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Abstract
It is widely thought that causal cognition underpins technical reasoning. Here we suggest that understanding causal cognition 
as a thinking system that includes theory of mind (i.e., social cognition) can be a productive theoretical tool for the field of 
evolutionary cognitive archaeology. With this contribution, we expand on an earlier model that distinguishes seven grades of 
causal cognition, explicitly presenting it together with a new analysis of the theory of mind involved in the different grades. 
We then suggest how such thinking may manifest in the archaeological or stone tool record and techno-behaviors of the last 
three million years or so. Our thesis is threefold: (a) theory of mind is an integral element of causal cognition; (b) generally 
speaking, the more advanced causal cognition is, the more it is dependent on theory of mind; and (c) the evolution of causal 
cognition depends more and more on mental representations of hidden variables. Ultimately, the final or seventh grade of 
causal cognition allows us to reason from a network of hidden variables that, amongst other things, enables the learning, 
manufacture, and use of complex technological systems. It also facilitates the seamless mapping of knowledge between per-
sonal (egocentric), physical, and social networks that allows for newly devised and innovative technical and social outcomes.
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Introduction

Whereas there are many approaches to the evolution of 
human cognition, we set our contribution to this special vol-
ume within the context of evolutionary cognitive archaeol-
ogy. This discipline aims to identify, reconstruct, interpret, 
and explain development and change in the cognition of past 
societies, based on the material culture they left behind (e.g., 
Garofoli 2018; also see Renfrew 1993). Several approaches 
have contributed meaningfully to discussion about the 
cognition of Stone Age/Paleolithic Homo sapiens popula-
tions—none more so than the enhanced-working-memory 
model (see Coolidge 2019 for a recent synthesis). Other 

useful frameworks include expert cognition (e.g., Wynn 
and Coolidge 2004; Wynn et al. 2017), material engagement 
theory and meta-plasticity (e.g., Malafouris 2015; Roberts 
2016), theory of mind (ToM) (e.g., Gärdenfors 2003; Cole 
2019; Dere et al. 2019; Stade and Gamble 2019), mental 
time travel (e.g., Brinums et al. 2018), as well as cognitive 
task-structuring strategies (e.g., Fairlie and Barham 2016). 
Galway-Witham et al. (2019) recalled orders of intentional-
ity, as an element of ToM, to differentiate levels of cognition 
based on the material culture of the last 1 Mya (also see 
Dunbar 1998; Cole 2019).

Here we discuss why we see causal cognition as a useful 
general framework for cognitive archaeology, and explore 
relationships between the evolution of causal cognition and 
the evolution of ToM. Following previous work, we break 
down causal cognition in seven grades and ToM in several 
orders, and we provide examples of how the seven grades of 
causal cognition may play out in the archaeological record.

We put forward three theses:

1. ToM is an integral element of causal cognition.
2. Generally, the more advanced causal cognition is, the 

more it is dependent on ToM.
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3. The evolution of causal cognition depends more and 
more on mental representations of hidden variables. 
(A hidden variable is something that is not directly or 
physically perceivable, but only mentally constructed; 
within philosophy of science these variables are called 
theoretical entities.)

Causal Cognition as an Inclusive Way of Exploring 
Human Cognitive Evolution

As one of our approaches to the exploration of human cog-
nitive evolution, we have previously presented a new anal-
ysis of causal cognition (Lombard and Gärdenfors 2017; 
Gärdenfors and Lombard 2018, 2020). We find this broad, 
yet nuanced approach to causal reasoning useful to cognitive 
archaeology because it incorporates almost all other types of 
thinking relevant to the topic of human cognitive evolution. 
For example, it includes aspects of working memory (Bauer 
and Booth 2019), episodic memory (Suddendorf 2017), 
mental time travel (Gärdenfors and Osvath 2010; Brinums 
et al. 2018), analogical reasoning (Krzemien et al. 2017), 
intentionality (Sloman et al. 2012), general ToM (Barrett 
2012), relational complexity (Halford et al. 2010), and social 
cognition (Rochat et al. 2004). Causal understanding is also 
integral to tool use (Wolpert 2003; McCormack et al. 2011; 
Osiurak and Reynaud 2020), making it important in terms of 
later hominins evolving into obligatory users of stone tools 
(Shea 2017), and thus germane to the archaeological record.

A tool’s or object’s usefulness and application depend 
on several elements. Extrapolating from the list proposed 
by McCormack et al. (2011), we propose that these would 
include: (a) a tool or object’s physical traits, (b) the physi-
cal and mental traits of the tool user and those of his/her 
target or audience, (c) the causal (mechanical or percep-
tual) principles that connect these traits, and (d) how the tool 
user understands the underlying principles and relationships 
between these different aspects. As such, human techno-
behaviors provide opportunities for participants to actively 
and knowingly intervene with their physical and social envi-
ronments to reach specific goals based on their causal under-
standing of the relationships between tools and objects, or 
the effect of these on participants or circumstances.

Working from Woodward’s (2011) three-tier model, and 
based on the human ability to read tracks (Carruthers 2002; 
Liebenberg 2013; Shaw-Williams 2014, 2017; Stuart-Fox 
2014), we initially established a framework for causal cogni-
tion that is fine-grained enough to accommodate a range of 
extended evolutionary trajectories (Lombard and Gärdenfors 
2017). We then investigated causal cognition in terms of 
force dynamics and how it may play out in the development 
of some Stone Age hunting technologies (Gärdenfors and 
Lombard 2018, 2020). The resulting model includes seven 
grades of causal understanding, each operating increasingly 

detached in time and space. However, it is important not to 
think of the grades as unilinear. For example, although the 
range of causal understanding expands, its contextual evolu-
tion is not always linearly progressive, because aspects of 
its development are a systemic process involving the inter-
play between evolutionary-biological, historical-social, and 
ontogenetic-individual dimensions (see Haidle et al. 2015 
for discussion). With such extension of the relation between 
cause and effect, we partly follow the distinction between 
cued and detached mental representations introduced by 
Gärdenfors (2003). A cued representation refers to some-
thing in the current or recent sensorial experience of the 
individual. For example, a warning call triggers the expec-
tation of the presence of a predator. By contrast, detached 
representations refer to objects or events that are not present 
in the subject’s current or recent external context, and so 
could not directly trigger the representation.

With this contribution we present refined definitions for 
the different grades of causal cognition. For the first time, 
we make it explicit how these relate to forms of ToM, and 
integrate other types of cognition where relevant to demon-
strate the inclusive scope of the framework. We also suggest 
how our categories for causal cognition may reflect in the 
archaeological record—thus making our model more acces-
sible to cognitive archaeology in general, and more testable 
against aspects of the archaeological record.

The Role of a Theory of Mind in Causal 
Cognition

One form of cognition that is well developed in humans, 
compared to other species, is theory of mind (ToM), which 
in this context means the sharing and representing of one’s 
own and of others’ mentality (e.g., Premack and Woodruff 
1978; Tomasello 1999). Having a ToM is not a unitary abil-
ity, but applies generally to understanding the emotions, 
attention, desires, intentions, and beliefs of the self and 
others (Gärdenfors 2003, 2007), and that actions based on 
such understanding have causes and effects. In this sense, we 
argue that ToM is a fundamental part of the causal cognition 
package, instead of something separate or disconnected from 
it. When analyzing different forms of causal cognition it is 
therefore useful to separate orders of ToM. Dennett (1987) 
writes about different orders of intentionality, but here we 
extend it to other components of ToM.

• Zero-order ToM ascribes no mentality to an individual, 
but assumes that behavior of the individual is governed 
by instincts, reflexes, or conditioning.

• First-order ToM attributes emotions, attention, desires, 
intentions, or beliefs to the individual and that some forms 
of behaviors are governed by these entities. This level, 
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however, presumes no understanding of the minds of other 
individuals.

• Second-order ToM requires an individual to attribute a 
ToM to other individuals and to use this in their under-
standing of the behavior of others.

• Third-order ToM requires an individual A to attribute to a 
second individual B an understanding of the ToM of A.

• Higher orders of ToM require an individual to represent at 
least two mental states, their own and that of someone else.

The important point is that a great deal of cognitive and social 
complexity found in hominins presumes that a number of men-
tal states are linked together in a web of causal learning and 
understanding.

ToM also includes cooperative forms, in particular joint 
attention and joint intention. Joint attention results when the 
agents have eye contact while sharing attention to a target. 
The prolonged eye contact signals mutual awareness and pro-
motes communication about the target (Tomasello 1999). Joint 
attention involves third-order ToM since the individuals must 
ensure that they attend to the same thing (“I see that you see 
that I see”) (Gärdenfors and Warglien 2012). The ability to 
engage in joint attention has not, so far, been established con-
clusively in nonhuman primates (Carpenter and Call 2013; but 
see Leavens and Racine 2009; Tanner and Byrne 2010 for a 
different opinion). Joint intention requires that the agents share 
an intention to interact, react to each other’s intentions to act, 
and coordinate their intentions (Tomasello et al. 2005). For 
example, in setting up an ambush in hunting, the individuals 
involved understand that it is their common goal to kill a prey 
animal, and that they take different roles in the execution of the 
joint intention. Again, this is an example of a third-order ToM.

As discussed above, ToM comprises multiple components 
that probably evolve gradually in animals and humans. Dun-
bar (2007), for example, suggests that great apes are poised 
at the brink of second-order ToM, because some of them 
have a capacity for understanding false-belief states (Kru-
penye et al. 2016). A test for such understanding is deliber-
ate deception with the intention to affect or manipulate the 
knowledge, beliefs, or emotions of others. In children this 
ability mostly emerges by about four years of age (Wimmer 
and Perner 1983; Gamble et al. 2014). Cole (2019) argues 
that the conscious apprehension of third-order ToM by H. 
sapiens and our immediate ancestors provides the necessary 
“springboard” towards subsequent higher orders.

Grades of Causal Cognition, Their Relation 
to Theory of Mind and Stone Tool Behaviors

In this section, we reintroduce the seven grades of causal 
cognition with slightly revised nomenclature and updated 
definitions. We unpack their relationship with ToM where 

relevant, and suggest how each grade may manifest in 
terms of stone tool behaviors observed in the archaeologi-
cal record. It is, of course, rather hopeless to try to date 
when each of the seven grades we propose emerged dur-
ing hominin evolution. Our arguments are instead based on 
comparisons between the capacities for causal cognition that 
are expressed in the different Stone Age technologies and 
techno-behaviors represented in the archaeological record 
that may serve as proxy for certain ways of reasoning. To 
do so, we rely on the methodological principle of cognitive 
parsimony, i.e.:

• If the cognitive capacities required for an activity or tech-
nique A are a subset of those required for an activity or 
technique B, then (barring cases where the additional 
capacities required for B are evidenced synchronously 
or earlier than A), A is evolutionarily prior to B.

Even though this principle does not say anything about dat-
ing, it makes it possible to argue that one type of activity is 
evolutionarily older than another. The principle entails that 
the grades of causal understanding do not necessarily follow 
a unilinear evolutionary trajectory. Aspects of each type of 
thinking may have evolved parallel to one another, or are still 
evolving within continuing coevolutionary feedback loops 
with other relevant fields such as social frameworks, human 
biology (e.g., brain and DNA) and ecology (Lombard and 
Högberg 2021). Within each grade of causal understanding 
there might also be several levels of complexity that devel-
oped at different times in different places and/or in different 
hominin populations. For example, basic, conspecific min-
dreading skills (grade 3 below) might have been acquired 
early on in our evolution. However, enhanced orders of 
human mindreading, or ToM, that enable us to cope with 
current complex societies, might only have evolved at a later 
stage, i.e., after we were able to understand and interpret the 
behaviors of non-conspecifics or grade 5 causal understand-
ing. Thus, a newly identified grade of causal understanding 
does not automatically imply that all or some aspects of the 
previously identified grade stopped its evolutionary process.

We also need to keep in mind that technical practices 
may be simplified during the process of cultural evolution 
when groups shift their socioeconomic behaviors (e.g., 
Shennan 2001; Henrich 2004; Riede 2008), or when they 
find cognitively less demanding ways to produce and use 
a technology. Good examples of “cognitive simplification” 
include expert cognition (e.g., Wynn et al. 2017), and cog-
nitive or technological modularization (e.g., Lombard and 
Haidle 2012; Lombard et al. 2019). Thus, despite a gen-
eral trend towards “cumulative culture,” cognitive evolu-
tion and its products are not always subjected to a one-way 
process—the so-called ratchet effect—towards increasing 
complexity (see discussions in Lombard 2016; Haidle et al. 
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2015). Furthermore, novelty in the archaeological context 
might not correlate directly with novel traits in cognitive 
evolution, because some cognitive capacities might have 
been expressed behaviorally for some time in ways that are 
invisible through the material record. Yet, from a cognitive 
archaeological point of view—the focus of this article—the 
hominin technical record provides concrete, spatiotemporal 
proxies for some ways of thinking. By using parsimony these 
proxies represent “minimal-capacity inferences” (e.g., Wynn 
and Coolidge 2004, 2009; Pain 2019). They provide the sim-
plest explanations, requiring the fewest possible assumptions 
to reach the best-fit interpretation of the data, safeguarding 
against the overestimation of cognitive capacities.

Grade 1: Individual Causal Cognition

This most basic type of causal understanding corresponds to 
Woodward’s (2011) egocentric causal learner. It involves a 
direct connection between a motor action that an individual 
exerts and the resulting effect. Both the cause and the effect 
are immediately perceived, with the result that the individual 
experiences their own difference-making agency. Individ-
ual causal information processing does not involve strong 
cognitive or social mechanisms. It can be learned through 
ordinary instrumental conditioning without any social trans-
mission and limited self-awareness, and was well in the 
cognitive range of the last panin-hominin common ancestor 
already during the final stage of the Miocene (Stuart-Fox 
2014; Lombard and Gärdenfors 2017).

In terms of stone tool behavior, individual causal under-
standing simply requires that someone is aware that they 
can manipulate a stone to cause an effect—for example, the 
awareness that dropping a stone on another rock will make a 
noise, or perhaps damage or break one of the stones—with-
out involving sharing and representing of others’ mentality. 
For example, Proffitt et al.’s (2016) observations illustrate 
the perception of capuchin monkeys that a stable, hard sur-
face or rock anvil can be used as an aid to exert force on a 
handheld stone, that such force will result in sound and/or 
damage to the stone, and that the damage can be observed by 
sniffing or licking stones used in this manner. This behavior 
represents the individual causal cognition of the monkeys 
and zero-order ToM.

Grade 2: Cued Dyadic‑Causal Cognition

This type of information processing involves at least two 
individuals performing a similar action. They are able to 
understand that the action of someone else causes an effect, 
because it gives the same result as the individual’s own 
action (Woodward 2011). Although the motor forces behind 
the other individual’s actions are not directly perceived, they 
are inferred via a mapping onto the forces involved in one’s 

own actions. Such understanding allows one individual to 
understand the difference-making agency of another, and 
that by imitating the actions of another they may achieve 
similar effects. Actions of one individual are therefore 
“cued” by those of another. Although it includes learning 
by imitation (e.g., Zentall 2004; Whiten et al. 2009; Kline 
2015; Gärdenfors and Högberg 2017), it does not require 
either joint attention or joint intention.

The rock-pounding behavior of capuchin monkeys (e.g., 
Proffitt et al. 2016), mentioned above as an example of grade 
1 causal cognition, also demonstrates how different types 
of causal cognition are scaffolded or nested within each 
other. Because several monkeys in the group display the 
pounding behavior, we may infer that they achieved cued 
dyadic-causal understanding and rudimentary social learn-
ing through mimicking each other’s actions (Lombard et al. 
2019). The behavior reflects their belief that the same set of 
actions will have similar outcomes and the desire to repli-
cate the outcomes—i.e., first-order ToM, which presumes 
no understanding of the mind of the other. Cued dyadic-
causal understanding is also evident in the nut-cracking 
techno-behaviors of wild chimpanzees (e.g., Boesch 1991; 
Visalberghi et al. 2015), where young chimpanzees seem 
to understand that by mimicking expert nut crackers, they 
too might be able to access the nuts (Lombard et al. 2019).

Here one must distinguish between learning by emula-
tion, where the learner observes the outcomes of the mod-
el’s actions and tries to reach the same outcome (goal ori-
ented), and learning by imitation (Tomasello 1999), where 
the learner observes the sequence of the model’s actions 
and tries to perform the same actions (process-oriented 
learning). Early results (Whiten et al. 2005) indicated that 
chimpanzees emulate while children imitate. Later studies 
(Whiten et al. 2009) suggest that the situation is more com-
plex—the apes are not confined to emulation but also imitate 
extensively. What is important is that emulation involves 
only first-order ToM (the intention to reach a goal), whereas 
imitation requires second-order: the imitator must under-
stand that the model knows how to reach the result.

The causal cognition for passive hammer flake produc-
tion, as described for some of the artefacts from Lomekwi 
3 dating to ~ 3.3 Mya (Harmand et al. 2015; Lewis and Har-
mand 2016), can probably also be facilitated through the 
scaffolding of individual causal cognition and cued dyadic-
causal cognition. Assembling nodules and anvils, however, 
indicates some planning capacities as well as autocuing, 
similar to that of some chimpanzee nut-cracking behaviors. 
Whereas social learning is implied by the fact that flake 
production became a pan-Homo techno-behavior, we do not 
know whether any form of intentional teaching was involved 
in such early passive hammer flaking. The technique is 
easy to imitate, and through trial and error a novice will 
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eventually succeed. No strategic judgements about planned 
actions are necessary (see Stout et al. 2015).

Grade 3: Conspecific Theory of Mind

As humans, we have a highly developed ToM, that is, under-
standing of how our desires, intentions, and beliefs lead to 
different kinds of actions (Premack and Woodruff 1978; 
Tomasello 1999; Gärdenfors 2003, 2007). By observing and 
thinking about our actions and through various processes of 
social learning, we infer the state of mind of other humans 
under the hypothesis that their desires, intentions, beliefs, 
and subsequent actions are similar to our own. In this case, 
we do not perceive physically the cause of another’s actions, 
but use our understanding of their inner state as a hidden 
causal variable for their behaviors, that is, second-order 
ToM. This involves a detachment of perceptual similarity 
from causal similarities that are determined from desires, 
intentions, and beliefs. The mental phenomena thereby form 
the first class of hidden variables that we add to our percep-
tion in order to understand causal relations.

Nonhuman animals such as primates, some bird species, 
dogs, seals, and even goats share with us gaze following as 
a limited form of ToM (e.g., Emery et al. 1997; Tomasello 
et al. 2007; Shepherd 2010; Téglás et al. 2012). This rep-
resents the understanding that if a conspecific is looking 
firmly in a particular direction, there is something worthy 
of attention in that direction. Conspecific co-orientation 
through following gaze direction provides adaptive advan-
tages regarding predator awareness, food detection, and the 
monitoring of social interactions (e.g., Schloegl et al. 2007). 
It is a behavior that develops early during human infancy 
(e.g., Meltzoff and Brooks 2007). This type of basic causal 
social cognition also presumes second-order attention of 
the form “I see that you see,” but not the third-order that 
is required for joint attention (e.g., Dennett 2009; also see 
Crockford et al. 2012).

A special case of conspecific ToM is self-awareness in 
the form of autocuing, which is self-triggered conscious 
retrieval, the kind of recall needed to practice a skill (Donald 
2012). Self-awareness involves the ability to imagine oneself 
in the future and in the past. This type of thinking includes 
early forms of mental time travel (Suddendorf and Corbal-
lis 2007; Gärdenfors and Osvath 2010; Gamble et al. 2014), 
basic episodic memory (Tulving 1985; Osvath 2010), basic 
working memory (Coolidge and Wynn 2005), and priority 
scheduling, planning depth, or extended perception-and-
action sequences (Haidle 2014; Lombard et al. 2019).

For the bipolar knapping approach recorded at Lomekwi 
3 dating to ~ 3.3 Mya (Harmand et al. 2015; Lewis and Har-
mand 2016), moderate levels of self-awareness are necessary 
for the bimanual manipulation of objects and for assessing 
the correct amount of striking force (Lombard et al. 2019). 

Finley (2008) suggested that this knapping technique is dif-
ficult to imitate accurately, and Duke and Pargeter (2015) 
demonstrated that it is not possible to master skillfully with-
out being taught by an experienced knapper. It is therefore 
reasonable to assume that at least non-intentional teaching 
in the form of facilitation, as well as a level of intentional 
evaluative feedback (e.g., Gärdenfors and Högberg 2017), 
was in play to transfer the technology among individuals or 
groups. Such basic forms of intentional teaching go beyond 
mere social learning by imitation, and implies a type of 
conspecific ToM during which at least some attention and 
intention is shared. Barrett (2012) suggested that the devel-
opment of such shared attention enabled a sustained and 
mutual empathy between social agents in their understanding 
of the practical qualities of materiality.

Any form of early human social learning or teaching also 
feeds into current cumulative culture discourse. Thus far, 
authors working in the disciplines of both archaeology and 
primatology have suggested that limited forms of cumula-
tive culture were present among early toolmaking hominins. 
For example, Whiten (2017) showed that living primates 
have the ability to imitate, and therefore they are able to 
sustain limited forms of cumulative culture. Earlier Stone 
Age Oldowan lithic assemblages show signs for predeter-
mined knapping strategies and some differences in knapping 
“traditions” (e.g., de la Torre et al. 2003; Stout et al., 2019, 
2010; Stout 2011). For example, in addition to the bipolar 
technology of Lomekwi 3, the early Oldowan lithics from 
Ledi-Geraru suggest that by ~ 2.58 Mya hominins had the 
ability to systematically produce smaller flakes with discrete 
platforms and fewer instances of percussive actions (Braun 
et al. 2019). This signals an increase in the hominin abil-
ity to effectively extract sharp edges from stone volumes 
(discrete platforms and fewer percussive marks compared 
to Lomekwi 3).

Some of these interpretations have been questioned by 
Tennie et al. (2009, 2016, 2017) who suggest that the Old-
owan may represent a “latent solution” or external cause-
and-effect processes, so that there is no evidence to suggest 
that early stone tool knapping required imitative learning. 
Their argument is supported by an experimental study that 
showed non-goal-directed knapping can produce forms that 
resemble products of predetermined knapping by chance 
alone (Moore and Perston 2016). They do admit though 
that the learning process can be facilitated by social contact 
where individuals focus their attention on the acts of others 
and thereby enhance the emulative process for transmitting 
the causal information. This interpretation is consistent with 
our grades 2 and 3 causal understanding as represented here, 
requiring rudimentary orders of ToM.

Conspecific ToM continues to develop throughout the 
Earlier Stone Age/Lower Palaeolithic, shifting towards 
limited forms of third-order intentionality by the end of 
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this phase, not only because of their sociocultural signifi-
cance beyond functionality as suggested by Cole (2019), 
but also because of the increasingly complex levels of 
intentional teaching associated with platform preparation 
in elaborately knapped Acheulean hand-axes (Gärdenfors 
and Högberg 2017). For such technology to be transferred 
successfully, the teacher must understand that the learner 
does not know how to perform the knapping and the teacher 
and the learner must achieve joint attention and intention to 
learn the knapping process. The production of pieces such 
as those recorded for the Konso Formation, Ethiopia, dated 
to ~ 850 ka associated with Homo erectus (Beyene et al. 
2013), and from Boxgrove in the UK at ~ 500 ka associated 
with Homo heidelbergensis (Stout et al. 2014), probably 
required teaching by communicating abstract concepts via 
gestures and/or words. This implies that their makers were 
able to refer to non-present entities even though they might 
not yet have developed a full linguistic capacity (Gärdenfors 
and Högberg 2017).

The experimental results of Lycett et al. (2016), however, 
highlight the importance of imitative learning in terms of 
transmitting the morphological traits of artefacts in the con-
text of a knapping tradition such as the Acheulean. For the 
Levallois, they argue that explicit instruction was probably 
involved—even without gestural or verbal communication. 
Mithen (1999), for example, also suggests that the spati-
otemporal duration of the Acheulean implies an imitative 
learning system. In his model, however, learning knappers 
not only copied an artefact but also elements of the tech-
niques and behavioral gestures of other knappers, which may 
ultimately result in communication through gesturing. In 
terms of biface production, Putt et al.’s (2014) experiments 
indicate no strong effect for verbal versus nonverbal com-
munication, so that learning from gestures in combination 
with imitation and a perception of form is sufficient. Others 
(e.g., Morgan et al. 2015) have shown that the transmission 
of knapping skills improved with teaching, and particularly 
with language, but not with imitation or emulation. These 
results are interpreted as indicating that hominin reliance 
on stone toolmaking is intimately linked with selection for 
teaching and language, and that early low-fidelity social 
transmission in the forms of emulation and imitation may 
explain the long stasis in knapping traditions associated 
with the Oldowan (Morgan et al. 2015). The appearance of 
Acheulean hand axes may therefore signal the existence of 
a protolanguage (maybe based on gestures) or the origins of 
teaching in a long and gradual evolutionary process (Morgan 
et al. 2015; Gärdenfors and Högberg 2017).

A different take on ToM in association with Acheulean 
hand axes is presented by Wynn and Berlant (2019), who 
suggest that biface-producing hominins “used material dis-
plays in atypical situations, which in turn suggests that the 
knappers worked for the appraisal of some other individual 

or individuals […] in unusual circumstances.[…] This has 
implications for theory of mind (ToM). The knapper of one 
of these exceptional hand axes considered not just his or her 
own point of view but also what at least one other individual 
could see” (also see Wynn 2000). They acknowledge that it 
is not possible to know the specific circumstances for such 
consideration, but go on to argue that knappers who learned 
the Acheulean biface tool concept since infancy within a 
tool-oriented technology did not require for it to have addi-
tional meaning, apart from tools being an available expres-
sion for aesthetic perception, perhaps initially for personal 
pleasure, but later also to impress or inform someone else 
within a social context (also see Shipton 2010; Cole 2015 for 
arguments that ToM was essential to hand axe production).

Grade 4: Detached Dyadic‑Causal Cognition

This type of causal thinking allows us to perceive someone 
else’s or something’s presence detached through time and 
across space. Such cognition could be achieved through the 
understanding that the traces they left in the past means they 
were in a space we observe in the present, or an object asso-
ciated with an activity in the past is understood to represent 
a similar activity in the future. For example, finding ash in 
a fireplace, but no other signs of burning, leads to the infer-
ence that someone made a fire there. Such thinking depends 
on the capacity to entertain two mental representations at 
the same time, that is, the current perceptual state of seeing 
a trace together with the imagination of who caused it in 
the past. This form of thinking also involves hidden vari-
ables—the observer does not perceive the person who made 
the fire, but represents him/her mentally as a cause for the 
perceived effect.

Detached dyadic-causal cognition seems to be the grade 
where humans start separating from other species. Being 
able to reason from inanimate effects to non-present causes 
seems to be unique to humans today even though some 
observations suggest that great apes are at the brink of such 
cognition. For example, Völter and Call (2014) found that 
apes in captivity can make use of a trail left by a leaking 
yoghurt cup placed out of their sight, to locate the cup. On 
the other hand, they did not use the trail when it did not 
match the type of food that is displaced. In this example the 
apes reacted directly on scent and taste cues. Cheney and 
Seyfarth’s (1990) experiment with vervet monkeys, however, 
shows that when catching sight of a python or a leopard they 
emit warning cries, but do not react to detached visual signs 
(such as the track of a snake, or the carcass of leopard prey 
in a tree) of these dangers alone. Thus, terrestrial animals 
are dependent on direct physical effects such as scent, taste, 
sound, and direct sight cues, but it appears that the aptitude 
for causal understanding based on inanimate or indirect 
visual cues developed only in the hominin clade (see Calvin 
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and Bickerton 2000; Shaw-Williams 2014; Stuart-Fox 2014). 
We further speculate that the difference in detached dyadic-
causal understanding between extant humans and nonhuman 
animals is that animals understand causation only in terms of 
direct agency whilst humans are able to reason about causes 
also via force transmission across space (action at a distance 
or out of sight) and through time (detached representations 
of past experiences and future possibilities). This is another 
example of the detachment of perceptual similarity from 
causal similarities.

The 3.6 Mya tracks from Laetoli in northern Tanzania 
(Leakey and Harris 1987), are widely accepted to be that of 
australopithecines. The double trail of larger footprints has 
been interpreted to represent two individuals, one walking in 
front of the other, with the smaller follower stepping inten-
tionally and exactly into the tracks of the larger one (White 
and Suwa 1987; Agnew and Demas 1998). We have sug-
gested that if this interpretation is correct, it represents the 
earliest known indication of basic detached dyadic-causal 
understanding through “tracking” in the hominin lineage 
(Lombard and Gärdenfors 2017). Because even if the leader 
was in view of the follower, the follower had to focus on the 
leader’s footprints instead of on the person to be able to step 
perfectly into the leader’s prints. If there was no detach-
ment from the leader, the footprints would have simply 
followed the same direction, but not be so carefully placed 
within each other. Similar to Shaw-Williams (2014, 2017), 
our model suggests that early stages of tracking behavior 
evolved in the context of conspecific social behaviors. An 
increasing awareness of the rich body of information that 
can be gleaned from traces left by other creatures was then 
applied to improve chances of survival, for example, to avoid 
predators or enemies, and was subsequently extended into 
subsistence behaviors such as the scavenging and hunting 
of animals (also see Stuart-Fox 2014). Both the social and 
subsistence scenarios have strong selective advantages that 
would have encouraged ever-increasing levels of complex-
ity and flexibility in our tracking behaviors and associated 
causal understanding.

Knapped stone tools indicate the use of a tool (a hammer-
stone) to make another tool (a flake). The secondary tool is 
an effect that becomes a cause in its later use within the con-
text of a modular system (Lombard et al. 2019). Purposely 
knapped flakes with confirmed subsequent use are there-
fore good indicators of detachment in causal understanding, 
because the use of the hammerstone to knap is not linked 
directly to, for example, butchering a carcass for food. The 
detachment applies even if the butchery follows directly after 
the knapping, because the hammerstone is never directly 
involved in the subsequent flake application. Such modu-
lar techno-behavior is different from primate tool behaviors 
such as rock-pounding capuchins or nut-cracking chimpan-
zees who do not use tools to make tools (see discussions 

in Haidle et  al. 2015; Lombard et  al. 2019). Currently, 
the stone tools and associated cut-marked bones at Gona, 
Ethiopia, represent an early instance of direct evidence for 
hominin meat processing at ~ 2.6 Mya (Dominguez-Rodrigo 
and Pickering 2017). The detachment of cause from effect 
becomes more distinct in cases where there may be evidence 
of stone tools being transported away from knapping sites to 
butchering locations or curated in-between butchering events 
(Blumenschine et al. 2009; Zack et al. 2013). In such cases, 
the flakes could be seen as the silent reminders of absent car-
casses butchered in the past and of future butchering events. 
One of the oldest examples of such behavior comes from 
the Middle Awash Valley, Ethiopia, dated to ~ 2.5 Mya (De 
Heinzelin et al. 1999; also see McPherron et al. 2010 for a 
possible older case, and Brantingham 2003; Holdaway and 
Douglass 2012; Haas and Kuhn 2019 for aspects of artefact 
transportation through time).

Splitting Woodward’s “agent causal learner” category 
into three different grades of causal understanding enabled 
us previously to conclude that nonhuman animals manage 
grade 2 (cued dyadic-causal cognition), do it less well than 
humans on grade 3 (conspecific ToM), and are very limited 
when it comes to grade 4 causal understanding (detached 
dyadic-causal cognition) (Lombard and Gärdenfors 2017).

Grade 5: Non‑Conspecific Theory of Mind

This type of causal reasoning allows for the dyadic-causal 
understanding of the actions and intentions of species other 
than our own, although their motor actions and cognitive 
processes are different from ours. In terms of human evolu-
tion, it denotes the hominin ability to understand aspects 
of nonhuman animal mentality. The difference between 
conspecific ToM and non-conspecific ToM is a matter of 
degree rather than kind. Again, the mental states that we 
assign nonhuman animals function as hidden variables in 
our causal reasoning.

Throughout the Earlier Stone Age/Early Palaeolithic, 
opportunistic hominin scavenging probably matured into 
well-developed strategic scavenging, possibly assisted by 
object throwing to ward off other scavengers or predators, 
perhaps even killing naturally trapped or weakened animals 
through stoning or clubbing (Brain 1981; Blumenschine 
et al. 1987; Lieberman et al. 2009). Such scavenging or rudi-
mentary hunting techniques would have benefitted from the 
cooperation and competitive strategies developed as a result 
of conspecific ToM, as well as the associated tracking skills. 
Extending to grade 5 causal cognition, the benefits, chal-
lenges, and dangers experienced during carcass scavenging 
would have provided the selective pressures for our ances-
tors to become proficient in the ToM of non-conspecifics 
too (Shaw-Williams 2014; Lombard and Gärdenfors 2017).
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Between about 1 Mya and 500–300 ka hominin meat-
getting strategies developed from advanced scavenging 
strategies into hunting with rudimentary spears. Early hunt-
ing was possibly practiced in ambush situations that would 
have placed prey animals at a disadvantage to the hunters 
(Liebenberg 2006; Lieberman et al. 2009). Bunn and Gur-
tov (2014) speculated that such hunting could have been 
practiced by early Homo with short-distance, wooden spears 
as far back as 1.8 Mya in the Olduvai Gorge, Tanzania. 
Ambush hunting has also been suggested for more recent 
contexts from Olorgesailie, Kenya, spanning ~ 1.2–< 0.5 
Mya (e.g., Kübler et al. 2015). Here the authors are more 
cautious about weapon inference, rather building their case 
around the features of the landscape and associated hominin 
and animal behaviors—explaining that the exploitation of 
game at the site resulted from the predictable patterns of ani-
mal movement conducive of ambush hunting. They conclude 
that: “Homo exploited this part of the Kenya rift not because 
it was generally ‘good’ for herbivores, but because it was 
generally ‘bad’, and constrained their movements to predict-
able pathways which allowed them to be exploited by early 
hunters” (Kübler et al. 2015, p. 6). A reanalysis of remains 
from Elandsfontein, South Africa, dating to ~ 600 ka, also 
indicate that Homo heidelbergensis were capable ambush 
hunters of large ungulate prey (Bunn 2019). These are exam-
ples of grade 5 causal reasoning, and indicate the evolution 
of non-conspecific ToM in hominins during the African 
Earlier Stone Age before their split with the Neanderthal 
population.

Stone tool assemblages associated with ambush hunting 
are mostly of late Acheulean character or transitional into 
the Middle Stone Age/Middle Palaeolithic. The notion that 
Acheulean hand axes were used as throwing weapons has 
a long history (e.g., O’Brien 1981; Calvin 2002; Samson 
2006), but remains difficult to confirm (McCall and Whit-
taker 2007). Rare use-trace evidence rather supports their 
use as cutting tools (Rots 2009). Thus, non-conspecific ToM 
can only be associated with these stone tools when they are 
found in direct association with additional evidence for 
ambush hunting.

The first firmly documented record of close-encounter 
ambush hunting of dangerous animals with wooden spears 
is from the European Middle Palaeolithic at Schöningen, 
Germany, dated to ~ 400–300 ka (e.g., Thieme 2005; Voor-
molen 2008). A wooden spear of similar age was also found 
at Clacton in the United Kingdom (Allington-Jones 2015). 
These artefacts are generally associated with Neanderthals, 
whom many researchers see as skilled ambush hunters. At 
Schöningen, the deposition of the Middle Pleistocene sedi-
ments within an Elsterian tunnel valley explains the unique 
preservation of the sedimentary succession of the site (Lang 
et al. 2012), and the interglacial lake supported a wide array 
of flora and fauna serving as prime ambush location for the 

hominin hunters (Turner et al. 2018). The spears were found 
with horse remains, and Voormolen (2008) argues that even 
though wooden spears could have been cast from a distance 
to wound, a stalk-and-ambush approach would have been 
necessary to kill them. Ambushing at Schöningen is fur-
ther indicated by the presence of multiple horse individuals 
including foals, which are normally only found when animal 
families are ambushed (Voormolen 2008). This hypothesis 
was experimentally tested for the Neumark-Nord 1 paleo-
basin site in Germany, where it was established that the 
perforations on fellow deer remains were consistent with 
close-quarter wooden-spear ambush hunting (Gaudzinski-
Windheuser et al. 2018).

In a broader perspective, Berger and Trinkaus (1995) 
suggested that instances of Neanderthal trauma reflected 
close-quarter ambush hunting with heavy thrusting spears, 
but later extended the interpretation to include longer-range 
spear hunting (Trinkaus 2012). Based on paleo-ecological 
evidence for a woodland environment in combination with 
the Neanderthal muscular power and sprint capacity, Stewart 
et al. (2019) came to the conclusion that Neanderthals were 
best adapted for encounter and ambush (rather than pursuit) 
hunting. White et al. (2016) describe how they were also 
accomplished ethologists, mindful of the behavioral eccen-
tricities of different prey species, and selecting their hunting 
strategies accordingly. Understanding how the behavior of 
different animals varies with circumstances requires at least 
some ascribing of intentions to the animals, such as which 
paths they may follow when thirsty or hungry. Thus, it is our 
current interpretation that Neanderthal populations, such as 
those from Schöningen, have reached at least grade 5 causal 
cognition.

Grade 6: Inanimate Causal Cognition

This type of causal understanding allows for the attribution 
of causal roles to inanimate objects. To borrow an exam-
ple from Tomasello and Call (1997), an individual who has 
reached this level observes the wind blowing on a tree so 
that fruit fall to the ground, can mentally represent the force 
the wind is exerting, and is able to conclude that if they act 
on the tree’s branches with similar force, the fruit will also 
fall. Unlike the previous types of causal cognition, there is 
no animate agent that performs an action. Instead, causation 
is seen as force transmission and, in this sense, as an exten-
sion of agency (Povinelli 2000; Wolff 2007; Gärdenfors and 
Warglien 2012). Such understanding could be a candidate 
for the new representational system suggested by Povinelli 
and Bering (2002) in which the observable world and what 
happened in it could be reinterpreted with hidden meaning, 
allowing humans to reflect on unobservable causes. Again, 
the abstract forces constitute another form of detachment of 
perceptual similarity from causal similarities. With grade 
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6 causal cognition, we thus see a further extension of the 
hidden variables involved, from the ToM components that 
function as causal social forces in humans, to those in non-
human animals, and now to more abstract forces exerted by 
inanimate entities.

We have previously suggested that effective tool use over 
a distance, such as throwing spears forcefully and accurately, 
could represent an evolutionary selection mechanism behind 
the human capacity for inanimate causal reasoning (Lom-
bard and Gärdenfors 2017). Also, the ability to infer the 
forces of twine or a sticky substance such as tree gum as 
binding agents for the construction of composite tools (e.g., 
stone-tipped spears), is facilitated through inanimate causal 
cognition (Gärdenfors and Lombard 2018, 2020). These 
techno-behaviors represent an understanding of abstract 
forces as hidden variables, and thereby the role of forces 
as causes.

Abstract thinking is the ability to recognize regularities 
in diversity (Reuland 2010). Cole (2019) writes that the pro-
duction of composite tools reflects an ability for abstract 
thought, but whereas he interprets such abstraction only in 
terms of “cultural signaling,” and therefore indicating third- 
to fourth-order intentionality, we propose that there is more 
to abstraction—also in technical and cognitive terms. For 
example, Zilhão (2007) suggested that the Königsaue pitch 
associated with Neanderthals at ~ 45 ka could not have been 
developed, transmitted, and maintained in the absence of 
abstract thinking and language (also see Niekus et al. 2019; 
but see Schmidt et al. 2019 for an alternative interpretation). 
Homo sapiens in southern Africa used complex adhesive 
recipes for the hafting of stone tools from at least 72 ka 
(Lombard 2006), and Wadley (2010, 2013) has shown that 
their manufacturing processes required multitasking and 
thinking in abstract terms about the qualities and neces-
sary quantities of the ingredients that were manipulated. 
Whereas some have argued that ancient synthetic substances 
merely represent customary recipes, followed by unreflec-
tive tradition (Boyd 2017; Henrich 2017), Wadley’s (2010) 
experimental work on adhesive production, and recent eth-
nographic observations about adhesive and poison produc-
tion amongst San hunters of Namibia (Wadley et al. 2015), 
reveal a different, real-life perspective.

For example, the collecting of all the different ingredients 
happens over an extended period, and the manufacturing of 
the compounds require carefully monitored heat treatment. 
Such treatment represents a range of different techniques and 
requires high levels of attention to monitor time exposed to 
heat and changes to the compounds. During each production 
session, continuous adjustments are made to the amounts of 
each ingredient added, so that ultimately the right consist-
ency is achieved, depending on an array of contextual con-
ditions (Wadley 2010; Wadley et al. 2015). What is more, 
although a certain ingredient may be a constant amongst 

some groups, the recipes are not always the same, and dif-
ferent hunters prepare similar sets of ingredients differently 
(Wadley et al. 2015).

Thus, whilst cognizant of tradition, symbolism, and 
variation through time, these studies demonstrate that such 
techno-behaviors are far from being mechanistic, thoughtless 
processes that can be explained through, for example, expert 
cognition (Wynn et al. 2017). Instead, they imply relatively 
long attention spans, response inhibition, the capacity for 
novel, sustained multilevel operations, the use of abstract 
thought, and the ability to plan the assembly of ingredients 
as well as complex action sequences. In this context, Osiurak 
et al. (2020) recently also emphasized that humans are not 
just manipulators, but that we have evolved to solve and cre-
ate physical problems, and that even though using tools may 
appear routine, most techno-behaviors are dependent on our 
ability to reason about the physical world. Evidence for com-
posite technologies involving adhesives are therefore good 
indicators of enhanced working memory and of inanimate 
causal cognition. We therefore see these techno-behaviors as 
examples of grade 6 causal cognition and higher order ToM.

Although some decades ago it was debated whether 
Levallois points of the Eurasian Mousterian were hafted 
as spear points (e.g., Holdaway 1989; Shea 1990), isolated 
finds with such points in faunal remains provided indication 
of their hunting function in South Africa (Milo 1998) and 
the Levant (Boëda et al. 1999). Since 2004, Levallois-type 
or other prepared-core stone points and blade products in 
the southern African Middle Stone Age context have been 
consistently associated with early stone-tipped spear hunting 
and traces of hafting (Lombard 2004, 2005, 2007; Lenoir 
and Villa 2006; Lombard and Clark 2008; Villa and Soriano 
2010; Wilkins et al. 2012; Wilkins and Schoville 2016); later 
on similar results were published for east Africa (e.g. Sahle 
et al. 2013) and Eurasia (e.g. Cârciumaru et al. 2012; Rots 
2013; Goval et al. 2016).

The Levallois technique indicates a switch to the sys-
tematic predetermination of flake removal in terms of size 
and shape (Van Peer 1992; Boëda 1994), in the context of a 
step wise, goal-driven knapping process (e.g., Brantingham 
2010). Wynn et al. (2017) suggested that the number of rou-
tines and length of procedural chains required in prepared-
core technologies would have required an increase in long-
term procedural memory capacity well beyond the range of 
preceding stone tool technologies. The Levallois technique 
also requires deeper rapid problem assessment, and each 
problem requires an immediate solution, yet the knapper has 
to hold in mind what he or she ultimately intends—a goal or 
subgoal, such as platform formation, that might still be sev-
eral steps removed from the current situation—by following 
the process. By refitting and following the work sequence of 
Marjorie’s core, for example, Schlanger (1996) demonstrated 
that the knapper did not simply perform a preset series of 
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actions, nor did they respond instinctively to external con-
straints. Instead, he found that the knapper’s course of action 
was a structured and goal-oriented interplay between mental 
and material engagement. This was apparent in the way that 
the knapper attended to consequences that current knapping 
decisions had for future phases of reduction. Such knap-
ping represents an increase in the depth of problem-solving 
capacity, which requires not only increases in size and num-
ber of informational chunks, but also an increase in working 
memory capacity, because there are more hidden variables 
to hold in attention to maximize a solution further along the 
procedure (Wynn et al. 2017).

Prepared-core reduction also suggests an important role 
for semantic long-term memory. In the Marjorie’s core 
reduction sequence, the knapper followed a kind of rule that 
dictates that after successfully striking off a large flake, the 
core must be rotated 90° so that a current lateral convexity 
becomes the distal convexity for the next phase (Wynn and 
Coolidge 2010). Such a conventional rule almost certainly 
existed in the mind of the knapper as a chunk of seman-
tic information, in terms of inanimate causal cognition. 
However, it is not sufficient to understand the rock, but the 
required action must also be mastered. Lycett et al. (2016) 
suggested that Levallois technology required active teaching, 
which involves understanding the attention and intention of 
the teacher. The teaching probably involved verbal instruc-
tion of abstract concepts (e.g., Högberg et al. 2015; Gärden-
fors and Högberg 2017), which would be consistent with 
Cole’s (2019) interpretation of third- to fourth-order ToM 
for prepared-core technologies. In terms of inanimate causal 
cognition, Levallois knappers understood how a core would 
“behave” in the future, providing it was set up appropriately.

Grade 7: Causal Network Cognition

We have suggested that the most complex grade of causal 
cognition is the understanding of how domain-specific 
causal node sets connect or link to inter-domain causal net-
works or causal grammars (Tenenbaum and Niyogi 2003; 
Lombard and Gärdenfors 2017), the most advanced form of 
causal network thinking being that of “scientific” or hypo-
thetical reasoning. Such understanding allows speculative 
thinking about how the world works, either physically or 
socially. Importantly, it also allows for seamless mapping 
between the physical and social domains. Thus, during 
this grade of causal understanding, we are able to integrate 
aspects of all the previous grades of causal understanding, 
mapping them onto each other into never-ending patterns 
of recursion and complexity—including higher-order ToM. 
Gopnik et al. (2004) describe this kind of thinking in terms 
of causal Bayes nets that provide humans with the type of 
reasoning necessary for inductive inference and discovery 
(theory formation). We do this by perceiving patterns of 

likelihood between a range of possible events—by thinking 
through, imagining, or examining (through experimentation) 
the consequences of interventions by combining multiple 
types of hidden variables and observed evidence (Gopnik 
and Schulz 2007).

Causal network thinking is a critical development, 
because it allows us to gain new knowledge or insight from 
what we already know through either individual discovery 
or socially transmitted knowledge about hidden variables. 
It means that not every individual needs to have the full 
causal understanding of a complex system (Boyd et  al. 
2011). Instead, causal network thinking allows for the divi-
sion of conceptual structures (e.g., the parts that an indi-
vidual understands causally), and their subsequent rear-
rangement into new contexts, so that novel structures can 
be conceptualized in their place—learning from reasoning 
(Barbey and Wolff 2007). Such a transformation of units 
in causal understanding, combined with an individual’s 
unique set of experiences and memories, may lead to new 
conclusions about how the world works and/or to technical 
improvement—occasionally in gigantic leaps of invention, 
but mostly in incremental steps of innovation (Högberg and 
Lombard 2020).

We have previously suggested that speculative track-
ing as described by Liebenberg (1990, 2013) in the con-
text of Kalahari bow hunters, demonstrates the ability to 
draw together domain-specific nodes into inter-domain net-
works of abstract causal understanding. For example, inti-
mate knowledge of kin, non-kin, and animal behavior and 
their inanimate signs, are incorporated with multifaceted 
knowledge about the landscape (geographic features, water 
sources, vegetation, etc.), abstract causal understanding, and 
the mental maps, thought processes, and social contexts of 
the tracker, and the tracker’s technical understanding of 
how best to hunt with poisoned arrows. Speculative track-
ing therefore demonstrates how humans create meaningful 
causal networks of hidden variables to deal with complex, 
dynamic events. The bow hunters create multiple and con-
tinuously adapted imaginative reconstructions to interpret 
the actions and states of the animals they intend hunting. 
Based on these reconstructions they create novel predictions 
in endlessly unique and changing circumstances (Lieben-
berg 1990). This allows them to plan ahead, no longer hav-
ing to rely only on following visual cues, because some 
of the tracking now happens abstractly, in the mind of the 
hunter in a continuous cognitive process of “conjecture and 
refutation”—i.e., scientific reasoning (Liebenberg 1990).

Such thinking is similar to Mithen’s (1994, 1996) concept 
of fully integrated domains of intuitive intelligence, which 
include linguistic, social, technical, and natural history intel-
ligence. Advanced levels of cognitive reasoning, similar to 
how we think today, can only be reached once humans are 
able to generalize abstract knowledge from one domain 
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to others into creative, innovative, and flexible solutions. 
Mithen saw evidence for such advanced levels in cognitive 
fluidity from about 60,000 years ago in the archaeological 
record (also see Haidle 2010 for further discussion), which 
is roughly simultaneous to some of the earliest current 
archaeological evidence for bow hunting in southern Africa 
(Lombard and Phillipson 2010; Lombard 2011; Backwell 
et al. 2018).

From a technological perspective bow-and-arrow tech-
nology may also serve as one of potentially several proxies 
for high-level cognition as a result of its modularity and 
associated extended thought-and-action sequence or prob-
lem–solution distance (Lombard and Haidle 2012; Lombard 
2016); other examples would include using needle-and-
thread, knitting or weaving technology, and harpoons. These 
technologies represent symbiotic systems that rely on the 
simultaneous, focused bimanual manipulation of multiple 
technical components. Technological symbiosis (where nei-
ther part of the system is effective without the simultaneous 
manipulation of the other) enables a level of complexity and 
flexibility that is not possible with non-symbiotic, simple, 
or composite technologies (Haidle et al. 2015). Once the 
concept of symbiotic technologies is understood, different 
elements and series of elements can be adapted and grouped 
in multiple ways, and in sequences of various length and 
complexity, to achieve diverse results. For example, bows 
can be:

• Grouped with drill bits (which are sometimes hunting 
arrows), weights, and handling pieces to use as bow 
drills.

• Used with palm protectors, fire sticks, base-wood, and 
tinder as fire drills.

• Used as simple, violin-like instruments, stroked with a 
stick or arrow; and applied to the mouth cavity or a gourd 
as a sound box, as is done by Kalahari hunter–gatherers 
in southern Africa.

• Plucked (non-symbiotically) with the fingers like a one-
string guitar, also demonstrated by the Kalahari San 
(Lombard 2016).

Thus, we found that a key evolutionary advantage of sym-
biotic technologies, such as a bow-and-arrow set, enables 
almost endless combinations of single elements or chains of 
operations, in a variety of ways, to reach single or multiple 
goals. Such technologies offer instantaneous and spontane-
ous flexibility to effectively handle any one possibility or 
situation out of a suite of diverse foreseen (and unforeseen) 
scenarios (Lombard and Haidle 2012), allowing for a range 
of cognitive and cultural complexity and variability associ-
ated with grade 7 causal cognition.

The earliest known evidence for bow hunting, with arrow 
tips made from backed bladelet pieces (e.g., Lombard 2011; 

also see Cole 2019 on intentionality of Mode 4 bladelet pro-
duction), represents an archaeological example of causal 
network cognition in southern Africa at more than 64 ka 
(Lombard and Gärdenfors 2017). In bow hunting behavior 
we see how the causal understanding of the advantages of 
hunting with a sharp projectile is coupled with the abstract 
causal understanding that the power of stored mechanical 
energy can overcome physical challenges, such as the limited 
reach of a spear, to brace subsistence or conflict strategies. 
Poisoned bone arrow tips were in use in southern Africa at 
least since the Later Stone Age starting ~ 40 ka (d’Errico 
et al. 2012; Robbins et al. 2012), and it now seems that this 
tradition could have started more than 60 ka (Bradfield et al. 
2020; Lombard 2020).

In our most recent exploration of the link between causal 
cognition and technical force dynamics (Gärdenfors and 
Lombard 2020), we suggest that evidence of poisoned arrow 
use reflects a complex form of causal reasoning about a force 
operating over an extended period, sometimes across a long 
distance, and often out of sight, and that it adds the chemical 
domain to the physical and technical principles represented 
in the bow-hunting system (also see Bradfield et al. 2015). In 
the case of such techno-behaviors, it is no longer the knap-
ping of the stone tools themselves that inform on cogni-
tion, but the ways in which they were used. What is more, 
ultimately humans understood on abstract levels that the 
energy of a strung bow can be harnessed in multiple ways 
as listed above. Taken together, examples of such technolo-
gies amount to a causal grammar or concepts of fluid intel-
ligence (Mithen 1996; Tenenbaum and Niyogi 2003; Lom-
bard and Gärdenfors 2017). Bow hunting also demonstrates 
other types of complex cognition, for example, episodic or 
autobiographical memory that allows the reactivation of all 
the technical modules and their possible applications over 
extensive temporal and spatial gaps (Coolidge et al. 2016; 
Lombard 2019).

Concluding Discussion

We started our article by highlighting that the aim of evo-
lutionary cognitive archaeology is to identify, reconstruct, 
interpret, and explain development and change in human 
cognition through time, based on the material culture they 
left behind. Here we provided a theoretical framework (the 
seven-grade causal cognition model) that allows predictions 
about how material culture may manifest as a result of the 
development of certain cognitive ranges, with potential lines 
of evidence and examples summarized in Table 1. It involves 
a successive addition of “hidden variables” related to ToM 
and to abstract “forces” that lead to an increasing decoupling 
of causal similarities from perceptual similarities, and is an 
inclusive framework for human cognitive evolution that is 
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different from some other models (e.g., working memory), 
because it does not start from the perspective of the “modern 
mind,” instead attempting to help explain its development 
through time, although not necessarily in a unilinear fashion.

Our first thesis proposes that ToM is an integral social 
element of causal cognition, and we provided a new analysis 
of ToM and the orders it represents to make our argument 
explicit. Boyd et al. (2011) created a divide between the 
“cognitive niche hypothesis” (e.g., Barrett et al. 2007; Pinker 
2010) and the “cultural niche hypothesis.” They define the 
cognitive niche in terms of evolutionary psychology as 
studied by Cosmides and Tooby (2001) and their followers. 
In our view, this delimitation amounts to a very restricted 
account of cognition. In line with the divide, Derex et al. 
(2019) argue that causal understanding is “unnecessary” for 
culturally evolving technology (but see McCormack et al. 
[eds] 2011 on how causal cognition underpins human tool 
use today). We find this divide artificial. In our opinion, any 
cultural niche also contains causal cognitive elements (see 
also Osiurak and Reynaud 2020), both technical and social. 
For example, the form of technology that we find along hom-
inin lines cannot be maintained without intentional teaching 
(Gärdenfors and Högberg 2017)—not just by imitating oth-
ers—and thus it is part of a cultural niche. At the same time, 
we have argued that there is a coevolution between these 
forms of technology and more and more advanced forms of 
causal cognition (Gärdenfors and Lombard 2020). In brief, 
the cultural niche cannot be maintained without involving 
the cognitive niche, and vice versa. By understanding ToM 
as the social cognition part of the causal cognition system, as 
presented in this article, it becomes evident how the niches 
intertwine.

Exactly because humans are exceptionally good at causal 
cognition, particularly so in social causal cognition, Bar-
rett et al. (2010, p. 523) argue that we invest considerable 
amounts of “mental resources” in trying to understand why 
others do things in certain ways, continuously assessing their 
skills and underlying motivational structures. Causal cogni-
tion is therefore a key factor in how we learn from others—
not only about social behavior and motivation, but also about 
technical skill, know-how and the motivational structures 
behind the use of technologies. Bender and Beller (2019, p. 
923) perhaps say it best: “Causal cognition emerges early in 
development and confers an important advantage for sur-
vival. […] The multiple ways in which both content and the 
key mechanisms of cultural transmission generate cultural 
diversity suggest that causal cognition in humans is not only 
colored by their specific cultural background but also shaped 
more fundamentally by the very fact that humans are a cul-
tural species.”

With our second thesis, we suggest that the more 
advanced causal cognition is, the more it is dependent 
on ToM. Our seven grades of causal cognition extend Ta
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Woodward’s (2011) division between egocentric causal 
learner, agent causal learners, and observation/action causal 
learners. Especially, our grades 2–5 form an expansion of 
his agent causal learners. The main reason for making these 
distinctions is that they involve increasing use of detached 
representations and of ToM. We have shown that from 
grade 3 causal cognition onwards different forms of ToM 
are required for the kind of reasoning represented. Being 
able to share mental states by using words leads to a bet-
ter understanding of mental states in other people and how 
they understand the world both technically and socially. The 
development of a language would have strengthened this 
tendency (Bender and Beller 2019, pp. 927–928), to such an 
extent that causal relationships can be mapped onto linguis-
tic constructions in various ways (Gärdenfors 2020).

The third thesis is that the evolution of causal cognition 
depends more and more on mental representations of hid-
den variables. Again, the seven-grade model provides sup-
port for this thesis. The first hidden variables are the mental 
entities—relating to emotion, attention, desire, intention, 
and belief—that are involved in ToM. These can be seen as 
mental “forces” that cause the agent to behave in a certain 
way. Then other forces—e.g., physical and chemical in the 
form of hafting bindings and adhesives—are added as hid-
den variables to the causal reasoning on grade 6. The final 
seventh grade involves reasoning with a network of hidden 
variables, and is as far as we know, unique to Homo sapiens. 
Today, causal network cognition is a panhuman trait in that 
all living human populations are able to think in this man-
ner, despite possible variation in individual cognition (e.g., 
Mistry et al. 2018).

In brief, our analysis shows that the seven-grade model of 
causal cognition can function as a productive, inclusive theo-
retical tool for evolutionary cognitive archaeology. It allows 
for a seamless integration between aspects of technical and 
social cognition—both being central to the Homo lineage 
and almost certainly part of a long and complex coevolution-
ary feedback loop.
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