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Abstract Geological disasters are a great threat to peo-

ple’s lives and property. At present, it is difficult to eval-

uate quantitatively the cascading effects of regional

geological disasters, and the development of new methods

for such evaluation is much needed. In this study, the

authors have developed a joint procedure that couples the

Newmark model and the RockFall Analyst model based on

a GIS platform in order to identify the impact of seismic

landslides on roads. The new method effectively combines

two processes—seismic landslide occurrence probability

analysis and mass movement trajectory simulation. The

permanent displacement derived from the Newmark model

is used to identify potential source areas of landslides.

Based on the RockFall Analyst model, the possible impact

of mass movement on the roads can be simulated. To verify

the reliability of the method, the landslides induced by the

2017 Jiuzhaigou Earthquake were taken as a case study.

The results suggest that about 21.37% of the study area is

at high risk of seismic landslides, and approximately

3.95 km of road sections are at extremely high risk of large

landslides. The simulated area is consistent with the dis-

tribution of disasters revealed by post-earthquake remote

sensing image interpretation and field investigation in

existing studies. This indicates that the procedure, which

joins the Newmark and RockFall models, has a high

reliability for risk identification and can be applied to

seismic landslide risk assessment and prediction in similar

areas.
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1 Introduction

Seismic landside is one of the common disasters in

mountainous areas. It is widely reported hat a large number

of landslides have been induced by catastrophic earth-

quakes (Cui et al. 2008; Owen et al. 2008; Chen et al.

2016). Serious economic losses and casualties were caused

by these earthquakes and secondary disasters (Parsons et al.

2009; Sun et al. 2013; Zhang et al. 2014). Among them, the

losses and casualties related to secondary disasters are

believed to be much greater than those caused by the

earthquakes themselves (Bai et al. 2012; Rodrı́guez-Peces

et al. 2014). According to research on the variation ten-

dency of geological hazards affected by earthquakes, such

as the Kanto, Chi-chi, and Wenchuan earthquakes, the

active period of landslides may last 5–10 years after the

initial seismic event (Cui et al. 2008; Chen et al. 2018).

Therefore, studies are specifically needed to assess the

immediate cascading effects of disasters as well as their

delayed effects (Shi et al. 2010; Kappes et al. 2012). It is

still a major challenge to evaluate adequately and quanti-

tatively the regional cascading effects of a seismic land-

slide, and the development of new or improved methods for

evaluation of these impacts thus is of great significance.

Generally, different assessment models can be used in

studies of seismic landslide risk. Among them, pseudo-
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static analysis, finite element modeling, and the Newmark

model are often used to describe slope behavior under

seismic stress. Pseudo-static analysis is useful in identify-

ing yield accelerations and hence peak ground accelera-

tions (PGAs) below which no slope displacement will

occur (Seed et al. 1975). Because pseudo-static analysis

provides only a single numerical threshold, many slopes

experience transient earthquake accelerations well above

their yield accelerations, but little or no permanent dis-

placement occurs (Wilson and Keefer 1983; Jibson 1993).

The clear mechanical concept of pseudo-static analysis

encourages its wide use in engineering (Leshchinsky and

Ka-Ching 1994; Ling and Cheng 1997; Biondi et al. 2002).

Finite element modeling is a method that has facilitated

very accurate evaluations of permanent slope deformations

(Seed et al. 1975; Elgamal et al. 1987; Sun et al. 2013).

These highly sophisticated methods require a broad spec-

trum of data of extremely high quality and density as well

as intensive computing capacity, which is not always easily

realized. Newmark’s method models a landslide as a rigid-

plastic friction block with a known critical acceleration;

when acceleration overcomes frictional resistance, sliding

is initiated on an inclined plane (Newmark 1965; Wilson

and Keefer 1983). Based on the calculation of cumulative

permanent displacement, the analysis investigates seismic

slope stability (Jibson 1993). Because the Newmark model

yields much more useful information than pseudo-static

analysis and is far more practical than finite element

modeling, it has been used widely in both specific slope

analyses (Jibson and Keefer 1993; Bray and Rathje 1998;

Pradel et al. 2005) and regional landslide hazard assess-

ments (Jibson et al. 2000; Del Gaudio 2003). Although

seismic landslide assessment models can evaluate slope

stability well, they cannot reflect trajectories of unsta-

ble rock masses and landslide depositional magnitudes,

which are of great importance in determining the impact of

a large landslide on specific infrastructure such as roads.

For the purpose of reflecting the trajectories of land-

slides, rockfall models are helpful tools. A rockfall is a

rapid mass movement generated by the detachment of a

rock volume from a slope that falls, rolls, and bounces

along its trajectory. The modeling of physical rockfall

processes considers the detachment of rock fragments,

falling or flying, and their subsequent bouncing, fragmen-

tation, rolling or sliding, and final deposition (Evans and

Hungr 1993; Guzzetti et al. 2002; Lan et al. 2007). These

dynamic processes are dominated by spatially and tempo-

rally distributed attributes such as detachment conditions,

geometric features, and the mechanical properties of both

rock blocks and slopes (Lan et al. 2007). Particularly

important among the mechanical properties are static and

dynamic friction, roughness, rolling resistance, restitution

characteristics, and fragmentation ratios. Currently,

modeling physical rockfall processes is a widely used tool

for assessing rockfall hazards (Dorren 2003; Lan et al.

2007; Pizziolo 2015). Many studies have found that the

corresponding models are highly useful for the risk iden-

tification of landslides (points or cracks) on roads, rivers,

and buildings or other infrastructure (Guzzetti et al. 2004;

Lan et al. 2007; Qi et al. 2015; Macciotta et al. 2016).

Using the rockfall model to supplement the Newmark

model could facilitate trajectory simulations of insta-

ble rock masses after seismic landslide occurrence proba-

bility assessments.

This article presents a joint procedure that couples the

regional probability model of Newmark and the physical

RockFall Analyst model. These tools can be used to ana-

lyze the seismic landslide occurrence probability as well as

to simulate the trajectories of dangerous rock masses and to

realize seismic landslide risk identification on specific

infrastructure such as roads. The reliability of this method

is then verified by interpretation of the post-earthquake

remote sensing and field investigation of landslides

induced by the Jiuzaigou Earthquake. The joint modeling

and case study described in this article provide an example

of and benchmark for earthquake-landslide chain risk

identification on specific hazard-bearing objects such as

roads and bridges.

2 Method

Risk assessment always tries to answer the question: how

safe is the element at risk? The risk is usually defined by

the product of hazard probability and the undesirable

consequence of loss: R = H 9 V 9 E in which H (stands

for hazard) indicates the probability of the occurrence of a

hazard, V represents vulnerability to specific hazard

intensity, and E is the exposure of the element at risk. This

expression shows that risk level is closely related to the

probability and the intensity of hazard. We therefore

developed a joint procedure by coupling the Newmark

model and the RockFall Analyst model to identify the risk

exposure of the object (road) to seismic landslides. Each

model accomplishes specific objectives: the Newmark

model is used for seismic landslide probability analysis,

and the Rockfall Analyst model is used for further unsta-

ble mass movement trajectory simulation.

2.1 Basic Models

The Newmark model and the Rockfall Analyst model are

the two basic models used for our joint procedure. We first

introduce the theory and algorithm of these two basic

models.
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2.1.1 The Newmark Model

The Newmark model is used to estimate the expected

seismic displacements of a landslide based on a given

recorded acceleration (Newmark 1965). It simplifies slope

instability as a rigid block sliding on an inclined surface.

The critical acceleration is the seismic acceleration that

causes the rigid block to be in a limited equilibrium state

(Newmark 1965; Jibson 1993). Under an earthquake load,

when the seismic acceleration exceeds the critical value of

slope instability, the rigid block may slide along the failure

surface, and permanent displacement will accumulate in

the downward direction (Newmark1965; Jibson

1993, 2007). The critical acceleration can be calculated

using the following formulas (Newmark 1965; Jibson

1993):

ac ¼ ðFs � 1Þg sin a ð1Þ

where a is the slope angle, g is the acceleration due to

gravity, and Fs is the static safety factor, which can be

expressed as follows (Jibson et al. 2000):

Fs ¼ c0

ct sin a
þ tanu0

tan a
þ mcw tanu0

c tan a
ð2Þ

where c0 is the effective cohesion, u0 is the effective fric-

tion angle, c is the material unit weight, cw is the unit

weight of water, t is the normal thickness of the sliding

plane, and m is the degree of saturation of the failure

surface. In this study, we assumed that there is no effect of

groundwater seepage, that is, the safety factor is calculated

using the infinite slope model under completely dry

conditions.

In the past three decades, much effort has been made to

develop regression equations to describe the empirical

relationships between seismic shaking parameters (includ-

ing PGA, Arias intensity, and seismic intensity) and esti-

mated landslide displacements (Jibson 2007; Saygili and

Rathje 2008; Rathje and Saygili 2009; Rathje and Anton-

akos 2011; Chousianitis et al. 2014; Yuan et al. 2016),

which allow quick estimates of the Newmark displace-

ments of earthquake-induced landslides under different

earthquake conditions. PGA and Arias intensity are the two

key seismic parameters required for the Newmark model.

Unlike PGA, which simply presents a single point during

the acceleration time history, Arias intensity is a measure

that includes the characteristics of amplitude, frequency

content, and duration of ground motion (Arias 1970; Jibson

1993). Therefore, Arias intensity is considered superior or

more appropriate than other seismic parameters in earth-

quake-induced landslide evaluations. Arias intensity has

been demonstrated in various studies to be an effective

predictor of earthquake damage potential in relation to

seismic slope stability and correlates well with earthquake-

induced landslide distribution (Jibson 1993; Harp and

Wilson 1995; Hsieh and Lee 2011; Chousianitis et al.

2014).

In this study, however, the lack of seismic stations and

strong-motion recordings limits the applicability of the

Arias intensity to regional seismic landslide risk assess-

ment, and we therefore adopted the regression model of ac/

amax proposed by Jibson (2007). This expression is

obtained through the regression analysis of data derived

from a collection of 2270 strong-motion records obtained

from 30 earthquakes worldwide (5.3 B M B 7.6), and is

used to simulate seismic-induced permanent slope dis-

placement. This regression model can be expressed as

follows:

logDn ¼ 0:215 þ log 1 � ac

amax

� �2:341
ac

amax

� ��1:438
" #

� 0:51

ð3Þ

where Dn is the slope displacement, ac is the critical

acceleration, and amax is the PGA. The above equation

indicates that when ac/amax is larger than 1, Dn will be a

meaningless value.

Since the predicted Newmark displacements are related

to different probabilities of landslide occurrence (Jibson

et al. 2000), regional studies on probabilistic evaluations of

earthquake-induced landslides therefore can be conducted

(Del Gaudio 2003; Chousianitis et al. 2016; Zhang et al.

2017). These equations could help to identify thresholds of

permanent displacement with different degrees of proba-

bility. In this study, the landslide probability from Jibson

et al. (2000) was cited to calculate the threshold of per-

manent displacement for maximum landslide probability.

The equation of landslide occurrence probability Pf is

expressed as follows:

Pf ¼ 0:335 � 1 � eð�0:048�D1:565
n Þ

h i
ð4Þ

2.1.2 RockFall Analyst Model

RockFall Analyst is a 3D solid motion model that is cap-

able of effectively handling large amounts of geospatial

information relevant to rockfall behaviors (Lan et al. 2007).

It includes two major parts: (1) 3D rockfall trajectory

simulations; and (2) raster modeling of the spatial distri-

bution of rockfalls. As the RockFall Analyst model con-

siders dynamic processes on a cell plane basis, it is well-

suited for the occurrence analysis of hazards that vary both

spatially and temporally. The rockfall trajectory is the main

part of the RockFall Analyst model, and the ‘‘lumped

mass’’ or point approach is used in the RockFall Analyst

model to simulate rockfall trajectories. As the physical
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processes of rockfalls are simulated through the RockFall

Analyst model by considering the ground topography and a

range of physical parameters (such as normal restitution

coefficient, tangential restitution coefficient, and friction

angle) during the generation of rockfall multiscenarios, the

RockFall Analyst model provides a method of exploring

the spatial data related to rockfalls (for instance, the

rockfall frequency and energy) and examining their direc-

tional variations. In addition, a barrier analysis tool is

provided in RockFall Analyst to aid barrier design. The

physical attributes of boulders, such as their positions,

displacements, velocities, accelerations, forces, and

momenta, are represented in a 3D vector space. The input

parameters include a seeder feature, a material composition

feature, and a digital elevation model (DEM) raster.

The falling or flight path of a boulder is computed using

a parabolic equation, which is defined as follows:

�x ¼
0

0

� 1

2
gt2

2
64

3
75þ

Vx0

Vy0

VZ0

2
4

3
5t þ

X0

Y0

Z0

2
4

3
5 ð5Þ

where g is the acceleration due to gravity (9.8 m/s2), X0, Y0,

and Z0 are the coordinates of the initial position, and Vx0,

Vy0, and Vz0 represent the initial velocity of the rock in the

x, y, and z directions, respectively. The velocity vector of

the rockfall is defined as

�v ¼
Vx0

Vy0

Vz0 � gt

2
4

3
5 ¼

0

0

�gt

2
4

3
5þ

Vx0

Vy0

Vz0

2
4

3
5 ð6Þ

At the end of the flight path, which represents the

intersection of the defined surface raster and the flight path

of the rock, the rebound/bouncing velocity vector in a local

coordinate system is defined as follows:

V 0
Dip ¼ VDipRT ð7Þ

V 0
Trend ¼ VTrendRT ð8Þ

V 0
N ¼ VNRN ð9Þ

where VDip, VTrend, and VN represent the bouncing velocity

vector without energy loss, VDip is the velocity component

of the rock in the dip direction of the slope cell, VTrend is

the velocity component of the rock in the trend direction,

VN is the velocity component of the rock in the normal

direction of the slope cell, RN is the coefficient of normal

restitution [0,1], and RT is the coefficient of tangential

restitution [0,1].

In the RockFall Analyst model, a boulder will bounce

and continue its parabolic projectile motion if it maintains

a higher velocity after impact, whereas rolling/sliding will

occur if the velocity has decreased to some value, such as,

0.5 m/s, after impact. The simulation will stop if the exit

velocity is zero (Lan et al. 2007). The final velocity of the

sliding movement of the rock in the first cell plane has the

same magnitude as the initial velocity of the movement in

the next cell plane. The simulation will stop if the exit

velocity is zero.

2.2 Newmark and RockFall Analyst Joint Model

The Newmark model assesses the permanent displacement

and landslide occurrence probability for a seismic landslide

hazard, and RockFall Analyst analyzes the sliding process of

instable rock masses and describes the final scope and

magnitude of special deposits. Therefore, this study estab-

lished a merged Newmark and RockFall Analyst model that

uses the slope displacement (Dn) output of the Newmark

model as the input data of the RockFall Analyst component.

This joint procedure includes the whole Newmark model and

the motion trajectory simulation and rockfall spatial fre-

quency modules of the RockFall Analyst model.

Landslide risk intensity generally means the landslide

deposit magnitude. In this article, landslide intensity is

expressed in terms of the rock mass units’ frequency. The

frequency value of a cell will remain zero if no rockfall

trajectory passes and will increase by one if one rockfall

trajectory passes. The value of each cell indicates its risk of

suffering a rockfall, namely, the landslide deposit intensity

risk. The steps of the comprehensive model of seismic

landslide risk identification are shown in Fig. 1.

The dataset needed for the joint model procedure

includes: (1) a seismic shaking parameter, namely PGA or

Arias intensity; (2) a lithology map to analyze the effective

cohesion, effective friction angle, and material unit weight;

(3) a DEM to obtain the slope and aspect; (4) the sliding

surface types to set the normal restitution coefficient and

the tangential restitution coefficient; and (5) sliding plane

thickness. Among them, the seismic shaking parameter,

effective cohesion, effective friction angle, material unit

weight, sliding plane thickness, and slope are the parame-

ters of the Newmark model. The slope, aspect, normal

restitution coefficient, tangential restitution coefficient, and

friction angle are parameters of the RockFall Analyst

model. The joint model is calculated based on raster grids.

3 The Study Area and Model Parameters

To verify the reliability of the joint method, the Jiuzhaigou

earthquake area in Sichuan Province, a worldwide tourist

attraction, was used as a case study. Related parameters

needed for the joint Newmark model and RockFall Analyst

model include seismic shaking parameters, geotechnical

parameters, terrain parameters, and sliding surface

parameters.
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3.1 Study Area

The Jiuzhaigou Earthquake, which occurred on 8 August

2017 (Ms = 7.0, epicenter located at 33.2�N, 103.82�E)

with a focal depth of 12.0 km in Jiuzhaigou County,

Sichuan Province, China, was triggered by the reactivation

of faults of the Longmenshan fault zone (Chen et al. 2018;

Lei et al. 2018). The main shock of the Jiuzhaigou Earth-

quake started along the northwestern direction of the Huya

fault (Fig. 2, fault A). It was mainly related to stress and

movement along the eastern edge of the Qinghai-Tibet

Plateau and was characterized by left-lateral strike-slip

movement. In addition to the Huya fault, the Minjiang,

Maqu-Heye, Bailongjia, and Guanggaishan-Dieshanbeilu

faults (faults B, C, D, and E respectively on Fig. 2) are also

distributed in the affected area, which includes parts of

Jiuzhaigou, Pingwu, Wenxian, Songpan, Hongyuan,

Ruo’ergai, Diebu, and Zhouqu Counties on Fig. 2. The

main shock area is an alpine and canyon region in which

elevations increase from east to west, with the eastern

region containing many valleys. These characteristics

caused the affected area to be prone to immediate and

prolonged mountain hazards such as landslides. According

to a field survey by Zhao et al. (2018), the immediately

induced landslides numbered about 1780. Because the

region is a famous tourist area that is listed as a world

heritage site by UNESCO (Chen et al. 2018) and receives a

large number of tourists, the number of people impacted by

the quake was about 176 thousand local residents and

tourists, with 25 fatalities, 525 casualties, and 6 missing

people.1

3.2 Data and Model Parameters

Due to the lack of Arias data, the peak ground acceleration

(PGA) data needed to establish the seismic shaking

parameter were collected instead of Arias intensity for the

Newmark model. The PGA station data for the Jiuzhaigou

main shock were obtained from the China Earthquake

Administration.2 This PGA dataset includes the values in

east–west, north–south, and vertical directions, and the

maximum of three-direction values was used for spatial

interpolation. The seismic station records show that the

maximum PGA values were 185 cm/s2, 91.7 cm/s2, and

67.7 cm/s2, and the remaining values were all below

50 cm/s2 (Fig. 2). With the epicenter intensity above IX,

the PGA at the epicenter was thought to be greater than the

critical acceleration threshold of 0.2 g (198 cm/s2) found

by Wilson and Keefer (1983).

The lithological data were digitized from a 1:500,000

geological map. Based on the GB50218T-2014 (China)

engineering rock mass grading standards, the rock masses

were divided into five types (Fig. 3a and Table 1). The

study area is dominated by hard rock, which accounts for

approximately 83% of the total affected area. Based on the

mechanical parameters collected in the study area and back

analysis, the strength parameter values (the effective

cohesion (c0), effective friction angle (u0), and material unit

weight (c)) of these rock groups were obtained and are

presented in Table 1. The thickness of the sliding plane

was then set to 5, 4, 3, and 2 m for slopes with gradi-

ents\ 30�, 30–45�, 45–60�, and greater than 60�,
respectively.

The DEM, with a spatial resolution of 90 m, used in this

study was derived from the Shuttle Radar Topography

Mission (SRTM).3 Slope angle (a) and aspect were derived

from the DEM with a pixel size of 100 9 100 m. Elevation

of the entire study area ranges from 578 to 5465 m, and

slope angle ranges from approximately 0�–77.24�. Eleva-

tion is significantly different in the eastern region of the

study area, resulting in a relatively obvious gradient. The

western terrain is relatively flat (Fig. 2).

Fig. 1 A schematic diagram of the joint Newmark and RockFall

Analyst model used in the Jinzhaigou Earthquake seismic landslide

study. DEM digital elevation model

1 http://www.myzaker.com/article/599105c71bc8e07d2b000010.
2 http://www.csi.ac.cn/manage/eqDown/05LargeEQ/201708082119M

7.0/zonghe.html.
3 https://lta.cr.usgs.gov/get_data.
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The sliding surface materials are important for setting

the parameters of the RockFall Analyst model, which is the

basis for the normal restitution coefficient, tangential

restitution coefficient, and sliding surface friction angle.

The types of sliding surface materials in this area are

mainly associated with the vegetation cover types of the

slope surface. Based on the land use map with a 250 m

resolution and published by the Institute of Remote Sens-

ing Applications, Chinese Academy of Sciences in 2010,4

the sliding surfaces were classified according to the stan-

dards of the Chinese Ministry of Railways (Huang and Liu

2008) and the parameters of previous studies (Lan et al.

2007). The normal restitution coefficient (Rn), tangential

restitution coefficient (Rt), and friction angle parameters of

each sliding surface used in this study are shown in

Table 2. The parameters of the seed layer were mainly set

as the default values of the RockFall Analyst model sys-

tem. To facilitate further model calculations, all these data

were converted into raster images with a spatial resolution

of 100 m.

4 Results of Road Risk Identification
for the Jiuzhaigou Seismic Landslides

The joint model procedure provides a method for the risk

identification of seismic landslides on specific objects

(particularly roads) based on both seismic landslide prob-

ability analysis and movement trajectory simulation to

determine landslide intensity. The result of road risk

identification can thus be elaborated by combining the two

major parts into one model.

4.1 Analysis of Seismic Landslide Probability

The probability of seismic landslides, based on the results

of the Newmark model and under the seismic condition of

the 2017 Jiuzhaigou Earthquake, is shown in Fig. 4.

Because permanent displacement corresponding to a

landslide occurrence probability of 0.3 approaches the

landslide-prone threshold indicated by Jibson (1993), we

divide the landslide probability into groups with a cutoff

value of 0.3 for high risk. All the values are classified by an

equal interval of 0.1, and the maximum value 0.335 and the

minimum value 0 are also set as one level. Then landslide

Fig. 2 The main shock area of the Jiuzhaigou Earthquake, Sichuan Province, China. Faults A, B, C, D, E represent the Huya, Minjiang, Maqu-

Heye, Bailongjia, and Guanggaishan-Dieshanbeilu faults, respectively. PGA peak ground acceleration

4 http://www.resdc.cn/data.aspx?DATAID=99.
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risk is defined as six levels: RL0 (Pf = 0), RL1 (0\
Pf\ 0.1), RL2 (0.1 B Pf\ 0.2), RL3 (0.2 B Pf\ 0.3),

RL4 (0.3 B Pf\ 0.335), and RL5 (Pf = 0.335). In the

study area, the area with the highest risk (Pf = 0.335)

accounts for 7.61% of the total, and the area of second

highest landslide risk (RL4, 0.3 B Pf\ 0.335) accounts

for 13.76% (Table 3). Hence, the total area for landslide

probabilities over 0.3 (risk level above RL4) is approxi-

mately 21%. The permanent displacement thresholds for

RL5 and RL4 are 36 cm and 12 cm, respectively (Table 3).

Jiuzhaigou, northern Pingwu, western Songpan, south-

ern Wenxian, and western Zhouqu Counties are the areas

Fig. 3 Map of the engineering

geological groups (a) and

surface materials (b) in the

impact area of the Jiuzhaigou

Earthquake, Sichuan Province,

China. Information on each

engineering geological type is

shown in Table 1
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Table 1 Classification of engineering lithological groups and their mechanical properties

Engineering geological types C0 (kPa) u0 (�) c (kN/m3)

Hard layer group 1: granite, diorite, basalt, andesite and gneiss 29 30 25

Hard layer group 2: marble, slate, dolomite and limestone 25 27 22

Soft layer group 1: tuff, phyllite, marl, siltstone 20 22 20

Soft layer group 2: mudstone and shale 16 18 18

Loose sediments 11 14 17

Table 2 Properties of surface materials

Surface material type Normal restitution coefficient (Rn) Tangential restitution coefficient (Rt) Friction angle (�)

Soil slope with dense vegetation 0.2 0.6 30

Soil slope with loose vegetation 0.3 0.6 25

Soil slope with grass 0.3 0.8 25

Water (rock must stop) 0 0 89

Weathered rock slope 0.35 0.8 15

Smooth surface 0.4 0.85 15

Snow-covered land 0.1 0.1 89

Fig. 4 Probabilistic hazard map

of seismic landslides in the

study area caused by the

Jiuzhaigou Earthquake, Sichuan

Province, China. A, B, and C

indicate locations of three large

landslides immediately

following the earthquake

(photos shown in Fig. 5)
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most prone to seismic landslides. Among them, Jiuzhaigou,

Songpan, and Pingwu Counties are located near the epi-

center of the 2017 Jiuzhaigou earthquake and adjacent

active fault zones; their high slope instability results from

local high PGA values. On the other hand, because

Wenxian County is affected by local lithological condi-

tions, the high slope instability there is due to the low

critical acceleration threshold, despite a low PGA value.

By comparison of the landslide probability from the

Newmark model with the landslide distribution observed in

high-resolution remote sensing images on 16 August 2017

and the field investigation performed by the National

Geospatial Information Center, quantitative verification

result shows that 63 out of 95 Jiuzhaigou landslides are

located in areas with risk levels above RL5, accounting for

66.32% of the total. Twelve landslides are located in

regions with a risk level of RL4, accounting for 12.6% of

the total. Thus, 78.9% of the total landslides occurred in the

high risk area, which reflects the great applicability that the

Newmark model has to the simulation of unstable slopes.

Figure 5 shows some landslides that occurred immedi-

ately after the Jiuzhaigou Earthquake.5 These landslides

include the Laohu Lake landslide (Fig. 5a), the group of

landslides located from Heihetang Village to Jiuzhaigou

Town (Fig. 5b), and the Panda Lake landslide (Fig. 5c), all

of which are located in the high-risk areas identified by the

Newmark model (Fig. 4). In addition, we present a fig-

ure showing the coincidence between the modeled trajec-

tories and runout areas of real landslides (Fig. 6), which are

from Google Earth.

4.2 Instable Slope Mass Trajectory Simulation

and Landslide Risk Identification for Roads

Based on the seismic landslide probability from the New-

mark model, the highest risk slopes (RL = 5, Pf = 0.335)

were selected for mass trajectory simulation. Each

unstable slope cell was considered as one point, and only

the highest potential direction was set for each point. Based

on the trajectory lines, rockfall spatial frequency was fur-

ther calculated, and the neighborhood (3 3 3) mean focal

analysis was performed over a new raster image to obtain a

continuous predicted surface for rockfall spatial frequency

(the landslide intensity). The results show that the rockfall

spatial frequency for the cells ranges from 0 to 73.69. As

the value 1 means one unit of source rock mass

(100 m 3 100 m) will be deposited, the maximum value

of 76.39 means that the corresponding cell on the road

section may suffer a risk of a deposition of 76 units of

source rock mass (100 m 3 100 m). Based on the rockfall

spatial frequency, we classified the depositional risk of

seismic landslides on the area’s roads into 6 levels (RR0–

RR5) in Table 4. The spatial statistical results (Table 4)

show that 1249.58 km (53.91%) of the region’s total roads

(2317.86 km) are basically free from landslides, and they

are mainly found in the western flat region. Road sections

of 607.42 km may suffer a risk of 0.01–5 units of deposi-

tion of source rock mass, 160.74 km may encounter a risk

of 5–10 units of deposition of source rock mass, and

198.44 km and 97.74 km can encounter the risk of 10–20

and 20–50 units of source rock mass deposition. Addi-

tionally, the risk of deposition of 50–76 units of source

rock mass is most likely to affect road sections of 3.95 km

(0.17%), which are extremely dangerous areas and are

exposed to very high risk.

The risk intensity results show that road sections

throughout Jiuzhaigou, Pingwu, and Zhouqu Counties, as

well as in Songpan County, are at a relatively high risk

(Fig. 7). The specific road sections from Heihetang Village

to Tama (Route G544, previously S301), from Heihetang

Village to Yuwa and Ruo’ergai County, and from Hei-

hetang Village to Jiuzhaigou County (city) are the most

dangerous (Fig. 8a). These sections are all located in

Jiuzhaigou County. The road section from Huacaopo to

Yushui Town in Zhouqu County (Fig. 8b), the road section

from Chuanzhushi Town to Shuijing Town in Songpan

County (Fig. 8c) and that from Jiuzhaigou County (city) to

Zhuyuanba Village (Route G544, previously S301) and to

Yiwadaire Village (Route S205) (Fig. 8d) also have higher

risks of experiencing landslides. The western regions of the

study area, including Ruo’ergai, Hongyuan, and western

Songpan Counties, are unlikely to experience seismic

landslides.

5 Discussion

Disaster chains or cascading disasters are complex systems.

In spite of growing awareness of the relationships between

hazards, there still is no unified conceptual approach that

Table 3 Classification and statistics of probabilistic risk of seismic

landslides

Risk

level

Seismic landslide

probability (Pf)

Thresholds of permanent

displacement based on Pf

equation

Hazard

area

(%)

RL0 0 – 48.42

RL1 0\ Pf\ 0.1 1 cm 20.44

RL2 0.1 B Pf\ 0.2 4 cm 4.95

RL3 0.2 B Pf\ 0.3 7 cm 4.83

RL4 0.3 B Pf\ 0.335 12 cm 13.76

RL5 0.335 36 cm 7.61

5 Photos from China News on 12 August 2017 at https://item.btime.

com/322i8ebm19482p82tepaqmp4fd9.
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Fig. 6 Coincidence between

modeled landslide trajectories

and runout areas of a southeast-

facing slope near Panda Lake

impacted by the 2017

Jiuzhaigou Earthquate, Sichuan

Province, China. Source Base

image from Google Earth

Fig. 5 Seismic landslides immediately following the Jiuzhaigou Earthquake in Sichuan Province, China: a Laohu Lake landslide; B landslides

along the roads from Heihetang Village to the Jiuzhaigou Town; and C Panda lake landslide. The locations of a, b, and c are shown in Fig. 4 as

A, B, and C
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can be applied to assess cascading disaster risks (Kappes

et al. 2012). In the past several decades, many efforts have

been undertaken in quantitative disaster cascading impact

research. Among the most prominent cascading disasters is

the triggering of landslides by earthquakes. Models or

methods such as the Newmark model, pseudo-static anal-

ysis, and the finite element modeling method performed

well for probabilistic studies of sliding initiation and gen-

eral stability of slopes under earthquake influence. But

landslide intensity, another important indicator for

cascading hazard and vulnerability, is seldom considered in

regional seismic landslide risk identification.

In the past several decades, research on the numerical

simulation of landslides has been developed, and landslide

movement simulation has been undertaken that success-

fully represents landslide intensity. The RockFall Analyst

model used in this study focuses much more on the rock

fall process, and other landslide models such as the 3D-

DAN (Hungr) model and the D-claw (USGS) model are

mainly deep-seated landslide or rainfall-induced landslide

models (Delaney and Evans 2014; Sauthier et al. 2015; Gao

et al. 2016; George et al. 2017). All of them are highly

useful for single landslide risk (intensity) identification. In

addition to landslide deposit, landslide velocity and energy

are also considered in landslide risk assessments. But

numerical simulation of landslides is seldom used for

regional landslide risk assessment.

The joint procedure presented in this article, which

couples the Newmark model and the Rockfall Analyst

model based on a GIS platform, is helpful for the regional

quantitative risk identification of seismic landslide impacts

on specific infrastructure. Our composite model

Table 4 Road risk classification and statistics under seismic

landslides

Road risk

level

Agglomerated

rock units

Dangerous

roads (%)

Dangerous road

length (km)

RR0 0 53.91 1249.58

RR1 \ 5 26.21 607.42

RR2 5–10 6.93 160.74

RR3 10–20 8.56 198.44

RR4 20–50 4.22 97.74

RR5 C 50 0.17 3.95

Fig. 7 Road risk identification

of the 2017 Jiuzhaigou seismic

landslides in Sichuan Province,

China. Letters a, b, c, d locate

the dangerous road sections that

are presented in detailed local

maps shown in Fig. 8. The

descriptions of RR0–5 are

included in Table 4
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Fig. 8 Detailed maps of dangerous road sections in Sichuan

Province, China with a high likelihood of sustaining significant

impacts from future seismic events. The road sections in a–d are

enlarged schematics of those in Fig. 7 (with red symbols). The

descriptions of RR0–5 are shown in Table 4
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successfully highlights the comprehensive effects of land-

slide occurrence probability and intensity, and results in

improved risk identification of seismic landslides com-

pared to individual, stand-alone models, because the

linked-model approach encompasses both the cascading

relationships and effects of seismic landslides.

Although the joint method presents the risk of cascading

disasters well, with its calculation based on grids, the

ability to identify unstable slopes instead of grid-level cell

instability needs further exploration. In addition, landslides

during or after earthquakes are actually affected by a

variety of factors, which includes internal environmental

factors such as geology, topography, and vegetation cover

as well as external environmental factors such as rainfall

and human activities. In particular, landslides are greatly

affected by precipitation (Guzzetti et al. 2007; Huang et al.

2016), especially when an earthquake is coupled with

rainfall. Therefore, lack of consideration of precipitation

for seismic landslides is a significant defect, and how to

add rainfall parameters to seismic landslide analysis in our

joint model method should be further studied.

Jiuzhaigou is a tourist area that is famous worldwide. In

addition to local residents, the population affected by the

2017 quake may also include a large number of tourists.

For example, over five million tourists travelled to Jiuz-

haigou in 2015, with the majority visits taking place in the

summer and autumn. The precipitation of this region also is

concentrated in July, August, September, and October—in

the past 60 years, heavy rainfall has occurred in these

summer and autumn months (Zhou et al. 2006). Thus, the

tourist season and the rainfall season coincide. As roads are

important transportation routes, where local and tourist

populations inevitably converge, studies of road risk

identification of Jiuzhaigou seismic landslides have

important practical significance for post-disaster local

restoration and reconstruction, as well as tourist travel.

6 Conclusion

Analysis of multihazard disaster risk is very complicated.

To cope with this challenge, new methodologies should be

explored. In this study, we coupled the Newmark and

RockFall Analyst models to achieve better quantitative risk

identification of seismic landslide impacts on Sichuan

Province’s roads. Our method considered both the land-

slide occurrence probability and landslide intensity to

indicate the cascading effects of seismic landslides. The

spatial seismic landslide occurrence probability analysis,

unstable slope trajectory simulation, and risk identification

are quantitative, which accurately reflects the cascading

relationships of seismic landslides and their risk formation

process.

According to this joint method, the results of a case

study of the Jiuzhaigou Earthquake show that approxi-

mately 21.37% of the study area falls into a high risk

category, and a total of 3.95 km of road sections are

affected by an extremely high risk of large landslides,

which could cause severe damage to roads. Based on ver-

ification that uses post-earthquake remote sensing image-

interpretation results and field disaster investigation in

existing studies and reports, the simulated result from this

joint method is highly consistent with the results achieved

in existing research. The joint method also can be used for

risk identification for river courses, bridges, buildings, and

other infrastructure as well as for settlements.
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