered, 
especially in the senior, those with frailty, and those with 
intolerance to antibiotics [149] (Best Practice Advice #9).
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